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Betula glandulosa and snowshoe hares

• Plants defend themselves using chemicals that are toxic to herbivores.

• Herbivores (such as boreal snowshoe hares) regulate their intake of toxins

to below lethal or acute poisoning levels.

• Boreal snowshoe hares eat segments of twigs of deciduous woody plants

particularly the bog (shrub/scrub) birch Betula glandulosa in Kluane Na-

tional Park, Yukon.

• Betula glandulosa is a rapidly growing plant that defends only its youngest

twig segments.

• Hares have learned to counter this defence by biting a twig at an older

segment, they start to chew it there and work towards the more poisonous

younger segments which are then rejected.

• In some plants toxin concentration varies continuously for different parts

of the twig. For example the evergreen spruces Picea glauca and

P. mariana which are among the snowshoe hare’s least preferred foods.
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Figure 1: Betula glandulosa. Credit: Mary Ellen (Mel) Harte, Bugwood.org
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Figure 2: Branch of Picea glauca spruce.
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Figure 3: Snowshoe hare Lepus americanus. Credit: Terry Spivey, USDA Forest Service, Bugwood.org
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Figure 4: Betula glandulosa twig. Younger part densely covered with resin glands that produce toxin.
Older part is much less toxic.

Figure 5: B. glandulosa twig tips rejected by snowshoe hares at Wiseman, Alaska.
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Model derivation for two-segment twig

n(t, a) = density of twig biomass at time t of age a

YST (younger segments of twigs) consists of twig biomass up to some age τ1.

OST (older segments of twigs) is older biomass that is still small enough in

diameter to be consumed by hares. Total YST and OST biomass is given by

YST: T1(t) =

∫ τ1

0

n(t, a) da

OST: T2(t) =

∫ τ2

τ1

n(t, a) da

Twigs become major inedible branches after passing through age τ2. The plant

is assumed to have such branches before browsing starts, and can always grow

new twigs.

Birth rate of new twig biomass:

n(t, 0) = b(T1(t)) (1)

where b(·) is a decreasing function with b(0) < ∞. (If due to heavy brows-

ing there are few YST-stage twigs on the plant, then it will try to optimise

production of such twigs so the birth rate is higher in this case).
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For YST twig biomass of age a ∈ (0, τ1)

∂n(t, a)

∂t
+

∂n(t, a)

∂a
= −λ1n(t, a)

︸ ︷︷ ︸
natural loss

− ρ1(t)P (t)n(t, a)
︸ ︷︷ ︸
direct loss of YST

− ρ2(t)P (t)n(t, a)
︸ ︷︷ ︸
indirect loss of YST

where P (t) is the number of hares and

ρ1(t) =
e1σ1

1 + h1e1σ1T1(t) +
e1σ1
4G1

T1(t) + h2e2σ2T2(t) +
e2σ2
4G2

T2(t)

ρ2(t) =
e2σ2

1 + h1e1σ1T1(t) +
e1σ1
4G1

T1(t) + h2e2σ2T2(t) +
e2σ2
4G2

T2(t)

based on the Holling Type 2 functional response for a herbivore feeding on

two different tissue (i.e. twig) types.

For OST twig biomass (of age a ∈ (τ1, τ2))

∂n(t, a)

∂t
+

∂n(t, a)

∂a
= −λ2n(t, a)

︸ ︷︷ ︸
natural loss

− ρ2(t)P (t)n(t, a)
︸ ︷︷ ︸
direct loss of OST

λi natural per-capita segments loss rate
ei rate of encounter per unit plant biomass Ti, i = 1, 2
σ1 selection coefficient of T1, 0 ≤ σ1 ≤ 1
σ2 selection coefficient of T2, 0 ≤ σ2 ≤ 1
hi time for handling one unit of the plant Ti, i = 1, 2
G1 measure of plant toxicity for the YST, T1

G2 measure of plant toxicity for the OST, T2

r growth rate of YST
K carrying capacity of new YST
d per-capita death rate of the hare unrelated to plant toxicity

B2 conversion constant (hare biomass per unit of plant T2)
τ1 duration of YST (effectively inedible) stage
τ2 age beyond which twigs are too large to eat

7



For YST twig biomass, we can show

T ′
1(t) = −(λ1 + ρ1(t)P (t) + ρ2(t)P (t))T1(t) + b(T1(t))

− b(T1(t− τ1))

× exp

(

−

∫ τ1

0

(λ1 + (ρ1(η + t− τ1) + ρ2(η + t− τ1))P (η + t− τ1)) dη

)

and the integral equation form

T1(t) =

∫ τ1

0

b(T1(t− a))e−λ1a exp

(

−

∫ t

t−a

(ρ1(s) + ρ2(s))P (s) ds

)

da.

