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Abstract— Deep neural networks have demonstrated their
capability to learn control policies for a variety of tasks. How-
ever, these neural network-based policies have been shown to
be susceptible to exploitation by adversarial agents. Therefore,
there is a need to develop techniques to learn control policies
that are robust against adversaries. We introduce Adversarially
Robust Control (ARC), which trains the protagonist policy and
the adversarial policy end-to-end on the same loss. The aim of
the protagonist is to maximise this loss, whilst the adversary is
attempting to minimise it. We demonstrate the proposed ARC
training in a highway driving scenario, where the protagonist
controls the follower vehicle whilst the adversary controls the
lead vehicle. By training the protagonist against an ensemble
of adversaries, it learns a significantly more robust control
policy, which generalises to a variety of adversarial strategies.
The approach is shown to reduce the amount of collisions
against new adversaries by up to 90.25%, compared to the
original policy. Moreover, by utilising an auxiliary distillation
loss, we show that the fine-tuned control policy shows no drop
in performance across its original training distribution.

I. INTRODUCTION

The powerful function approximation capabilities of Deep
Neural Networks (DNNs) has pushed the state-of-the-art
forward in multiple fields. This has lead to machine learning
being adopted to learn control policies in applications such
as robotic arm manipulation [1], [2], navigation [3], [4], and
autonomous driving [5], [6]. In recent years, there have been
numerous DNN-driven approaches proposed for autonomous
vehicle control, and among them Imitation Learning has at-
tracted attention due to its ability to learn driving behaviours
from human demonstration [7]. Imitation learning performs
well in naturalistic driving and scales well to training data,
but performs poorly when experiencing scenarios outside of
the training distribution [8], [9]. Furthermore, these learned
policies have been proven to be susceptible to attacks by ad-
versarial agents [10], [11]. These limitations pose a challenge
to adapting these learned control policies to safety-critical
systems.

We propose an adversarial learning framework, which uses
imitation learning as a first training step and then improves
the robustness to distribution shift by training the policy
simultaneously against an ensemble of adversarial agents
whose goal is to degrade the performance of the target policy.
Both networks learn through a semi-competitive game, where
one aims to drive in a safe manner and the other aims to
create scenarios in which collisions could occur. Therefore,
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over time the target agent learns to avoid mistakes which an
adversary could exploit. Our tests show that the approach
maintains a safe behaviour even against learned adversarial
agents, and results in a more robust and safe control policy.

This approach is partially inspired by the minimax game at
the heart of Generative Adversarial Networks (GANs) [12],
where two networks are trained on the same loss such that
the Discriminator aims to correctly classify images as real or
fake whilst the Generator aims to fool the Discriminator with
generated images. GANs have also inspired the Generative
Adversarial Imitation Learning (GAIL) [13], [14], where
the Generator generates actions, whilst the Discriminator
aims to predict whether the state-action pair comes from
the Generator or the Expert. However, different from GANs
or GAIL, where the Generator generates images/actions and
the Discriminator performs binary classification, in our work
both networks learn to predict continuous control actions for
separate agents within a simulator.

Image-based DNN classifiers have been shown to be sus-
ceptible to adversarial attacks, which perturb the observations
of the network, causing them to misclassify the image [15],
[16]. As a common defense, adversarial training has been
shown to improve robustness to adversarial attack [17]. Sim-
ilarly, perturbing the observations of a policy or varying its
dynamics during training in an adversarial fashion has been
proven to improve the robustness of learned control poli-
cies [18]–[21]. Combining concepts of competing networks
from GANs and adversarial training, Robust Adversarial
Reinforcement Learning (RARL) [21]–[23] uses two DNNs
trained through Reinforcement Learning (RL), where one
DNN aims to learn a control policy for a given task and
the other DNN aims to degrade the performance of the
target policy by generating disturbances in its observations or
actions. The RARL approach has also been shown to improve
robustness of RL policies for different tasks, including au-
tonomous driving. Going beyond disturbances in observation
or action space, the Adversarial Policies approach by Gleave
et al. [11] controls a separate agent in the same environment
as the target policy, where the adversarial agent aims to
prevent the target agent from performing in its task success-
fully. The Adversarial Policy was shown to learn behaviours
which significantly weaken the performance of the target
policy, and by fine-tuning the target policy through RL, it
learned to counter the adversary. However, it was shown that
new adversaries could be trained to find new weaknesses
even in the fine-tuned target policy. Concurrently, several
approaches have emerged in autonomous vehicle testing,
where an adversarial policy is used to control an agent (e.g.
vehicle, pedestrian) on the road, and aim to find behaviours



