
Chapter 7

Transportation Problems

7.1 Modelling the transportation problem

The transportation problem is concerned with finding the minimum cost of transporting
a single commodity from a given number of sources (e.g. factories) to a given number of
destinations (e.g. warehouses). These types of problems can be solved by general network
methods, as in Chapter 9, but here we use a specific transportation algorithm.

The data of the model include

1. The level of supply at each source and the amount of demand at each destination.

2. The unit transportation cost of the commodity from each source to each destination.

Since there is only one commodity, a destination can receive its demand from more than
one source. The objective is to determine how much should be shipped from each source
to each destination so as to minimise the total transportation cost.
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This figure represents a transportation model with m sources and n destinations. Each
source or destination is represented by a node. The route between a source and destination
is represented by an arc joining the two nodes. The amount of supply available at source i
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is ai, and the demand required at destination j is bj. The cost of transporting one unit
between source i and destination j is cij.

Let xij denote the quantity transported from source i to destination j. The cost associated
with this movement is cost×quantity = cijxij. The cost of transporting the commodity
from source i to all destinations is given by

n∑
j=1

cijxij = ci1xi1 + ci2xi2 + · · · + cinxin.

Thus, the total cost of transporting the commodity from all the sources to all the desti-
nations is

Total Cost =
m∑

i=1

n∑
j=1

cijxij

= c11x11 + c12x12 + · · · + c1nx1n +

c21x21 + c22x22 + · · · + c2nx2n +
...

cm1xm1 + cm2xm2 + · · · + cmnxmn

In order to minimise the transportation costs, the following problem must be solved:

Minimise z =
m∑

i=1

n∑
j=1

cijxij,

subject to
n∑

j=1

xij ≤ ai for i = 1, . . . , m

and
m∑

i=1

xij ≥ bj for j = 1, . . . , n

where xij ≥ 0 for all i and j.

The first constraint says that the sum of all shipments from a source cannot exceed the
available supply. The second constraint specifies that the sum of all shipments to a
destination must be at least as large as the demand.

The above implies that the total supply
m∑

i=1

ai is greater than or equal to the total demand

n∑
j=1

bj. When the total supply is equal to the total demand (i.e.
m∑

i=1

ai =
n∑

j=1

bj) then the

transportation model is said to be balanced. In a balanced transportation model, each
of the constraints is an equation:

n∑
j=1

xij = ai for i = 1, . . . , m,

m∑
i=1

xij = bj for j = 1, . . . , n.
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A transportation model in which the total supply and total demand are unequal is called
unbalanced. It is always possible to balance an unbalanced transportation problem.

Example 1 Balanced transportation model.

Consider the following problem with 2 factories and 3 warehouses:

Warehouse 1 Warehouse 2 Warehouse 3 Supply
Factory 1 c11 c12 c13 20
Factory 2 c21 c22 c23 10
Demand 7 10 13

Total supply = 20 + 10 = 30

Total demand = 7 + 10 + 13 = 30

= Total supply

Since Total supply = Total demand, the problem is balanced.

Example 2 Unbalanced transportation model.

There are two cases to consider, namely excess demand and excess supply.

1. Suppose the demand at warehouse 1 above is 9 units. Then the total supply and
total demand are unequal, and the problem is unbalanced. In this case it is not
possible to satisfy all the demand at each destination simultaneously.

We reformulate the model as follows: since demand exceeds supply by 2 units, we
introduce a dummy source (i.e. a fictitious factory) which has a capacity of 2. The
amount shipped from this dummy source to a destination represents the shortage
quantity at that destination.

It is necessary to specify the costs associated with the dummy source. There are
two situations to consider.

(a) Since the source does not exist, no shipping from the source will occur, so the
unit transportation costs can be set to zero.

(b) Alternatively, if a penalty cost, P, is incurred for every unit of unsatisfied
demand, then the unit transportation costs should be set equal to the unit
penalty costs.

Warehouse 1 Warehouse 2 Warehouse 3 Supply
Factory 1 c11 c12 c13 20
Factory 2 c21 c22 c23 10
dummy P P P 2
Demand 7 10 13

In effect we are allocating the shortage to different destinations.
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2. If supply exceeds demand then a dummy destination is added which absorbs the
surplus units. Any units shipped from a source to a dummy destination represent
a surplus at that source. Again, there are two cases to consider for how the unit
transportation costs should be determined.

(a) Since no shipping takes place, the unit transportation costs can be set to zero.

(b) If there is a cost for storing , S, the surplus production then the unit trans-
portation costs should be set equal to the unit storage costs.

