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Think of a population of insects or amphibians with distinct larval and adult

life stages.

Without competition among larvae

Starting point:

(
∂

∂t
+

∂

∂a

)

u(t, a) =

{
−µl u(t, a), 0 < a < τ,

−µm u(t, a), a > τ,

subject to birth law u(t, 0) = b(A(t)), where τ = maturation age, and

A(t) =

∫ ∞

τ

u(t, a) da = number of sexually mature adults

Can reformulate as a delay equation for A(t):

dA(t)

dt
= e−µlτb(A(t− τ ))− µmA(t)

• assumes competitive effects occur only among the adults, modelled solely

through the way we choose b(·)

• competition among larvae introduces nonlinearities into the age-structured

equations or systems that we normally need to solve explicitly to reduce

the model to ODEs with delay.
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Simple delay equation for larval competition

For larval population

∂u(t, a)

∂t
+

∂u(t, a)

∂a
= −µlu(t, a)− kl(u(t, a))

2, 0 < a < τ

For adults,

∂u(t, a)

∂t
+

∂u(t, a)

∂a
= −µmu(t, a), a > τ

Egg laying rate:

u(t, 0) = b(A(t)) where A(t) =

∫ ∞

τ

u(t, a) da

We have

dA(t)

dt
= u(t, τ )

︸ ︷︷ ︸
maturation rate

−µmA(t)

Calculate u(t, τ ) in terms of u(t− τ, 0), i.e. in terms of A(t− τ ). Result:

dA(t)

dt
=

µle
−µlτb(A(t− τ ))

µl + kl(1− e−µlτ )b(A(t− τ ))
− µmA(t)

• belongs to well studied class A′(t) = F (A(t−τ ))−µmA(t) that includes

Nicholson’s blowflies equation and Mackey-Glass equation

• generates a monotone dynamical system if b(·) is monotone increasing

• periodic solutions exist in some situations
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• if kl > 0 the solution A(t) is bounded for any egg laying rate b(·)

• drawback: assumes a larva competes only with others of its own age.

4



More complex delay equation for larval competition

Equation for larvae:

∂u(t, a)

∂t
+
∂u(t, a)

∂a
= −µlu(t, a)−ǫ u(t, a)

∫ τ

0

p(a, ā)u(t, ā) dā, 0 < a < τ

For adults:

dA(t)

dt
= u(t, τ )− µmA(t)

Possibilities:

• p(a, ā) = constant

• p(a, ā) = 0 when ā < a (i.e. competition only from older larvae, e.g.

intimidatory tactics or cannibalism, common in amphibians)

• p(a, ā) = δ(a− ā) recovers previous model

If ǫ is small, can try perturbation solution:

u(t, a) = u0(t, a) exp
(
−ǫ u1(t, a) +O(ǫ2)

)

Outcome: equation for adults A(t) is

dA(t)

dt
= −µmA(t)

+ b(A(t− τ ))e−µlτ exp

(

−ǫ

∫ τ

0

∫ τ

0

p(s, ā)b(A(s + t− τ − ā))e−µlā dā ds

)

for small ǫ. If b(A) = rA exp(−A/K), similar dynamics to spruce budworm model

du

dt
= ru

(

1−
u

q

)

−
u2

1 + u2
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(a) The large outbreak equilibrium
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(b) Evolution of A(t) to the outbreak equilibrium.

Figure 1: ǫ = 0.00005 , b(A) = rA exp(−A/K), p(s, ā) = p0 = 0.305, r = 2, K = 1000, µM = 1/100,
µL = 1/15, τ = 15. (Dashed curve is for ǫ = 0)
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(a) Multiple equilibria

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

2000

2500

3000

3500

4000

  Time

  A
(t

)

(b) Evolution of A(t) for various initial values.

Figure 2: ǫ = 0.0001 . Dashed curve is for ǫ = 0
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(a) The small refuge equilibrium

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

  Time

  A
(t

)

(b) Evolution of A(t) to the refuge equilibrium.