which cause the target autonomous vehicle to make mistakes
[10], [24]–[26]. This type of adversarial testing has been
shown to be effective in the validation of autonomous vehicle
control policies, by finding weaknesses which may not have
been found through traditional validation methods [27], [28].

In this work we utilise similar adversarial agents to exploit
weaknesses in the target control policy, but rather than
training each agent independently, we employ a GAN-like
minimax loss where the agents are trained end-to-end to
compete against each other. This results in more robust con-
trol policies. We show that by taking an initially susceptible
Imitation Learning vehicle motion control policy, and fine-
tuning it through our ARC training framework, the policy
learns to avoid collisions against the competing adversary.
Moreover, we show that after adversarial fine-tuning, the
resulting control policy exhibits significantly improved ro-
bustness to new adversarial agents trained against it. We also
demonstrate that using an auxiliary distillation loss results
in the fine-tuned control policy retaining the same level of
performance across its original training distribution, thereby
improving robustness to safety-critical scenarios without
degrading performance in typical driving scenarios.

The remainder of this paper is as follows. Section II
describes the methodology used for pre-training of the target
and adversary control policies, as well as the proposed
Adversarially Robust Control framework for training both
networks end-to-end. The simulated experimental results are
presented and discussed in Section III. Finally, concluding
remarks are given in Section IV.

II. METHODOLOGY

We demonstrate our approach in a vehicle following
scenario applied to highway driving. The aim of the host
vehicle is to maintain a safe distance from the lead vehicle
in front. To do this, the control policy infers actions which
control the gas and brake pedals of the host vehicle, based
on the low-dimensional states from the vehicle’s radar and
inertial sensors. The adversarial agent controls the lead
vehicle, and is trained through Reinforcement Learning to
create scenarios in which collisions are likely to occur. We
first describe the training methodology for the Imitation
Learning (IL) based host vehicle control policy, followed by
the training of the adversarial agent. Finally, we describe
our Adversarially Robust Control (ARC) formulation, where
both agents are trained end-to-end through a minimax loss.
We denote the Imitation Learning based agent by IL, while
during the ARC training, where both networks are trained
end-to-end, the Protagonist and Adversary are denoted by P
and A, respectively.

A. Imitation Learning

Imitation Learning is a subset of Supervised Learning,
where the model learns from expert demonstrations of tra-
jectories [29]. Imitation learning aims to learn a control
policy by imitating the behaviour of an expert, by observing
states sILt and predicting a corresponding control action aILt ,
which is then compared to the expert’s optimal action ât.

This can be done by collecting a dataset D = {st, ât}Nt=0

of N expert demonstrations, and then training the agent to
predict the expert’s actions for the states in the dataset in
a supervised manner. In this work, we use the Imitation
Learning based vehicle motion control model from [30],
which trains a feedforward neural network through Imitation
Learning to predict the longitudinal control actions of a
vehicle in highway driving. The Imitation Learning policy is
denoted by πIL and is represented by a feedforward neural
network with 3 hidden layers of 50 neurons each, with the
parameters θIL. Therefore, the agent’s aim is to learn a policy
πIL which generates actions similar to the expert policy π∗,
by finding the optimal parameters θ∗ based on an imitation
loss LIL:

θ∗ = argmin
θIL

∑
t

LIL(πIL(sILt |θIL), ât) (1)

The network is trained using the Mean Square Error (MSE)
loss with respect to the labels given by the expert’s action
in dataset D:

LIL(D, πIL(sILt |θIL), ât) = |aILt − ât|2 (2)

The dataset was collected by driving at highway speeds on
a single road, within the IPG CarMaker simulator [31]. The
expert demonstrator used to collect example actions, is the
default driver in the simulator, IPG Driver. The expert’s aim
is to maintain a 2s time headway, th, from the lead vehicle in
front of the host vehicle. The time headway th is a measure
of distance between two vehicles in time, as given by:

th =
xrel
v

(3)

where xrel is the distance between the two vehicles in m,
and v is the velocity of the host vehicle in m/s.