For OST twig biomass

T ′
2(t) = −(λ2 + ρ2(t)P (t))T2(t)

+ b(T1(t− τ1))

× exp

(

−

∫ τ1

0

(λ1 + (ρ1(η + t− τ1) + ρ2(η + t− τ1))P (η + t− τ1)) dη

)

− b(T1(t− τ2))e
−λ1τ1 exp

(

−

∫ t−(τ2−τ1)

t−τ2

(ρ1(s) + ρ2(s))P (s) ds

)

× e−λ2(τ2−τ1) exp

(

−

∫ t

t−(τ2−τ1)

ρ2(s)P (s) ds

)

and the integral equation form

T2(t) =

∫ τ2

τ1

b(T1(t− a))

× exp

(

−

∫ τ1+t−a

t−a

(λ1 + (ρ1(s) + ρ2(s))P (s)) ds−

∫ t

τ1+t−a

(λ2 + ρ2(s)P (s)) ds

)

da

For hares P (t)

P ′(t) = B2ρ2(t)T2(t)P (t)− dP (t)
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where B2 is the conversion factor between plant biomass and the number of

hares. We also introduce

ĥ1 = h1 +
1

4G1
, ĥ2 = h2 +

1

4G2

Positivity and boundedness

Theorem 1 (Boundedness) Let b(·) be a positive decreasing function.

Then T1(t) ≥ 0, T2(t) ≥ 0 and P (t) ≥ 0 for all t > 0. Moreover, for all

t > 0,

T1(t) ≤
b(0)(1− e−λ1τ1)

λ1
, T2(t) ≤

b(0)e−λ1τ1(1− e−λ2(τ2−τ1))

λ2
.

Also, if T inf
1 = lim inft→∞ T1(t), then the following inequality implicitly yields

a lower bound for T inf
1 :

(

λ1 + (e1σ1 + e2σ2)
B2b(0)e

−λ1τ1

min(d, λ2)

)

T inf
1 ≥ b(T inf

1 )(1− e−λ1τ1).

Furthermore,

lim inf
t→∞

T2(t) ≥ b

(
b(0)(1− e−λ1τ1)

λ1

)

exp

[

−τ1

(

λ1 + (e1σ1 + e2σ2)
B2b(0)e

−λ1τ1

min(d, λ2)

)]

×

(

1− exp
[
−(τ2 − τ1)(λ2 + e2σ2B2b(0)e

−λ1τ1/min(d, λ2))
]

λ2 + e2σ2B2b(0)e−λ1τ1/min(d, λ2)

)
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Stability of hare-extinct equilibrium

If hares are absent, P = 0, and YST and OST twig population variables T1,

T2 can exist in a carrying capacity at levels T ∗
1 and T ∗

2 satisfying

λ1T
∗
1 = b(T ∗

1 )(1− e−λ1τ1)

λ2T
∗
2 = b(T ∗

1 )e
−λ1τ1(1− e−λ2(τ2−τ1))

For realistic (ie positive decreasing) functions b(·), these equations can be

solved uniquely for T ∗
1 > 0, T ∗

2 > 0.

Hares cannot kill the plant completely.

Theorem 2 (Linear stability of hare-free equilibrium) Suppose that

b(·) is a positive decreasing function and that

d >
B2e2σ2b(T

∗
1 )e

−λ1τ1(1− e−λ2(τ2−τ1))/λ2

1 + ĥ1e1σ1T ∗
1 + ĥ2e2σ2b(T ∗

1 )e
−λ1τ1(1− e−λ2(τ2−τ1))/λ2

(2)

Then the equilibrium (T1, T2, P ) = (T ∗
1 , T

∗
2 , 0) is locally asymptotically stable.

Inequality (2) is satisfied when

• τ1 is sufficiently large (i.e. there is less edible twig biomass available).

This is a strong effect, due to exponential decay

(T ∗
1 depends on τ1 but approaches a finite value as τ1 → ∞; note also

that we must have τ2 > τ1).

• G1 is sufficiently small (i.e. ĥ1 is large) (i.e. young twig segments are

highly toxic). A weaker effect, due to algebraic decay

• conversion factor B2 is low enough
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• per-capita hare mortality d is large enough

Implication: better for the plant to prolong the duration of the YST phase

than to increase the production of toxins. Toxins are expensive to produce.

