1. Find the inverse of the matrix

$$\left(\begin{array}{rrr}1 & 0 & -1\\2 & 1 & -1\\1 & 2 & 5\end{array}\right)$$

and use this inverse to solve the system of equations

$$x_1 - x_3 = 2$$

$$2x_1 + x_2 - x_3 = 4$$

$$x_1 + 2x_2 + 5x_3 = 14$$

2. Let

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 2 & 4 \\ 0 & 1 & -2 \end{pmatrix}$$

Evaluate A^2 and A^3 and show that

$$A^3 - A^2 - 5A + 8I = 0$$

where I denotes the 3×3 identity matrix and 0 denotes the 3×3 zero matrix. Hence show that $A^{-1} = \frac{1}{8}(5I + A - A^2)$ and use this formula to evaluate A^{-1} .

3. Solve the system

$$x_1 + 2x_2 + 3x_3 = 4$$

$$2x_1 + x_2 = -1$$

$$-2x_1 + 3x_2 + 8x_3 = 13$$

4. For each of the following matrices find its determinant and state whether the matrix is singular or not.

(i)
$$\begin{pmatrix} 2 & -1 & 7 \\ 4 & 6 & -2 \\ 5 & 8 & -3 \end{pmatrix}$$
 (ii) $\begin{pmatrix} -5 & 2 & 4 \\ 1 & -3 & 4 \\ 0 & 1 & 3 \end{pmatrix}$ (iii) $\begin{pmatrix} 2 & 5 & -3 \\ 3 & -2 & 1 \\ 7 & 8 & -5 \end{pmatrix}$

5. Show that

$$\begin{vmatrix} 2x + y + z & x & x^{2} \\ x + 2y + z & y & y^{2} \\ x + y + 2z & z & z^{2} \end{vmatrix} = (x + y + z)(x - y)(y - z)(z - x)$$

(NB: Don't just expand it out! Use the various properties of determinants.)

Answers on back

Answers:

1.
$$A^{-1} = \frac{1}{4} \begin{pmatrix} 7 & -2 & 1 \\ -11 & 6 & -1 \\ 3 & -2 & 1 \end{pmatrix}$$
. $x_1 = 5, \quad x_2 = -3, \quad x_3 = 3.$
2. $A^2 = \begin{pmatrix} -2 & -1 & -6 \\ 9 & 5 & 6 \\ 3 & 0 & 8 \end{pmatrix}$, $A^3 = \begin{pmatrix} -5 & -6 & 4 \\ 24 & 7 & 26 \\ 3 & 5 & -10 \end{pmatrix}$, $A^{-1} = \frac{1}{8} \begin{pmatrix} 8 & 0 & 8 \\ -6 & 2 & -2 \\ -3 & 1 & -5 \end{pmatrix}$.
3. $x_1 = -2 + \alpha, x_2 = 3 - 2\alpha, x_3 = \alpha$ for any number α .

4. (i) 8 (ii) 63 (iii) 0 third matrix is singular.