Each observation st in the dataset consists of the host
vehicle velocity v, relative velocity with respect to the
lead vehicle vrel, and time headway th, such that sILt =
(v, vrel, th). The action of the agent controls the vehicle’s gas
and brake pedals, and is represented as a single continuous
value aILt ∈ [−1, 1], where negative values represent the use
of the brake pedal and positive values represent the use of
the gas pedal.

B. Adversarial Reinforcement Learning
Reinforcement learning can be formally described by a

Markov Decision Process (MDP) denoted by a tuple (S,
A, P , R, γ), where S is the state-space, A is the action-
space, P is the transition probability model, R is the reward
function, and γ is the discount factor. At every timestep t,
the RL agent observes the state st ∈ S and takes an action
at ∈ A according to its policy π. Then, the environment
E transitions to the next state st+1 according to the state
transitions probability p(st+1|st, at) as given by P . The
agent then receives a scalar reward rt ∈ R. The aim of the
RL agent is to maximise its long term discounted rewards,
as given by the returns Rt:

Rt =

∞∑
k=0

γkrt+k (4)



where the discount factor γ ∈ [0, 1] is used to prioritise
immediate rewards over future rewards.

To find weaknesses in the target control policy, we em-
ploy the Adversarial Testing Framework by Kuutti et al.
[10] based on Adversarial Reinforcement Learning (ARL).
The technique uses an agent trained through reinforcement
learning, whose aim is to create collisions with the vehicle
behind it. Therefore, this agent acts as a lead vehicle to
the host vehicle control policy described in the previous
subsection. However, to ensure the results are realistic and
all collisions are preventable (and therefore any collisions
mean the host vehicle made mistakes), the actions and
states of the adversarial agents are constrained. In [10], the
robustness of vehicle follower policies were tested in dif-
ferent velocity ranges, and the velocity range with the most
collisions was vlead ∈ [12, 30] m/s. Therefore, we utilise
these velocity limits for the adversary, and aim to reduce
collisions by improving the robustness of the protagonist,
whilst minimising any impact on the agent’s behaviour in
its training domain. Similarly, to ensure the collisions are
avoidable, the acceleration of the lead vehicle is limited to
alead ∈ [−6, 2] m/s2. During training of the adversarial agent,
various values for the coefficient of friction in the ranges
[0.4, 1.0] were used to test the response of the target agent in
different driving conditions. The adversary’s observations are
represented by sAt = (v, a, vrel, th), where v is the velocity
and a is the acceleration of the following vehicle. The action
of the adversary aA is a continuous value for the acceleration
of the lead vehicle alead. The adversarial agent is trained
through Advantage Actor Critic (A2C) [32] Reinforcement
Learning, which is an actor-critic on-policy algorithm. The
two networks, actor and critic networks, estimate the policy
function πA and value function V (sA). To improve training
stability, the weights of both networks are updated based on
the Advantage function A(sA, aA):

V (sA) = E[Rt|sAt = sA] (5)

Q(sA, aA) = E[Rt|sAt = sA, aA] (6)

A(sAt , a
A
t ) = Q(sAt , a

A
t )− V (sAt )

≈
n−1∑
k

γkrt+k + γnV (sAt+n)− V (sAt ) (7)

Where E denotes expectation, V (sAt ) is the value function,
and Q(sAt , a

A
t ) is the state-action (or quality) function [33].