Figure 3: ǫ = 0.0002 . Dashed curve is for ǫ = 0
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(a) The large outbreak equilibrium
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(b) Evolution of A(t) to the outbreak equilibrium.

Figure 4: ǫ = 0.00005 and p(s, ā) = 0 for ā < s, p(s, ā) = 0.305 for ā ≥ s. (Dashed curve is for ǫ = 0).
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Competition between two species u(t, a) and v(t, a)

Assume:

• two species/strains have same maturation time τ

• larvae experience both intra- and inter-specific competition

For larvae (ages 0 < a < τ ):

∂u(t, a)

∂t
+

∂u(t, a)

∂a
= −µluu(t, a)− klu(u(t, a))

2 − cuvu(t, a)v(t, a)

∂v(t, a)

∂t
+

∂v(t, a)

∂a
= −µlvv(t, a)− klv(v(t, a))

2 − cvuu(t, a)v(t, a)

For adults (age a > τ ),

∂u(t, a)

∂t
+

∂u(t, a)

∂a
= −µauu(t, a),

∂v(t, a)

∂t
+

∂v(t, a)

∂a
= −µavv(t, a).

Total numbers of adults:

U(t) =

∫ ∞

τ

u(t, a) da and V (t) =

∫ ∞

τ

v(t, a) da

Egg-laying rates:

u(t, 0) = bu(U(t), V (t)) and v(t, 0) = bv(U(t), V (t))

with

bu(0, V ) = 0 and bv(U, 0) = 0

Adults of species u satisfy

dU(t)

dt
= u(t, τ )− µauU(t).
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so need u(t, τ ). If uξ(a) := u(a + ξ, a) and vξ(a) := v(a + ξ, a) then

duξ(a)

da
= −µluu

ξ(a)− klu(u
ξ(a))2 − cuvu

ξ(a)vξ(a),

dvξ(a)

da
= −µlvv

ξ(a)− klv(v
ξ(a))2 − cvuu

ξ(a)vξ(a),

for 0 < a < τ . Define F (a, F0, G0) and G(a, F0, G0) by

∂F

∂a
= −µluF − kluF

2 − cuvFG,

∂G

∂a
= −µlvG− klvG

2 − cvuFG,

F (0, F0, G0) = F0, G(0, F0, G0) = G0,

for arbitrary F0 ≥ 0, G0 ≥ 0. Then

(uξ(a), vξ(a)) =
(
F (a, uξ(0), vξ(0)), G(a, uξ(0), vξ(0))

)
.

leading to the maturation rate for species u:

u(t, τ ) = F
(
τ, bu(U(t− τ ), V (t− τ )), bv(U(t− τ ), V (t− τ ))

)

and similarly for v(t, τ ).

Outcome: delay DEs for adult populations U(t) and V (t) are

dU(t)

dt
= F

(
τ, bu(U(t− τ ), V (t− τ )), bv(U(t− τ ), V (t− τ ))

)
− µauU(t)

dV (t)

dt
= G

(
τ, bu(U(t− τ ), V (t− τ )), bv(U(t− τ ), V (t− τ ))

)
− µavV (t)

Any boundary equilibrium in which (U, V ) = (U ∗, 0) satisfies

F (τ, bu(U
∗, 0), 0) = µauU

∗
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or

µlubu(U
∗, 0)e−µluτ

µlu + klubu(U ∗, 0)(1− e−µluτ )
= µauU

∗

Theorem 1 If

e−µlvτ

(
µlu

µlu + klubu(U ∗, 0)(1− e−µluτ )

)cvu/klu
∣
∣
∣
∣
∣

[
∂bv
∂V

]

(U,V )=(U∗,0)

∣
∣
∣
∣
∣
< µav

and

µ2
lue

−µluτ

(µlu + klubu(U ∗, 0)(1− e−µluτ ))2

∣
∣
∣
∣
∣

[
∂bu
∂U

]

(U,V )=(U∗,0)

∣
∣
∣
∣
∣
< µau

then the boundary equilibrium (U, V ) = (U ∗, 0) is locally asymptotically sta-

ble.

