CM 1021 Mathematical Methods for Computing I

Exercise Sheet 2 - solutions

1. Convert the following angles

(a) from radians to degrees: $\pi/4$, 3π , $-5\pi/2$, 1.36, 2.45

$$45^{\circ}, 270^{\circ}, -450^{\circ}, 77.9222^{\circ}, 140.3746^{\circ}$$

(b) from degrees to radians: 90° , 135° , 315°

$$\frac{\pi}{2}, \quad \frac{3\pi}{4}, \quad \frac{7\pi}{4}, \text{ or } 1.5707, \quad 2.3561, \quad 5.4977$$

2. A pizza has radius 20cm. A slice is cut from the pizza with an angle of 48° at the point. What is the area of the slice?

Area
$$=\frac{48}{360} \times \pi \times 20^2 = \frac{160\pi}{3}$$

3. Calculate angles A and B, and side a in the left-hand figure, and angle A and sides b and c in the right-hand figure. Both are right-angled triangles.

4. Expand (a) $\sin(x + \pi/6)$ (b) $\tan(x + \pi/4)$ (c) $\cos(x - \pi/3)$

(a)
$$\frac{1}{2}(\sin(x)\sqrt{3} + \cos(x))$$
 (b) $\frac{1 + \tan x}{1 - \tan x}$ (c) $\frac{1}{2}(\sin(x)\sqrt{3} + \cos(x))$

5. Without using a calculator find the exact value of
(a) cos(15°) (b) sin (22¹/₂°) (c) tan(75°)

(a)
$$\sqrt{\frac{1}{4}(2+\sqrt{3})}$$
 (b) $\sqrt{\frac{1}{2}(1-\frac{1}{\sqrt{2}})}$ (c) $\frac{\sqrt{3}+1}{\sqrt{3}-1}$

- 6. Solve the following triangles using the sine or cosine rules as appropriate, giving your answers to 2 d.p.s and expressing angles in degrees
 - (a) a = 7, b = 6, c = 9 $A = 50.98^{\circ}, B = 41.75^{\circ}, C = 87.27^{\circ}$
 - (b) $A = 25^{\circ}, b = 27, c = 32$ $a = 13.67, B = 56.58^{\circ}, C = 98.42^{\circ}$
 - (c) $A = 74^{o}, B = 10^{o}, c = 14$ $C = 94^{o}, a = 13, 53, b = 2.44$
- 7. Find the period of (a) $\cos 5x$, (b) $\sin 6x$, (c) $\cos(3x-2)$

Using the formula, period = $\frac{2\pi}{\omega}$ the solutions are (a) $\frac{2\pi}{5}$, (b) $\frac{\pi}{3}$ (c) $\frac{2\pi}{3}$

8. What is the distance between the points whose coordinates are (4, 11, -5) and (7, -3, -1)

Distance
$$=\sqrt{(4-7)^2 + (11+3)^2 + (-5+1)^2} = \sqrt{221}$$

More Challenging Questions:

9. Find $\sin 3x$ in terms of $\sin x$

$$\sin 3x = \sin(x + 2x) = \sin x \cos 2x + \cos x \sin 2x$$

= $\sin x(1 - 2\sin^2 x) + \cos x \cdot 2\sin x \cos x$
= $\sin x - 2\sin^3 x + 2\sin x \cos^2 x$
= $\sin x - 2\sin^3 x + 2\sin x(1 - \sin^2 x)$
= $3\sin x - 4\sin^3 x$

10. If $\tan \frac{x}{2} = t$, find expressions for $\sin x$, $\cos x$ and $\tan x$ in terms of t.

In the triangle with angle $\frac{x}{2}$ the sides are $1, t, \sqrt{1+t^2}$. Thus $\sin \frac{x}{2} = \frac{t}{\sqrt{1+t^2}}$ and $\cos \frac{x}{2} = \frac{1}{\sqrt{1+t^2}}$. Now use $\sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2}$ to get $\sin x = \frac{2t}{1+t^2}$. Then $\cos x = \sqrt{1 - \frac{4t^2}{(1+t^2)^2}} = \frac{1-t^2}{1+t^2}$. Finally $\tan x = \frac{2t}{1-t^2}$ from the double angle formula.