Chapter 3 Exercises Solutions

- 1. Solve the following LP problems:
 - (a) determine a suitable entering variable,
 - (b) determine the departing variable
 - (c) find the new form of the objective function and decide whether it has reached is optimum value. If it has not, then continue iterating until the optimum is reached.

Case 1

maximise	z	=	57	_	$4x_1$	+	$3x_5$
subject to	x_2	=	21	+	$2x_1$	—	$3x_5$
	x_3	=	30	—	$3x_1$	—	$4x_5$
	x_4	=	12	+	x_1	_	$2x_5$
and	x_j	\geq	0,	j =	1,	,	5.

Solution

(a) Entering variable must be x_5 , as increasing x_5 from 0 increases z while increasing x_1 decreases z.

(b) If we set $x_1 = 0$ in the three equations for the optimal basic variables we see that

- $x_2 \ge 0$ implies $x_5 \le 7$;
- $x_3 \ge 0$ implies $x_5 \le 7.5$;
- $x_4 \ge 0$ implies $x_5 \le 6$.

The most stringent of these is $x_5 \leq 6$ so x_4 is the departing variable.

(c) We need an expression for x_5 in terms of the non-basic variables, x_1 and x_4 . Rearranging the x_4 equation gives $x_5 = 6 + \frac{1}{2}x_1 - \frac{1}{2}x_4$. We then substitute for x_5 in the objective function to obtain

$$z = 75 - \frac{5}{2}x_1 - \frac{3}{2}x_4.$$

(d) Both x_1 and x_4 have negative coefficients in the equation for z, so putting $x_1 = x_4 = 0$ gives the optimal solution z = 75 at (0,3,6,0,6).

Case 2

$\underline{Solution}$

(a) The entering variable must be x_3 as this variable has the largest positive coefficient in the objective function.

(b) If we set $x_1 = 0$ and $x_2 = 0$ in the two equations for the optimal basic variables we see that

- $x_2 \ge 0$ implies $x_3 \le 12$;
- $x_4 \ge 0$ for all $x_3 \ge 0$.

Thus x_2 is the departing variable.

(c) We need an expression for x_3 in terms of the non-basic variables. From the x_2 equation, we obtain $x_3 = 12 + 2x_1 - x_2 - 3x_5$. Substituting into the objective function gives

$$z = 68 - x_1 - 4x_2 - 11x_5$$

and into the second constraint gives

$$x_4 = 22 - 3x_1 - x_2 - x_5.$$

Thus, the optimal value is z = 68 at (0, 0, 12, 22, 0).

2. Which of the variables should be chosen as the entering variable in the following to give the maximum increase in z at the first iteration? $(x_j \ge 0 \text{ for each } j.)$

$$z = 6x_1 + 9x_2 + 8x_3$$

$$x_4 = 5 - 2x_1 - 3x_2 - x_3$$

$$x_5 = 3 - x_1 - 2x_2 - 3x_3$$

Solution

Consider the maximum amount by which x_1 , x_2 and x_3 can be increased in turn while the other two remain zero, such that x_4 and x_5 remain non-negative.

The maximum allowable increases in x_1 , x_2 and x_3 respectively are 2.5, 1.5 and 1. These increases applied to z increase z from 0 to 15, 13.5 and 8 respectively. Thus x_1 is the entering variable.

Note that x_1 is the entering variable despite it having the lowest coefficient in the objective function.

3. Use the tableau method to solve

Maximise
$$z = 4x_1 + 8x_2$$

subject to
$$\begin{cases} 5x_1 + x_2 \leq 8\\ 3x_1 + 2x_2 \leq 4 \end{cases}$$
and $x_j \geq 0, j = 1, 2.$

In standard form the problem is :

Maximise $z = 4x_1 + 8x_2$ subject to $\begin{cases} 5x_1 + x_2 + x_3 &= 8\\ 3x_1 + 2x_2 &+ x_4 &= 4 \end{cases}$ and $x_j \ge 0, \ j = 1, ..., 4.$

The initial tableau is

Basic	z	x_1	x_2	x_3	x_4	Solution
x_3	0	5	1	1	0	8
x_4	0	3	2	0	1	4
z	1	-4	-8	0	0	0

The entering variable is x_3 , the row quotients are 8 for row 1 and 2 for row 2 so the departing variable must be x_4 . Carrying out row operations we obtain the next tableau.

