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Abstract

This paper proposes a generic approach combin-
ing a bottom-up (low-level) visual detector with a top-
down (high-level) fuzzy first-order logic (FOL) reason-
ing framework in order to detect pedestrians from a
moving vehicle. Detections from the low-level visual
corner based detector are fed into the logical reasoning
framework as logical facts. A set of FOL clauses util-
ising fuzzy predicates with piecewise linear continuous
membership functions associates a fuzzy confidence (a
degree-of-truth) to each detector input. Detections as-
sociated with lower confidence functions are deemed as
false positives and blanked out, thus adding top-down
constraints based on global logical consistency of de-
tections. We employ a state of the art visual detec-
tor on a challenging pedestrian detection dataset, and
demonstrate an increase in detection performance when
used in a framework that combines bottom-up detec-
tions with (fuzzy FOL-based) top-down constraints.

1. Introduction
A huge amount of work is being conducted in the

area of pedestrian detection, especially from moving
vehicles. The ability to detect people in images is re-
quired for a number of important applications ranging
from surveillance and robotics, to intelligent automo-
tive vehicles. The goal is rendered difficult due to large
variations in human pose and clothing, as well as vary-
ing backgrounds and environmental conditions.

Most of the current approaches to this task of
pedestrian detection have treated this as a recognition
task [11] and hence used generic object detection and
recognition techniques to solve the problem. Also there
have been attempts to use other detector types such as
infra-red or LIDAR based point clouds. However, these
detector based hardware approaches can struggle espe-
cially with medium and far scale pedestrians.

We propose an approach to fuse a bottom-up state of
the art visual detection system and a top-down logic rea-
soning framework. This allows far greater performance
than either alone. In the next section, we introduce the
visual detection system, with Section 3 and 4 describ-

ing the top down reasoning framework. Results on the
fusion of the approaches are shown in Section 5 on a
challenging dataset, before conclusions are drawn.

2. Visual Pedestrian Detection
There are many approaches of pedestrian detec-

tion through the use of image descriptors, including
HOG [2], or Gabor filters [3]. These approaches all use
single frames, with no temporal information. However,
as has been found within action recognition [3, 5], the
use of spatio-temporal features allows for greater per-
formance on dynamic actions such as walking pedes-
trians. Therefore, a spatio-temporal based corner fea-
ture descriptor is used to provide additional temporal
information. The approach is based on the approach by
Gilbert and Bowden [5], we adapt their approach to de-
tect the walking action of the pedestrians.

2D corners are detected in the three orthogonal
planes of the video sequence (x, y), (x, t) and (y, t).
There are a large number of corners detected per frame
giving an over-complete set of features with large
amounts of redundancy and noise. Each corner is
encoded as a three-digit number denoting the spatio-
temporal plane in which it was detected, the scale at
which it was detected, and its orientation. These corners
are then used within an iterative hierarchical grouping
process to form descriptive compound features. Each
corner is grouped within a cuboid-based neighbour-
hood. A set of grouped corners is called a Transaction
and these are collected to form a Transaction database.
This database is then mined using APriori data mining
with the purpose of finding the most frequently occur-
ring patterns.

2.1. APriori Data Mining
In order to identify the frequently occurring patterns

of corner features, a version of association rule data
mining called APriori [1] is used. This paper includes a
brief introduction to the data mining APriori algorithm,
but for a more detailed explanation see [5]. The al-
gorithm, searches the transaction database and identi-
fies the encoded corner feature elements that co-occur
most frequently within the pedestrian walking transac-
tions with respect to negative non-walking transactions.
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Figure 1: Example of Corners on the Dataset.

An association rule of the form A⇒ B is evaluated by
examining the relative frequency of its antecedent and
consequent parts i.e., the set elements A and B, where
A and B are encoded corner feature elements. The sup-
port for a set element is the probability that a Trans-
action contains the set element, i.e., P (A,B). While
the confidence is the conditional probability P (B|A).
The aim is to identify the features that are discrimina-
tive with respect to the negative set, therefore the trans-
actions are appended with a label, ϑ, that identifies if
the set is a walking or negative example. The results of
data mining then include rules of the form (A,B)⇒ ϑ
and an estimate of P (ϑ|A,B) is given by the confidence
of the rule. As the Transaction database contains both
positive and negative training examples P (ϑ|A,B) will
be large only if (A,B) occurs frequently in the positive
examples but infrequently in the negative examples. If
(A,B) occurs frequently in both positive and negative
examples, then P (ϑ|A,B) will remain small and the
rule ignored. A rule of corner features is distinctive if
the confidence threshold is greater than 80%.