To estimate the stochastic policy πA, the actor network
uses two outputs, estimated action value µ and estimated
action variance σ2. The action applied by the adversarial
agent is then sampled from the Gaussian distribution aAt ∼
N (µ, σ2). To do this, the actor network uses 3 hidden
layers with 50 neurons, followed by a Long Short-Term
Memory [34] layer with 16 units, followed by the output
layer. Meanwhile, the critic network estimating the value
function V (sA), uses 2 hidden layers with 50 neurons.
All hidden neurons use the ReLU-6 activation, µ uses a
tanh activation, σ2 uses a softplus activation, and the value

estimate uses a linear activation. To train both networks, A2C
updates the actor network parameters θπ and critic network
parameters θV , using the policy loss LπA and value loss LV ,
respectively:

Lv = (A(sAt , a
A
t ))

2 (8)

LπA = −logπA(aAt |sAt )A(sAt , aAt )− βH(πA(sAt )) (9)

where β is the entropy coefficient and H(πA(sAt )) is the pol-
icy entropy used to encourage exploration in the adversary’s
policy, given by

H(πA(sAt )) =
1

2
(log(2πσ2) + 1) (10)

Both networks were trained using the RMSProp optimiser
[35], using their respective losses.

To train the adversarial agent to find collisions against
target policies it was trained using the adversarial reward
function based on inverse headway given by:

rA(sA, aA) = min

(
1

th
, 100

)
(11)

where rA is the adversary’s reward, and the reward is capped
at 100 to avoid the reward tending towards infinity as the
headway approaches zero.

C. Adversarially Robust Control (ARC)

The Adversarially Robust Control framework utilises two
networks, the Protagonist network P and the Adversary
network A, initialised from the IL network (Section II-A)
and ARL network (Section II-B), respectively. The scenario
where both networks are learning to compete against each
other can be formulated as a two player Markov Game,
which is a multi-agent game theoretic formulation of an MDP
[36], [37]. The Markov Game can be strictly competitive
(zero-sum) or semi-competitive (nonzero-sum), depending
on whether the agents are directly competing against each
other or whether they have additional objectives [23]. The
Markov Game with Protagonist P and Adversary A is
denoted by a tuple (S, AA, AP , P , RA, γ). The P and
A observe states sPt ∈ S and sAt ∈ S and take actions
aPt ∈ AP and aAt ∈ AA, respectively. The environment
E then transitions to the next state according to transition
model P , and the adversary receives a reward rAt ∈ RA.
Note, unlike RARL approaches with two RL agents, we do
not define a reward for the Protagonist, rather the P network
directly maximises the policy loss of the adversary, such that
both agents are trained end-to-end using the same loss:

min
A

max
P
LπA(A,P )

= −logπA(aAt |sAt )A(sAt , aAt )− βH(πA(sAt )) (12)

Therefore, the aim of the Adversary is to maximise its
reward function rA, which encourages the agent to take
actions which lead the following vehicle to collide into
it. Meanwhile, the Protagonist aims to maximise this loss,
effectively aiming to take actions which lead to lower re-
wards for the adversary, and thus less collisions. Having



the P network directly maximise the Adversary’s policy
loss has the advantage that no additional training signal
has to be engineered for the Protagonist (e.g. labels for
supervised learning or rewards for reinforcement learning).
This also makes the proposed framework more general, as
it is agnostic to the learning technique used for pre-training
(e.g. no assumptions about the stochasticity of the policy)
and simply needs access to the weights of the P network.
The Adversary used here differs from the one in Section
II-B, in that it uses an additional observation, which is
the action taken by the protagonist aP . Therefore sAt =
(v, a, vrel, th, a

P ), making the output of the A network a
function of the P network; aA = A(sA) = A(P (sP )), and
the policy loss LπA is differentiable with respect to both
P and A. We train both networks in the highway driving
scenario where the Protagonist controls the follower vehicle,
whilst the Adversary controls the lead vehicle. Each training
episode lasts for 5 minutes or until a collision occurs. The
training is sped up by using the DNN-based simulator proxy
described in [38], which acts as a type of World Model [39]
estimating the simulator, and was shown to speed up training
by up to a factor of 20. Further testing is later carried out
in IPG CarMaker simulator to validate the control policy
performance (Section III).