Warehouse 1 Warehouse 2 Warehouse 3 dummy Supply
Factory 1 c11 c12 c13 S 20
Factory 2 c21 c22 c23 S 10
Demand 7 10 13 4

Here we are allocating the excess supply to the different destinations.

From now on, we will discuss balanced transportation problems only, as any unbalanced
problem can always be balanced according to the above constructions.

7.2 Solution of the transportation problem

A balanced transportation problem has Total supply = Total demand which can be ex-
pressed as

m∑
i=1

ai =
n∑

j=1

bj. (7.1)

A consequence of this is that the problem is defined by n + m − 1 supply and demand
variables since, if ai, i = 2, 3, . . . ,m and bj, j = 1, 2, . . . , n are specified, then a1 can be
found from (7.1). This means that one of the constraint equations is not required. Thus,
a balanced transportation model has n + m − 1 independent constraint equations.

Since the number of basic variables in a basic solution is the same as the number of
constraints, solutions of this problem should have n + m − 1 basic variables which are
non-zero and all the remaining variables will be non-basic and thus have the value zero.

7.2.1 Starting the algorithm: finding an initial basic feasible
solution

We consider two ways of constructing initial basic feasible solutions for a transportation
problem, i.e. allocations with n + m − 1 basic variables which satisfy all the constraint
equations.
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Method 1: The North-West Corner Method

Consider the problem represented by the following transportation tableau. The num-
ber in the bottom right of cell (i, j) is cij, the cost of transporting 1 unit from source i
to destination j. Values of xij, the quantity actually transported from source i to desti-
nation j, will be entered in the top left of each cell. Note that there are 3 factories and 4
warehouses and so m = 3, n = 4.

W1 W2 W3 W4 Supply

F1 10 0 20 11
20

F2 12 7 9 20
25

F3 0 14 16 18
15

Demand 10 15 15 20

The north-west corner method generates an initial allocation according to the follow-
ing procedure:

1. Allocate the maximum amount allowable by the supply and demand constraints to
the variable x11 (i.e. the cell in the top left corner of the transportation tableau).

2. If a column (or row) is satisfied, cross it out. The remaining decision variables in
that column (or row) are non-basic and are set equal to zero. If a row and column
are satisfied simultaneously, cross only one out (it does not matter which).

3. Adjust supply and demand for the non-crossed out rows and columns.

4. Allocate the maximum feasible amount to the first available non-crossed out element
in the next column (or row).

5. When exactly one row or column is left, all the remaining variables are basic and
are assigned the only feasible allocation.

For the above example:

• x11 = 10. Cross out column 1. The amount left in row 1 is 10.

• x12 = 10. Cross out row 1. 5 units are left in column 2.

• x22 = 5. Cross out column 2. 20 units are left in row 2.

• x23 = 15. Cross out column 3. 5 units are left in row 2.

• Only column 4 is now left and so both the remaining variables x24 and x34 will be
basic. The only feasible allocation of the 5 units in row 2 and the 15 units in row 3
is to allocate x24 = 5 and x34 = 15, which also ensures that the demand in column
4 is satisfied.
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This provides the initial basic feasible solution x11 = 10, x12 = 10, x22 = 5, x23 = 15,
x24 = 5, x34 = 15. The remaining variables are non-basic and therefore equal to zero.
The solution has m + n − 1 = 6 basic variables as required.

The values of the basic variables xij are entered in the top left of each cell. There should
always be m + n − 1 of these; in certain (degenerate) cases some of them may be zero.
They must always add up to the total supply and demand in each row and column.

Note that some books position the data differently in the cells of the tableau.

Method 2: The Least-Cost Method

This method usually provides a better initial basic feasible solution than the North-West
Corner method since it takes into account the cost variables in the problem.

1. Assign as much as possible to the cell with the smallest unit cost in the entire
tableau. If there is a tie then choose arbitrarily.

2. Cross out the row or column which has satisfied supply or demand. If a row and
column are both satisfied then cross out only one of them.

3. Adjust the supply and demand for those rows and columns which are not crossed
out.

4. When exactly one row or column is left, all the remaining variables are basic and
are assigned the only feasible allocation.

W1 W2 W3 W4 Supply

F1 10 0 20 11
20

F2 12 7 9 20
25

F3 0 14 16 18
15

Demand 10 15 15 20

For the above example:

• Cells (1, 2) and (3, 1) both have zero cost so we arbitrarily choose the first and assign
x12 = 15. Cross out column 2. The amount left in row 1 is 5.

• x31 = 10. Cross out column 1. The amount left in row 3 is 5.

• x23 = 15. Cross out column 3. The amount left in row 2 is 10.