Theorem 3 (Global stability of hare-free equilibrium) Suppose that

b(·) is a positive decreasing function and that

B2e2σ2b(0)e
−λ1τ1(1− e−λ2(τ2−τ1))/λ2

1 + ĥ1e1σ1T ∗∗
1 + ĥ2e2σ2b(0)e−λ1τ1(1− e−λ2(τ2−τ1))/λ2

< d

where T ∗∗
1 is the solution of

(

λ1 + (e1σ1 + e2σ2)
B2b(0)e

−λ1τ1

min(d, λ2)

)

T ∗∗
1 = b(T ∗∗

1 )(1− e−λ1τ1).

Then (T1, T2, P ) = (T ∗
1 , T

∗
2 , 0) is globally asymptotically stable.
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Twig with N segments

∂n(t, a)

∂t
+

∂n(t, a)

∂a
= −λ1n(t, a)−





N∑

j=1

ρj(t)



P (t)n(t, a), for a ∈ (0, τ1);

...

∂n(t, a)

∂t
+

∂n(t, a)

∂a
= −λi+1n(t, a)−





N∑

j=i+1

ρj(t)



P (t)n(t, a), for a ∈ (τi, τ

...
∂n(t, a)

∂t
+

∂n(t, a)

∂a
= −λNn(t, a)− ρN(t)P (t)n(t, a), for a ∈ (τN−1, τN)

with

ρj(t) =
ejσj

1 +

N∑

k=1

(

hk +
1

4Gk

)

ekσkTk(t)

, j = 1, . . . , N.

Total number of twigs in a particular age class is

Ti(t) =

∫ τi

τi−1

n(t, a) da, i = 1, . . . , N,

and satisfies

T ′
i (t) = n(t, τi−1)− n(t, τi)− λiTi(t)−





N∑

j=i

ρj(t)



P (t)Ti(t).

We write n(t, τi−1) and n(t, τi) in terms of the birth rate:

n(t, 0) = b(T1(t) + · · · + TR(t))
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where R is the number of “younger” age classes. Eventually, we get

T ′
i (t) = −λiTi(t)−





N∑

j=i

ρj(t)



P (t)Ti(t)

+ b

(
R∑

l=1

Tl(t− τi−1)

)

Fi−1 (T1t(·), T2t(·), . . . , TNt
(·), Pt(·))

− b

(
R∑

l=1

Tl(t− τi)

)

Fi (T1t(·), T2t(·), . . . , TNt
(·), Pt(·)) , i = 1, . . . , N

where F0 = 1 and, for i = 1, . . . , N ,

Fi (T1t(·), T2t(·), . . . , TNt
(·), Pt(·)) =

i∏

j=1

exp (−λj(τj − τj−1))

× exp

(

−

∫ t

t−τi

(ρi(η) + · · · + ρN(η))P (η) dη −

∫ t−(τi−τi−1)

t−τi

ρi−1(η)P (η) dη

−

∫ t−(τi−τi−2)

t−τi

ρi−2(η)P (η) dη − · · · −

∫ t−(τi−τ1)

t−τi

ρ1(η)P (η) dη

)

.

For hares P (t):

P ′(t) = −dP (t) +

N∑

i=1

Bi





N∑

j=i

ρj(t)



Ti(t)P (t).
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In the hare-extinct equilibrium, P = 0 and Ti ≡ T ∗
i where

T ∗
i = b(T ∗)

(
1− e−λi(τi−τi−1)

λi

) i−1∏

j=1

exp (−λj(τj − τj−1)) , i = 1, . . . , N

and T ∗ satisfies

T ∗ = b(T ∗)

R∑

i=1





(
1− e−λi(τi−τi−1)

λi

) i−1∏

j=1

exp (−λj(τj − τj−1))





Theorem 4 (Hare-free equilibrium for N segments) Suppose that

b(·) is a positive decreasing differentiable function. If

d >
N∑

i=1

Bi





N∑

j=i

ejσj

1 +
∑N

k=1

(

hk +
1

4Gk

)

ekσkT ∗
k



T ∗
i

and

∣
∣
∣
∣
∣
b′

(
R∑

l=1

T ∗
l

)∣
∣
∣
∣
∣

R∑

i=1







i−1∏

j=1

e−λj(τj−τj−1)

(
1− e−λi(τi−τi−1)

λi

)





< 1

then the equilibrium with Ti = T ∗
i , i = 1, . . . , N and P = 0 is linearly

asymptotically stable.
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Twig toxicity varying continuously

Model becomes

∂n(t, a)

∂t
+

∂n(t, a)

∂a
= −λ(a)n(t, a)−

(∫ amax

a

ρ(t, s) ds

)

P (t)n(t, a)

where amax is the age beyond which twigs are too large to eat, and

ρ(t, s) =
e(s)σ(s)

1 +
∫ amax

0

(

h(ā) + 1
4G(ā)

)

e(ā)σ(ā)n(t, ā) dā
.