However, while naively maximising the policy loss in a
strictly competitive game setting would lead to behaviours
which degrade the performance of the adversary, it does
not necessarily provide robust policies which generalise to
different lead vehicle behaviours. We show that this type
of competitive game setting causes the P agent to either
learn an overly conservative driving strategy or to overfit to
the adversarial lead vehicle while forgetting how to drive in
non-adversarial scenarios. Instead, we propose to use a semi-
competitive game setting where an auxiliary loss is used
for training the P network, ensuring it does not overfit to
the adversarial scenarios or catastrophically forget how to
perform in its original state distribution.

The first possible issue with learning only from the ad-
versary is becoming overly conservative to avoid collisions
or overfitting to the adversarial scenarios created by the
adversary. Since such driving scenarios represent edge-cases,
which during normal driving would only occur rarely, there is
the potential risk for the Protagonist to forget how to perform
well in the natural driving scenarios. This is a similar issue
to the catastrophic forgetting [40], [41], which can occur in
domain adaption when the model adapts to a new domain and
forgets the previous domain [42], [43]. Indeed, in Adversarial
Policies, Gleave et al. [11] noted that fine-tuning target
policies against adversaries leads RL policies to forget how
to perform against normal opponents. Therefore, to avoid
overfitting the P network to the adversarial scenarios, an
auxiliary distillation loss LD is defined which discourages
the network from changing its behaviour drastically from
the un-tuned IL model. This concept is similar to knowledge
distillation [44] or policy distillation [45], however here the
distillation loss is used to prevent catastrophic forgetting
when training in a new distribution instead of distilling the

Fig. 1: Training environment.

policy into a smaller network. The LD loss uses supervision
from the un-tuned IL network by penalising the actions of
the P model based on the absolute difference to the action
which would have been taken by the original IL model for
the same state:

LD = ‖aP − aIL‖ (13)

Such that the final loss minimised by the Protagonist
becomes:

LP = −LπA + λLD (14)

where λ is a scaling hyperparameter.
A second possible overfitting issue with this framework

is overfitting due to repetitive similar behaviour of the
Adversary. Different from Adversarial Policies [11], which
fine-tuned against fixed adversarial policies, we train both
the P and A simultaneously, allowing the A to adapt as
the P learns to counter it. However, this alone may not be
enough, as the A network may get stuck in a local minima
and continue to use the same strategy or it may adapt slowly
to the improved robustness of the P network. Therefore, we
train the P network in multiple environments simultaneously,
where each environment Ei uses a different adversary Ai,
where i = {1, 2, .., n} for n total environments. The network
updates calculated based on these environments are done
asynchronously, using the Asynchronous Advantage Actor
Critic (A3C) [32] formulation, where each instance of the
simulation Ei copies the parameters of the global network
to its own local network, where gradients are computed based
on the experiences collected in Ei by the local network.
The gradients are then used to update the global network,
and the local network copies the new parameters from the
global network. However, in our formulation the adversaries
are different agents with different parameters θAi , therefore
the global network tracks the parameters of the P network,
while each adversary Ai is updated in the local network only,
as shown in Fig. 1. The Adversaries adapt to try to beat
the Protagonist independently, allowing them to explore and
learn different strategies, whilst the Protagonist is optimised
against all Adversaries asynchronously.



TABLE I: ARC training parameters.

Parameter Value
Adversary learning rate (actor), ηactor 1x10-4

Adversary learning rate (critic), ηcritic 1x10-2

Protagonist learning rate, ηP 1x10-5

Scaling parameter, λ 5x104

Discount factor, γ 0.99
Entropy coefficient, β 1x10-4

III. RESULTS

Using the described formulation, we pre-train 5 adversarial
agents against the IL model for 2500 episodes. Then, we
train the P and Ai networks end-to-end for 2500 episodes,
experimenting with different number of environments n =
{1, 5, 10, 25, 50}. The training hyperparameters can be found
in Table I. As an ablation study, we also train 2 baselines
to investigate the benefits of the suggested framework; ARC
with a fixed single adversary and no LD loss (ARC Adv.
fixed, λ = 0) and ARC with a fixed single adversary (ARC
Adv. fixed). We evaluate the performance during training, as
well as the final trained control policies under two testing
frameworks. Naturalistic driving tests the models in driving
scenarios similar to those seen during training, and tests
whether tuning the models against adversaries has degraded
their performance in the original training distribution. The
adversarial testing trains new adversaries against the control
policy, and provides a measure of robustness against adver-
sarial agents.