• Only column 4 is now left and so all the variables in this column will be basic. The
only feasible allocation is x14 = 5, x24 = 10 and x34 = 5.

This provides the initial basic feasible solution x12 = 15, x31 = 10, x23 = 15, x14 = 5,
x24 = 10, x34 = 5. All the other variables are non-basic and are therefore equal to zero.
Again, we have 6 basic variables as required.
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7.2.2 Checking for optimality

So far we have only looked at ways of obtaining an initial basic feasible solution to the
balanced transportation problem. We now develop a method for checking whether the
current basic feasible solution is optimal. For illustrative purposes, we will start with the
initial basic feasible solution that was provided by the North-West Corner method. Usu-
ally, initial basic feasible solutions obtained by the Least-Cost method (or other methods
given in many text-books, such as Vogel’s method) will give better starting configurations.

Suppose that the cost cij of transporting 1 unit from source i to destination j is made up
of a dispatch cost λi and a reception cost µj so that

λi + µj = cij

whenever xij is a basic variable.

Remarks

• The total number of λi and µj variables is n+m. However, there are only n+m−1
basic variables. Thus, we are free to choose one of the λi’s or µj’s arbitrarily. It is
usual to set λ1 = 0.

• These “costs” can take negative values if required.

Considering only these dispatch and reception costs, it would cost λi + µj to send 1 unit
from source i to destination j. For (i, j) not corresponding to a basic variable, it will
often be the case that λi + µj 6= cij. In particular, if λi + µj > cij for a particular (i, j)
not corresponding to a basic variable, then there would be a benefit from sending more
goods that way.

So let sij = cij − λi − µj. The sij values are entered in the top right of the cells. Then
sij is the change in cost due to allocating 1 extra unit to cell (i, j) (in fact it is a shadow
price). If any sij is negative (so that λi + µj > cij), then the total cost can be reduced
by allocating as many units as possible to cell (i, j). However, if all the sij are positive
then it will be more expensive to change any of the allocations and so we have found a
minimum cost.

Thus the procedure is as follows:

1. Assign values of λi and µj to the columns.

2. Enter the values sij = cij − λi − µj in every cell.

3. If all the sij’s are non-negative, we have an optimal solution.

Assigning values of λi and µj to our example with the initial basic feasible solution given
by the North-West Corner method, gives the following transportation tableau:

10 0 2 13

0
10

10
10

0
18
20

−2
11

7
−5
12

5
7

15
9

5
20

5
−15

0
9

14
9

16
15

18
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Adding the sij variables to each cell, we find three negative values and so the solution is
not optimal.

7.2.3 Iterating the algorithm

If the current solution is not optimal, we need a method for moving to a better basic
feasible solution. As previously, this involves changing only one variable in the basis so
again we must identify an entering variable and a departing variable in the basis.

Determining the entering variable

If the current solution is not optimal, choose the cell with the most negative value of
sij as the entering variable, as the cost will be reduced most by using this route.

For our example, the most negative value is s31 and so the entering variable is x31.

Determining the leaving variable

We construct a closed loop that starts and ends at the entering variable and comprises
successive horizontal and vertical segments whose end points must be basic variables
(except those associated with the entering variable). It does not matter whether the loop
is clockwise or anticlockwise.

Starting Tableau

10 0 2 13

0
10

10
10

0 20 11

7
12

5
7

15
9

5
20

5
0 14 16

15
18

We now see how large the entering variable can be made without violating the feasibility
conditions. Suppose x31 increases from zero to some level ε > 0. Then x11 must change
to 10 − ε to preserve the demand constraint in column 1. This has a knock on effect for
x12 which must change to 10 + ε. This process continues for all the corners of the loop.

The departing variable is chosen from among the corners of the loop which decrease when
the entering variable increases above zero level. It is the one with the smallest current
value, as this will be the first to reach zero as the entering variable increases. Any further
increase in the entering variable past this value leads to infeasibility.

Clearly x22 is the departing variable in this case. The entering variable x31 can increase
to 5 and feasibility will be preserved.

New values of the λi’s and the µj’s can now be assigned and the test for optimality
applied. If the solution is still not optimal, new entering and departing variables must be
determined and the process repeated.
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Second Tableau

10 0 17 28

0
5

10
15

0
3

20
−17

11

−8
10
12

15
7

15
9

10
20

−10
5

0
24
14

9
16

10
18

As before, we construct λi’s and µj’s which satisfy λi + µj = cij for the basic variables
and enter the values of sij = cij − λi − µj for every cell. This tableau is not optimal as
one of the sij’s is negative. The most negative value of sij occurs for x14 and so this is
the entering variable.