Idea of proof. Coefficients in linearised system involve quantities like

F2

(
τ, bu(U

∗, 0), 0
)
, F3

(
τ, bu(U

∗, 0), 0
)
, G3

(
τ, bu(U

∗, 0), 0
)

where subscripts denote partial derivatives.

If G0 is very small (but F0 is not),

∂F

∂a
≈ −µluF − kluF

2,
∂G

∂a
≈ −(µlv + cvuF )G,

F (0, F0, G0) = F0, G(0, F0, G0) = G0.

so that, for small G0,

F (a, F0, G0) ≈
µluF0e

−µlua

µlu + kluF0(1− e−µlua)
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and

G(a, F0, G0) ≈ G0e
−µlva exp

{

−cvu

∫ a

0

µluF0e
−µluη

µlu + kluF0(1− e−µluη)
dη

}

= G0e
−µlva

(
µlu

µlu + kluF0(1− e−µlua)

)cvu/klu

Differentiating, and letting G0 → 0,

G3

(
τ, bu(U

∗, 0), 0
)
= e−µlvτ

(
µlu

µlu + klubu(U ∗, 0)(1− e−µluτ )

)cvu/klu

Global dynamics

Lemma 2 For a fixed a > 0, and for positive F0, G0,

(i) F (a, F0, G0) increases with respect to F0 and decreases with respect to

G0,

(ii) G(a, F0, G0) increases with respect to G0 and decreases with respect to

F0,

Theorem 3 Suppose

(i) bu(U, V ) is strictly increasing in U and strictly decreasing in V , bv(U, V )

is strictly decreasing in U and strictly increasing in V ;

(ii) the equilibrium (0, 0) is unstable;

(iii) there exists an equilibrium (U, V ) = (U ∗, 0) which globally attracts all

solutions with V ≡ 0 and U0(θ) ≥ 0, U0(θ) 6≡ 0 for θ ∈ [−τ, 0]. Also

there exists an equilibrium (U, V ) = (0, V ∗) which globally attracts all

solutions with U ≡ 0 and V0(θ) ≥ 0, V0(θ) 6≡ 0 for θ ∈ [−τ, 0].
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Then precisely one of the following holds:

(a) there is an equilibrium with both U and V strictly positive;

(b) all non-negative solutions with U0(θ) 6≡ 0 and V0(θ) 6≡ 0 on [−τ, 0]

approach (U ∗, 0) as t → ∞;

(c) all non-negative solutions with U0(θ) 6≡ 0 and V0(θ) 6≡ 0 on [−τ, 0]

approach (0, V ∗) as t → ∞.
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Summary

• Immature competition makes it harder (or impossible) to solve the age-

structured model equations that determine maturation rates at time t in

terms of birth rates at time t− τ

• in scalar case we have the simple reasonable model

dA(t)

dt
=

µle
−µlτb(A(t− τ ))

µl + kl(1− e−µlτ )b(A(t− τ ))
− µmA(t)

or more complex model

dA(t)

dt
= −µmA(t)

+ b(A(t− τ ))e−µlτ exp

(

−ǫ

∫ τ

0

∫ τ

0

p(s, ā)b(A(s + t− τ − ā))e−µlā dā ds

)

• with competition between two strains or species, we cannot reformulate

as delay differential equations in which the right hand sides are explicitly

known functions or functionals of the state variables ...

• ... but important monotonicity properties of the unknown right hand sides

of those delay equations can be worked out, and the linearisation of the

model near to a boundary equilibrium can be tackled leading to verifiable

and interpretable conditions for stability of such an equilibrium.
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