A. Training

The training results are shown in Fig. 2, where the mean
step adversary rewards are visualised. Note, we show mean
step reward instead of episode rewards/returns, as episodes
with collisions can have significantly lower episode rewards
as there are less steps to accumulate rewards. However,
an episode with a collision is a successful episode for
the adversary, and the higher mean step reward in such
episodes reflects that. The rewards shown in Fig. 2 plot the
performance during training with n = 25. It can be seen
that the Adversary initially improves its performance against
the Protagonist, with increasing step rewards in the first 1000
episodes. However, over the training process, the Protagonist
becomes more robust, and the mean step rewards converge
rAt ≈ 0.5, which corresponds to a headway of 2s.

B. Validation

To understand the final performance of the fine-tuned
policy, we employ two testing strategies for different driving
conditions; naturalistic driving tests the control policy in typ-
ical driving conditions similar to those seen during imitation
learning, and adversarial testing trains 5 new adversaries
against the control policy and validates the robustness of
the fine-tuned policy against adversarial agents and safety-
critical edge case scenarios. The naturalistic testing is carried
out in IPG CarMaker with different highway driving scenar-
ios with lead vehicle velocities in the range [17, 40] m/s,
acceleration [-6, 2] m/s2, and road friction coefficient in [0.4,

Fig. 2: Mean step rewards for the adversary during ARC
training. The plot shows the running mean reward (with
window size of 50), with the true rewards in the transparent
plot.

1.0]. The adversarial testing trains 5 new agents against the
target policy for 2500 episodes as described in Section II-B.

The full results of both tests are shown in Table II. Firstly,
we can see that the ARC with a fixed adversary and no
distillation loss converges to an overly conservative driving
behaviour, maintaining large distances from the vehicle in
front, as shown by its average headway of 21s. Once the
distillation loss is introduced, the ARC model with the fixed
adversary is significantly less conservative with an average
th of 3.3s. However, this model significantly overfits to the
adversary it is training against, and fails to generalise to nat-
uralistic driving as well as against new adversaries. Once the
adversary is trained simultaneously with the protagonist, we
see the model generalise to different scenarios significantly
better. The ARC (n = 1) model can now drive without
collisions with an average headway of 2.02s in naturalistic
driving, as well as showing improved robustness against new
adversaries when compared to the fixed adversary model.
However, it is worth noting that the model still shows greater
vulnerability to new adversaries compared to the original
IL policy. Once we utilise multiple parallel environments
(n > 1) with different adversaries, we obtain improved
robustness to new adversaries compared to the IL policy,
while also demonstrating similar level of performance in
naturalistic driving. As illustrated in Fig. 3, the vulnerability
of the ARC model to new adversaries reduces with increasing
number n, up to 25. The minimum episode headway during
the training of new adversaries for adversarial testing is
illustrated in Fig. 4, which shows the significant improvement
in robustness with ARC. While it would be expected that the
robustness of ARC increases further with the size of n, our
results show that the best robustness is reached at n = 25.
A potential reason for the lower robustness with n = 50, is
that the global number of episodes for each ARC model was
fixed at 2500. This means that as the number of environments
increases, each environment collects less experience in total,



TABLE II: Testing of final control policies under Natural (Nat.) and Adversarial (Adv.) Testing frameworks, with baseline
comparison including Imitation Learning and different versions of Adversarially Robust Control.