2.2. Iterative Grouping

The resulting rules from the mining will be the de-
scriptive, distinctive compounds of corners, called fre-
quent itemsets. These then become the basic features
for the next level of mining and are then grouped
within an enlarged spatio-temporal neighbourhood to
form a new Transaction database, on which data min-
ing (searching for frequently occurring sub strings) can
again be performed. The process is iterated, with the
final stage frequent itemsets becoming the pedestrian
feature model. Fig. 1 gives an example of the group-
ing of corner features over 3 iteration levels. With ini-
tial 2D detected corner features in Fig. 1(a), including
false positive corners detected on the building, these are
ignored at the later iteration levels in Fig. 1(b and c).

For classification of unseen data, the process is iden-
tical, apart from the final iterative loop, where com-
pound features are compared to the model learned in the
training phase. A voting mechanism is used to score de-
tected itemsets against learned/mined models. A pixel-
based likelihood image for each action can be accu-
mulated, based on the correlation between the mined

Figure 2: True/false positive detections of pedestrians.

trained class feature model and the detected itemsets.
This provides the input for a sliding window to be ap-
plied to the image to provide the final vision based de-
tections. This process is effective however there are of-
ten false positive detections present as shown in Fig. 2,
therefore in order to further reduce the false positives,
a top down logic reasoning technique is applied to the
detections.

3. Logic Reasoning In Computer Vision

First-order logic (FOL) rules (represented by logic
clauses) have been successfully used in computer vi-
sion to reason about propositions. Facts (represented
by logic predicates) are usually the outputs of the low
level visual detectors onto which logic rules are ap-
plied [10]. Feature predicates from visual detectors tend
to be noisy, therefore standard crisp FOL fails to model
the implicit stochasticity within the input data. The in-
troduction of Fuzzy Logic into logic programming, i.e.,
a fuzzy extension of standard Prolog is therefore useful
in an environment with uncertain detector inputs. Fuzzy
logic is applicable to fuzzy sets, i.e., sets for which
there are degrees of membership. This is usually formu-
lated in terms of a membership function valued in the
real unit interval [0, 1]. Various fuzzy logics are possi-
ble within this framework; membership functions (and
therefore truth values) can be single values, intervals
or sets of intervals within the unit interval [0, 1]. Fuzzy
logic programming is well suited to implement method-
ologies comprising reasoning with uncertainty [9].

We utilise a fuzzy FOL programming platform (Ciao
Prolog) for modelling interval-valued fuzzy logic. FOL
resolution (similar to the Prolog inference mechanism)
in Ciao Prolog but incorporating uncertainty is made
possible via CLP(R) (Constraint Logic Programming)
[6]. The propagation of truth values through logic rules
is carried by means of aggregation operators, which
subsume conjunctive operators (T-norms; min, prod
etc.,) and disjunctive operators (T-conorms; max, sum
etc.,) as well as hybrid operators (combinations of the
previous operators) [7]. We use a constrained form of
CLP (R) in which clausal conjunction is formed via the
aggregation operator ‘Product’ T-norm of atomic pred-
icates where the output is a unitary interval truth value
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Figure 3: Fuzzy predicate ‘ped mask/2’ associates a
fuzzy confidence on the basis of spatial consistency.

for each predicate, in the manner of [4].

4. Fuzzy Reasoning Module

The low-level pedestrian detector (discussed in Sec-
tion 2) processes individual frames in order to provide
sparse feature predicates to fuzzy logic module com-
prising coordinate positions of bounding boxes encom-
passing the detected pedestrians.

We use a program module based on first-order fuzzy
logic reasoning. A set of FOL clauses (rules) enables
the system to explicitly assign a degree-of-truth (fuzzy
confidence) to the existence of a pedestrian read from
the low-level visual detector, on the basis of global
spatio-temporal based logical consistency via first-order
logical resolution of grounded predicates. Two prin-
ciple fuzzy predicates with piecewise linear continu-
ous membership functions are used (i.e., ped mask/2
and ped det/2). Predicate ped mask/2 fuzzifies the crisp
predicates (i.e., detected pedestrian bounding boxes)
with a membership confidence value relative to its coor-
dinate positions within the junction (checks for spatial
consistency). Given that α = X1 − θ, β = X2 + θ; the
function is defined as (refer to Fig. 3):

F1(C) = max
(
min

(
C − α

θ
, 1,

β − C

θ

)
, 0

)
(1)

The parameter C is the (horizontal axis) coordinate
of the (centroid) detected pedestrian bounding box,
X1, X2 are the coordinates of the pedestrian-crossing
region (calculated from the Euclidean distance of the
vehicle from junction centre), θ is equal to the length of
the detected pedestrian bounding box. Given the Carte-
sian coordinates (DGPS); φx, φy of the junction centre,
and the vehicle; γx, γy , the Euclidean distance ∆(φ, γ)

is given as; ∆(φ, γ) =
√

(γx − φx)2 + (γy − φy)2, we
find the pedestrian region coordinatesX1, X2 per-frame
as follows:

X1 = X ′1 −
(

∆(φ, γ)