Total quantity of edible twig biomass is

N(t) =

∫ amax

0

n(t, a) da

Differentiation yields

dN(t)
dt

= n(t, 0)− n(t, amax)−

∫ amax

0

λ(a)n(t, a) da

−

∫ amax

0

(∫ amax

a

ρ(t, s) ds

)

P (t)n(t, a) da.
(3)

Birth law:

n(t, 0) = b

(∫ am

0

n(t, a) da

)

where am is the upper age limit for which a twig is considered “young”.

Last term in (3) represents loss of twigs due to herbivory. Twigs are converted

to hare biomass using a conversion factor B2(a) which depends on twig age
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and is inserted into the integrand of the last term. Thus the equation for P (t)

is

dP (t)

dt
= P (t)

∫ amax

0

B2(a)

(∫ amax

a

ρ(t, s) ds

)

n(t, a) da− dP (t).

There is a hare-free equilibrium with P = 0 and n(t, a) = n∗(a) where

n∗(a) = n∗(0) exp

(

−

∫ a

0

λ(ξ) dξ

)

and n∗(0) satisfies

n∗(0) = b

(

n∗(0)

∫ am

0

exp

(

−

∫ a

0

λ(ξ) dξ

)

da

)

.

Theorem 5 Suppose that b(·) is a positive decreasing function and that

d >

n∗(0)

∫ amax

0

B2(a)

(∫ amax

a

e(s)σ(s) ds

)

exp

(

−

∫ a

0

λ(ξ) dξ

)

da

1 + n∗(0)

∫ amax

0

(

h(a) +
1

4G(a)

)

e(a)σ(a) exp

(

−

∫ a

0

λ(ξ) dξ

)

da

and
∣
∣
∣
∣
b′
(∫ am

0

n∗(ã) dã

)∣
∣
∣
∣

∫ am

0

exp

(

−

∫ a

0

λ(η) dη

)

da < 1.

Then the equilibrium (n, P ) = (n∗(a), 0) is linearly asymptotically stable in

the sense that small perturbations satisfy P (t) → 0 and
∫ am
0 n(t, a) da →

∫ am
0 n∗(a) da as t → ∞.
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Simulations for twig with two segments

Birth function chosen as b(T1) = r exp(−T1/K) for simulations.

• The effect of increasing τ1 is a strong one. A thousand fold decrease in G1

(increase in YST toxicity) is not sufficient to eradicate the hares, whereas

increasing τ1 by a factor of just 2.5 eradicates them (Figs. 6 and 7).

• If τ1 is not too large then all three variables can persist and evolve to a

limit cycle (snowshoe hare cycle) oscillation.

• Changes in G2 (representing toxicity of older segments) do not have much

effect on the dynamics because the proportion of contribution ofG2 to the

handling time is small, for the range of values of G2 that we considered.
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Figure 6: Panel (a): biomass of younger segments T1; Panel (b): biomass of older segments T2;
Panel (c): number of hares P . Figure shows the dependence on τ1.
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Figure 7: Panel (a): biomass of younger segments T1; Panel (b): biomass of older segments T2;
Panel (c): number of hares P . Figure shows the dependence on the toxicity 1/G1. Small G1 means
young twigs are highly toxic.
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Summary

• Plants may defend some of their parts more strongly than others. Toxins

are expensive to produce. Some rapidly growing plants, such as Betula

glandulosa, defend only their youngest twig segments.

• When a hare feeds specifically on the older part of a twig, which is less

toxic and more edible than the younger part, the hare must necessarily

remove the younger part of the twig even though it may not ingest the

younger part but merely discard it.

• An important prediction of the model is that it is better for a plant to

prolong the duration of the toxic phase of twig development, than to

evolve a more potent toxin that defends only young twigs. The prediction

is particularly important for slowly growing plants (such as the spruces).

• Boreal snowshoe hares prefer Betula glandulosa. Evergreen spruce twigs

are an alternative, less desirable, food source.

• Spruces are slowly growing evergreens that have a limited ability to re-

place the twigs eaten by hares. Therefore, though toxins are expensive to

produce, spruce similarly defends YST and OST.

• In fact, spruce twigs retain needles on their OST until that OST exceeds

the diameter that a hare can eat. These needles contain toxic monoter-

penes such as camphor.

• There is evidence that increased consumption of spruce does indeed con-

tribute to the decline of a snowshoe hare population.

• The variation in twig toxicity with age can generate plant-hare limit cycle

behaviour. This is important because oscillatory dynamics are a common

feature of the dynamics of snowshoe hare populations in boreal ecosys-

tems. Our parameter values produce a cycle of about 5 or 6 years (slightly

shorter than the true hare cycle).
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