Basic	z	x_1	x_2	x_3	x_4	Solution	
x_3	0	7/2	0	1	-1/2	6	$r_1 := r_1 - r_2$
x_2	0	3/2	1	0	1/2	2	$r_2 := \frac{1}{2}r_2$
z	1	8	0	0	4	16	$r_3 := r_3 + 8r_2$

Since all the entries in the z row are non-negative the optimal value is z = 16, at the point (0, 2, 6, 0).

4. Use the tableau method to solve

Maximise $z = 5x_1 + 4x_2 + 3x_3$ subject to $\begin{cases} 2x_1 + 3x_2 + x_3 \leq 5\\ 4x_1 + x_2 + 2x_3 \leq 11\\ 3x_1 + 4x_2 + 2x_3 \leq 8 \end{cases}$ $x_j \ge 0, \quad j = 1, 2, 3.$ and

In standard form the problem is:

Maximise
$$z = 5x_1 + 4x_2 + 3x_3$$

subject to
$$\begin{cases} 2x_1 + 3x_2 + x_3 + x_4 & = 5\\ 4x_1 + x_2 + 2x_3 & + x_5 & = 11\\ 3x_1 + 4x_2 + 2x_3 & + x_6 & = 8 \end{cases}$$

and

$$x_j \ge 0, \ j = 1, \dots, 6.$$

8

The initial tableau is

Basic	z	x_1	x_2	x_3	x_4	x_5	x_6	Solution
x_4	0	2	3	1	1	0	0	5
x_5	0	4	1	2	0	1	0	11
x_6	0	3	4	2	0	0	1	8
z	1	-5	-4	-3	0	0	0	0

The entering variable is x_1 , the row quotients are $\frac{5}{2}, \frac{11}{4}, \frac{8}{3}$ for rows 1, 2 and 3 respectively so that the departing variable must be x_4 . Carrying out row operations we obtain the next tableau.

Basic	z	x_1	x_2	x_3	x_4	x_5	x_6	Solution	
x_1	0	1	3/2	1/2	1/2	0	0	5/2	$r_1 := \frac{1}{2}r_1$
x_5	0	0	-5	0	-2	1	0	1	$r_2 := r_2 - 4r_1$
x_6	0	0	-1/2	1/2	-3/2	0	1	1/2	$r_3 := r_3 - 3r_1$
\overline{z}	1	0	7/2	-1/2	5/2	0	0	25/2	$r_4 := r_4 + 5r_1$

Now we have still a negative entry in the z row so x_3 must be the entering variable. The row quotients are 5 and 1 for row 1 and row 3 respectively (ignoring row 2 with its zero entry since this would imply an infinite row quotient). Thus x_6 is the departing variable and row operations produce the following tableau

Basic	z	x_1	x_2	x_3	x_4	x_5	x_6	Solution	
x_1	0	1	$\frac{5}{2}$	0	$\frac{5}{2}$	0	-1	2	$r_1 := r_1 - \frac{1}{2}r_3$
x_5	0	0	-5	0	-2	1	0	1	$r_2 := r_2$
x_3	0	0	-1	1	-3	0	2	1	$r_3 := r_3 \div \frac{1}{2}$
z	1	0	3	0	1	0	1	13	$r_4 := r_4 + \frac{1}{2}r_3$

There are now no non-positive entries in the z row so the optimal value is z = 13, at (2, 0, 1, 0, 1, 0).