CM 1021 Mathematical Methods for Computing I

Exercise Sheet 1 - solutions

1. If $f(x) = x^2 + 2x$ and g(x) = x - 1, find f(g(x)) and g(f(x)).

$$f(g(x)) = (x-1)^2 + 2(x-1) = x^2 - 1$$
$$g(f(x)) = x^2 + 2x - 1$$

2. If f(x) = 3x + 2 and g(x) = 4x + c, find f(g(x)) and g(f(x)) and find a value of c for which f(g(x)) = g(f(x)).

$$f(g(x)) = 3(4x+c) + 2 = 12x + 3c + 2$$
$$g(f(x)) = 4(3x+2) + c = 12x + 8 + c$$
we must have $3c + 2 = 8 + c$ so $c = 3$

3. Find the range of the functions:

(a)
$$y = x^2 + 3, -4 \le x \le 1$$

$$x \in [-4, 1], y \in [3, 19]$$

(b)
$$y = 4 - 3x^2, -2 \le x \le 3$$
.

$$x \in [-2, 3], y \in [-23, 4]$$

4. Find the inverse of the function f(x) = 4x - 7. Verify that $f(f^{-1}(x)) = x$ and that $f^{-1}(f(x)) = x$.

If
$$y = 4x - 7$$
 then we have $x = \frac{y+7}{4}$ so $f^{-1}(x) = \frac{x+7}{4}$.

$$f(f^{-1}(x)) = 4\left(\frac{x+7}{4}\right) - 7 = x \qquad f^{-1}(f(x)) = \frac{(4x-7)+7}{4} = x$$

5. Find the inverse of the function $f(x) = \frac{2x-3}{x-4}$, $x \neq 4$

If
$$y = \frac{2x-3}{x-4}$$
, $y(x-4) = 2x-3$, $xy-4y = 2x-3$, $xy-2x = 4y-3$, $x(y-2) = 4y-3$, $x = \frac{4y-3}{y-2}$ and thus $f^{-1}(x) = \frac{4x-3}{x-2}$, $x \neq 2$

- 6. Determine whether the following functions are odd, even or neither.
 - (i) $x^4 + 3x^2 2$, (ii) $x^3 x^2$, (iii) $x^3 3x$,
 - (i) Even, e.g f(1) = 1 + 3 2 = 2, f(-1) = 1 + 3 2 = 2
 - (ii) neither e.g f(1) = 0, f(-1) = -2
 - (iii) odd e.g. f(1) = (-2), f(-1) = 2
- 7. Sketch, on the same axes, the graphs of
 - (a) x^2 and $x^2 4$ for $-4 \le x \le 4$.
 - (b) x^2 and $(x+1)^2$ for $-4 \le x \le 4$.
- 8. Sketch the graph of (i) 3x 5y 30 = 0, (ii) 5x + 3y 15 = 0 (iii) y = |x 1|
- 9. Sketch the graph of (i) $y = 3e^x$, (ii) $y = x^2 3x + 2$
- 10. Find the equation of the straight line which passes through the points (1, -2) and (-2, 7). Find the points at which the line crosses the x-axis and the y-axis.

Using the formula with $x_1 = 1, y_1 = -2, x_2 = -2$ and $y_2 = 7$ we have

$$y+2 = \frac{-2-7}{1+2}(x-1) \to y+3x = 1$$

11. Find the centre and radius of the circle given by

$$x^2 + y^2 - 6x + 2y - 15 = 0.$$

Complete the squares for both x and y

$$x^{2} - 6x + 9 + y^{2} + 2y + 1 - 9 - 1 - 15 = 0 \rightarrow (x - 3)^{2} + (y + 1)^{2} = 25$$

The centre of the circle is at (3, -1) and the radius is 5.

- 12. Use the rules of logarithms to simplify the following:
 - (a) $\ln x + \ln x^2$, (b) $\ln e^3$, (c) $\ln(\frac{1}{2}) + \ln 4$,
 - (d) $e^{5 \ln x}$, (e) $\ln 6 \ln 3$, (f) $\ln(x + xy) \ln x$.
 - (a) $3 \ln(x)$ (b) 3 (c) $\ln 2$ (d) x^5 (e) $\ln 2$ (f) $\ln(1+y)$

More Challenging Questions

13. Find the domain and the range of the functions:

(a)
$$f(x) = \sqrt{1 - x^2}$$
 (b) $g(x) = \sqrt{x^2 + x - 2}$ (c) $h(x) = \frac{1}{x^2 + x - 2}$.

- (a) Domain is $|x| \le 1$ or $-1 \le x \le 1$ or $x \in [-1, 1]$. Range $f(x) \in [0, 1]$ (positive square root).
- (b) We must have $x^2 + x 2 \ge 0$. Factorise (x 1)(x + 2) so we have either $x \le -2$ or $x \ge 1$. Check by sketching the graph. The range is $f(x) \in [0, \infty)$.
- (c) We cannot have the denominator zero so the domain is $x \in \mathbb{R} \setminus \{-2, 1\}$ (All the real numbers except x = -2 or x = 1.) The range is $f(x) \in \mathbb{R} \setminus 0$.
- 14. Show that if f(x) and g(x) are both odd functions, then $h(x) = f(x) \times g(x)$ is an even function.

$$f(-x) = -f(x), \quad g(-x) = -g(x)$$

thus $h(x) = f(x)g(x) = -f(-x) \times -g(-x) = f(-x)g(-x) = h(-x)$

15. Show that $f(x) = \frac{x+1}{x-1}$ is one-to-one. Find f^{-1} and show that your solution is correct. Can you explain the form of $f^{-1}(x)$?

Let
$$\frac{x+1}{x-1} = \frac{y+1}{y-1}$$
. Then $(y-1)(x+1) = y+1)(x-1)$ and thus

xy - x - 1 + y = xy + x - y - 1 so y = x and the function is one to one

$$f^{-1}(x) = \frac{x+1}{x-1}$$

The function is its own inverse since its graph is symmetric about the line x = y.

$$f^{-1}(f(x)) = \frac{\frac{x+1}{x-1} + 1}{\frac{x+1}{x-1} - 1} = x$$

16. Evaluate

(a)
$$\lim_{x \to \infty} \frac{2x+3}{x-1}$$
, (b) $\lim_{x \to 3} \frac{x-3}{x^2-9}$, (c) $\lim_{x \to 1} \frac{x-1}{x^3-1}$

- (a) 2
- (b) factorise the denominator and cancel the (x-1) factor, $\frac{1}{6}$
- (c) factorise the denominator $x^3 1 = (x 1)(x^2 + x + 1)$ and cancel (x 1) as before.

17. Sketch the following graphs

(a)
$$y = \frac{x^2 + 5x + 4}{4x + 1}$$
, (b) $y = \frac{4x + 1}{x^2 + 5x + 4}$

(a)

(b)