Testing Framework Parameter
IL
[30]

ARC
Adv. fixed, λ = 0

ARC
Adv. fixed

ARC
n = 1

ARC
n = 5

ARC
n = 10

ARC
n = 25

ARC
n = 50

Nat. Testing

min. xrel [m] 23.84 49.95 0.00 32.25 23.66 23.61 23.61 23.60
mean xrel [m] 57.37 584.76 81.81 59.78 57.35 57.35 57.35 57.36
max. vrel [m/s] 8.88 15.86 35.54 3.15 8.92 9.00 9.02 9.02
mean vrel [m/s] 0.0197 2.1350 0.0828 0.0368 0.0217 0.0205 0.0207 0.0211

min. th [s] 1.74 1.97 0.00 1.55 1.74 1.74 1.74 1.74
mean th [s] 1.99 21.08 3.30 2.02 1.99 1.99 1.99 1.99
collisions 0 0 55 0 0 0 0 0

Adv. Testing
collisions against adversaries 800 0 2490 1150 456 224 78 320

episodes until collision 245 - 3 16 538 532 1146 775

Fig. 3: Collisions for different number of adversaries during
Adversarial Testing. Averaged over 5 training runs, individ-
ual collision numbers visualised by green markers, mean
collisions by blue markers, and standard deviation by the
error bars. The dashed line indicates the level of performance
by the IL model before fine-tuning.

and once the number of episodes per environment becomes
too small there may not be enough experiences collected
against the adversaries for the protagonist to learn how to
counter them. This suggests there is a maximum number
of environments that can be utilised for a given number of
global training episodes. However, increasing the number of
environments may still result in further improvement, if the
number of global episodes is also increased.

The two testing frameworks demonstrate the benefit of the
ARC approach. By starting with an initial policy susceptible
to adversarial attack, and tuning it against adversarial poli-
cies, the policy becomes significantly more robust to such
adversarial agents. Also, by utilising multiple environments
in parallel, each using separate adversaries and training the
policy asynchronously against all adversaries, the model
gains superior generalisation and robustness. Furthermore,
by utilising the distillation loss with knowledge from the
IL network, the model avoids adapting overly conservative
behaviour or overfitting to the adversarial scenarios, thereby

Fig. 4: Minimum episode headway during Adversarial Test-
ing. Averaged over 5 training runs, with standard deviation
shown in the shaded region.

ensuring the performance in the original training distribution
is not degraded.

IV. CONCLUSIONS

In this paper, an approach to fine-tune the robustness and
safety of a vehicle motion control policy was demonstrated.
The approach was tested by fine-tuning an Imitation Learning
control policy, which was shown to be vulnerable to adver-
sarial agents. By training the IL policy against an ensemble
of adversaries in multiple parallel simulations, it learned to
counter the adversaries without overfitting to the behaviour
of any single adversary. It was also demonstrated that after
fine-tuning, the robustness to new adversaries is signifi-
cantly improved, as demonstrated by the 90.25% reduction
in collisions when tested against new adversarial agents.
Moreover, testing in natural driving scenarios demonstrated
that by utilising a distillation loss, the performance in the
policy’s original training distribution is not compromised.
Therefore, this work demonstrated a fine-tuning strategy,
which uses adversarial learning to significantly improve
model generalisation and robustness to out-of-distribution
scenarios, without trading off performance in its training
distribution.



This work opens up multiple potential avenues for future
work. Investigating this fine-tuning strategy for different
control policies or use-cases would be interesting. Moreover,
identifying techniques which could limit the amount of
training with a simulator in the loop could be useful for
reducing the training times and increasing the flexibility of
this framework. This could be done by either improving the
sample efficiency of the adversarial reinforcement learning
used in the ARC framework, or extending the framework
such that some or all of the training can be done offline
with no simulator (e.g. by using a dataset of interactions
between the adversary and protagonist). More importantly,
further testing of the adversarially robust control in real-
world training environments would be useful to gain further
insight on how this framework could be expanded for real-
world autonomous vehicles. This work has demonstrated that
the technique is effective in improving the driving policies’
robustness when leveraging multiple simultaneous parallel
simulations. To extend this in the real-world, one option
would be to leverage multiple pairs of physical protagonist
and adversarial agents, which then update a global network.
Alternatively, sim-to-real transfer, an active area of research
[46]–[49], could be investigated to better leverage the faster
training offered by simulators and minimising the amount of
costly real-world training required.
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