η

)
, X2 = X ′2 +

(
∆(φ, γ)

η

)
(2)

X ′1, X
′
2 are the coordinates from previous frame, and η

is a scaling factor. The predicate ped det/2 associates a
fuzzy confidence to the current detection on the basis of
temporal consistency. Given that Ct is the centroid of
the detected pedestrian in the current frame, and Ct−1
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Figure 4: Fuzzy predicate ‘ped det/2’ associates a fuzzy
confidence on the basis of temporal consistency.

represents previous detections, and ϕ = θ
2 + Ψ; the

function is defined as (refer to Fig. 4):

F2(Ct, Ct−1) = max
(
min

(
1,
ϕ− ∆(Ct, Ct−1)

Ψ

)
, 0

)
(3)

where the parameter ∆(Ct, Ct−1) = ‖Ct−Ct−1‖, and
Ψ is a fuzzy parameter in the range: {0, 20, 40, ..., 240},
with the performance measure discussed in Section 5.

Each of the fuzzy predicates, ped mask/2 and
ped det/2 assigns a membership confidence (e.g., V1
and V2 respectively) to the detected pedestrian on the
basis of its spatio-temporal based logical consistency.
A fuzzy rule using the aggregation operator ‘Product
T-norm’ (i.e., Tprod(V1, V2) = V1 · V2) aggregates the
membership functions of each of the two fuzzy pred-
icates. We use the predicate ped truth(C,V), to obtain
the truth value V ∈ [0, 1] of the detected pedestrian C,
via the fuzzy rule:

pedestrian truth(C, V ) :∼ Tprod

ped mask(C, V1), ped det(C, V2). (4)

additional a priori hierarchical logical predicates are
asserted as ground facts, with fuzzy confidence 1,
(e.g., 〈at junction(D1, 1)〉,〈seen ped xing(D2, 1)〉
etc.,) along with FOL clauses derived from Highway
Code rules. Thus a complete first-order recursive clause
structure is implicit within the fuzzy logic deductive
module that performs full first-order logical resolution.
A selection criterion is applied to the final set of detec-
tions associated with fuzzy confidences such that those
with confidence (i.e., V > 0.5) are asserted as true de-
tections, while others are blanked out.

5. Experimental Results
We applied our framework to a dataset recorded from

a sensor-equipped vehicle driven across a cross-junction
comprising a single pedestrian. The dataset comprises
external video scene recorded via three cameras (180◦

panoramic view), and (20 Hz) DGPS coordinates of the
experimental vehicle. It comprises a subset of the origi-
nal dataset, with 14 junction navigation scenarios, con-
stituting a total of 921 frames (per frame image size of
244 x 900, at 15fps sampling).

The pedestrian detector is trained on the train-
ing examples from the walking class from the KTH
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Figure 5: ROC curves for individual detector thresholds
‘0’ (left) and ‘4’ (right).
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Figure 6: Convex hull of the complete set of computed
ROC curves (i.e., the whole set of detector thresholds).

dataset [8], with a subset of the other classes within
the KTH dataset as negative. System performance
is evaluated for different detector thresholds and
fuzzy parameter Ψ values (i.e., {0, 2, 4, ..., 20} and
{0, 20, 40, ..., 240} respectively). A single frame eval-
uation (against ground-truth data) is performed on the
final list of the deduced detections using the PASCAL
measure, (i.e., the area of overlap must exceed 50%).
The logic system tends to maintain a lower miss rate
via logic-based consistency check, and blanking out re-
dundant false positives as detected by the visual detec-
tor. Fig. 5 shows the ROC curves for individual de-
tector thresholds (0 and 4). We observe that performing
high level fuzzy reasoning over low-level detections im-
proves the individual pedestrian detector performance
at lower false positives per image. To measure the per-
formance for the complete set of detector thresholds,
we compute the convex hull of the whole set of possible
ROC curves (refer to Fig. 6), and a significant increase
in performance is observed, though top-down feedback
does not add much to performance at very high numbers
of false positives per image. Fig. 7 illustrates outputs of
the system without and with top-down constraints.

6. Discussion and Conclusions
We set out a framework comprising (FOL) fuzzy rea-

soning for spatio-temporal logical inference of pedes-

(a) (b)

Figure 7: Pedestrian detection without (a) and with (b)
top-down (fuzzy FOL-based) constraints.

trian detections from a low-level visual detector. The
use of FOL theorem proving allows explicit reasoning
about the existence of detected pedestrians using very
sparse spatial and temporal information in the form of
feature predicates from the detector. The system blanks
out logically inconsistent detections by setting fuzzy
constraints on low-level detector inputs. Quantitative
experimental analysis illustrates improvement in per-
formance of the system in the presence of a top-down
fuzzy reasoning module. Thus top-down constraints on
bottom-up low-level detections can prove to be useful
in a number of different applications.
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