Next we construct a loop which only involves the four corner cells in this case. The
maximum that ε can be without one of the variables going negative is 5 which gives
x11 = 0 and so this is therefore the departing variable.

Third Tableau

−7 0 0 11

0
17
10

15
0

20
20

5
11

9
10
12

−2
7

15
9

10
20

7
10

0
7

14
9

16
5

18

We construct λi’s, µj’s and sij’s as before, and then check for optimality. The tableau is
not optimal as x22 is negative and is therefore the entering variable. The loop construction
shows that ε can be as large as 10, and that x24 is the departing variable.

Fourth Tableau

-7 0 2 11

0
17
10

5
0

18
20

15
11

7
12
12

10
7

15
9

2
20

7
10

0
7

14
7

16
5

18

This is now optimal because sij ≥ 0 in every cell.
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Final Solution

The minimum cost is given by

5 × 0 + 15 × 11 + 10 × 7 + 15 × 9 + 10 × 0 + 5 × 18 = 460

which occurs when

x12 = 5, x14 = 15, x22 = 10, x23 = 15, x31 = 10, x34 = 5

and all the other decision variables are equal to zero.

7.2.4 Solving the transportation problem with Excel Solver

We can use Excel Solver to solve the transportation problem. We set the problem out in
the general form of a linear programming problem:

Minimise z =
m∑

i=1

n∑
j=1

cijxij,

subject to
n∑

j=1

xij ≤ ai for i = 1, . . . , m

and
m∑

i=1

xij ≥ bj for j = 1, . . . , n

where xij ≥ 0 for all i and j.

The data is entered as two arrays - one of transportation costs and the other as decision
variables. The Excel spreadhseet illustrating this is available on the module website.
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Exercises

1. For the transportation problem given by the following tableau, find an initial basic
feasible solution by the least-cost method and then find an optimal solution.

Supply
2 1 3 7
4 5 6 8

Demand 5 6 4

2. For the transportation problem given by the following tableau, find an initial basic
feasible solution by the North-West corner method and then find an optimal solution.

Supply
10 15 10 12 20 8
5 10 8 15 10 7
15 10 12 12 10 10

Demand 5 9 2 4 5

The supply at Source 3 is now reduced from 10 to 6. There is a penalty of 5 for
each unit required but not supplied. Find the new optimal solution.

3. Three refineries with maximum daily capacities of 6, 5, and 8 million gallons of oil
supply three distribution areas with daily demands of 4, 8 and 7 million gallons.
Oil is transported to the three distribution areas through a network of pipes. The
transportation cost is 1 pence per 100 gallons per mile. The mileage table below
shows that refinery 1 is not connected to distribution area 3. Formulate the problem
as a transportation model and solve it. [Hint: Let the transportation cost for
the non-connected route be equal to some large value M say and then proceed as
normal.]

Distribution Area
1 2 3

1 120 180 —
Refinery 2 300 100 80

3 200 250 120

4. In problem 4, suppose additionally that the capacity of refinery 3 is reduced to
6 million gallons. Also, distribution area 1 must receive all its demand, and any
shortage at areas 2 and 3 will result in a penalty of 5 pence per gallon. Formulate
the problem as a transportation model and solve it.

5. In problem 4, suppose the daily demand at area 3 drops to 4 million gallons. Any
surplus production at refineries 1 and 2 must be diverted to other distribution areas
by tanker. The resulting average transportation costs per 100 gallons are £1.50 from
refinery 1 and £2.20 from refinery 2. Refinery 3 can divert its surplus oil to other
chemical processes within the plant. Formulate the problem as a transportation
model and solve it.
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6. Five warehouses are supplied by four factories. The supply available from each
factory, the demand at each warehouse and the cost per unit of transporting goods
from the factories to the warehouses are summarised in the following table:

W1 W2 W3 W4 W5 Supply
F1 13 9 15 10 12 40
F2 11 10 12 12 9 10
F3 12 9 11 12 9 20
F4 13 12 13 12 10 10

Demand 12 15 20 15 18

(a) Use the North-West Corner method to find an initial basic feasible solution of
this problem. (Do NOT use the Least-Cost method.)

(b) Find the optimal solution of this problem, i.e. the solution that minimises the
transportation costs, clearly showing and explaining your working.

(HINT Recall that this problem will require that a basic solution contain 5+4-
1=8 variables, one or more of which may be zero. You will need to make use
of this fact at the final stage of your iteration of the algorithm.)

7. For the transportation problem given by the following tableau, find an initial basic
feasible solution by the North-West corner method and then find an optimal solution.

Supply

9 15 12
10

6 8 13
23

9 3 11
27

Demand 21 14 25
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