
Partial derivatives

Notice: this material must not be used as a substitute for attending
the lectures
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0.1 Recall: ordinary derivatives

If y is a function of x then dy
dx

is the derivative meaning the gradient (slope of the
graph) or the rate of change with respect to x.

0.2 Functions of 2 or more variables

Functions which have more than one variable arise very commonly. Simple examples
are

• formula for the area of a triangle A = 1
2
bh is a function of the two variables,

base b and height h

• formula for electrical resistors in parallel:

R =
(

1

R1

+
1

R2

+
1

R3

)−1

is a function of three variables R1, R2 and R3, the resistances of the individual
resistors.

Let’s talk about functions of two variables here. You should be used to the notation
y = f(x) for a function of one variable, and that the graph of y = f(x) is a curve.
For functions of two variables the notation simply becomes

z = f(x, y)

where the two independent variables are x and y, while z is the dependent variable.
The graph of something like z = f(x, y) is a surface in three-dimensional space. Such
graphs are usually quite difficult to draw by hand.
Since z = f(x, y) is a function of two variables, if we want to differentiate we have
to decide whether we are differentiating with respect to x or with respect to y (the
answers are different). A special notation is used. We use the symbol ∂ instead of d
and introduce the partial derivatives of z, which are:

• ∂z
∂x is read as “partial derivative of z (or f) with respect to x”, and means
differentiate with respect to x holding y constant

• ∂z
∂y means differentiate with respect to y holding x constant

Another common notation is the subscript notation:

zx means
∂z

∂x

zy means
∂z

∂y

Note that we cannot use the dash ′ symbol for partial differentiation because it would
not be clear what we are differentiating with respect to.
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0.3 Example

Calculate ∂z
∂x and ∂z

∂y when z = x2 + 3xy + y − 1.

Solution. To find ∂z
∂x treat y as a constant and differentiate with respect to x. We

have z = x2 + 3xy + y − 1 so
∂z

∂x
= 2x + 3y

Similarly
∂z

∂y
= 3x + 1

0.4 Example

Calculate ∂z
∂x and ∂z

∂y when z = 1 − x − 1
2
y. Interpret your answers and draw the

graph.
Solution. The graph of z = 1−x− 1

2
y is a plane passing through the points (x, y, z) =

(1, 0, 0), (0, 2, 0) and (0, 0, 1). The partial derivatives are:

∂z

∂x
= −1,

∂z

∂y
= −1

2

Interpretation: ∂z
∂x is the slope you will notice if you walk on the surface in a direction

keeping your y coordinate fixed. ∂z
∂y is the slope you will notice if you walk on the

surface in such a direction that your x coordinate remains the same. There are, of
course, many other directions you could walk, and the slope you will notice when

walking in some other direction can be worked out knowing both ∂z
∂x and ∂z

∂y . It’s

like when you walk on a mountain, there are many directions you could walk and
each one will have its own slope.

0.5 Other examples of evaluating partial derivatives

(i) z = ln(x2 − y). Then ∂z
∂x = 2x

x2 − y
and ∂z

∂y = −1
x2 − y

. [To deduce these results

we used the fact that if y = ln f(x) then dy
dx =

f ′(x)
f(x)

].

(ii) z = x cos y + yex. Then ∂z
∂x = cos y + yex and ∂z

∂y = −x sin y + ex.

(iii) z = y sin xy. Then ∂z
∂x = y(y cos xy) = y2 cos xy and ∂z

∂y = yx cos xy + sin xy.

For the second result we used the product rule.

(iv) If x2 + y2 + z2 = 1 find the rate at which z is changing with respect to y at

the point (2
3
, 1

3
, 2

3
). Solution. We have z = (1− x2 − y2)1/2. We want ∂z

∂y when
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(x, y) = (2
3
, 1

3
). But

∂z

∂y
= 1

2
(1− x2 − y2)−1/2(−2y) = − y

(1− x2 − y2)1/2

Putting in (x, y) = (2
3
, 1

3
) gives

∂z

∂y
= − 1/3

(1− (2/3)2 − (1/3)2)1/2
= −1

2
.

0.6 Functions of 3 or more variables

The general notation would be something like

w = f(x, y, z)

where x, y and z are the independent variables. For example, w = x sin(y + 3z).
Partial derivatives are computed similarly to the two variable case. For example,
∂w/∂x means differentiate with respect to x holding both y and z constant and so,
for this example, ∂w/∂x = sin(y + 3z). Note that a function of three variables does
not have a graph.

0.7 Second order partial derivatives

Again, let z = f(x, y) be a function of x and y.

• ∂2z
∂x2 means the second derivative with respect to x holding y constant

• ∂2z
∂y2 means the second derivative with respect to y holding x constant

• ∂2z
∂x∂y means differentiate first with respect to y and then with respect to x.

The “mixed” partial derivative ∂2z
∂x∂y is as important in applications as the others.

It is a general result that
∂2z

∂x∂y
=

∂2z

∂y∂x

i.e. you get the same answer whichever order the differentiation is done.

0.8 Example

Let z = 4x2 − 8xy4 + 7y5 − 3. Find all the first and second order partial derivatives
of z.
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Solution.

∂z

∂x
= 8x− 8y4

∂z

∂y
= −8x(4y3) + 35y4 = −32xy3 + 35y4

∂2z

∂x2
=

∂

∂x

(
∂z

∂x

)
= 8

∂2z

∂y2
=

∂

∂y

(
∂z

∂y

)

=
∂

∂y
(−32xy3 + 35y4) = −32x(3y2) + 140y3

= −96xy2 + 140y3

∂2z

∂x∂y
=

∂

∂x

(
∂z

∂y

)
=

∂

∂x
(−32xy3 + 35y4) = −32y3

∂2z

∂y∂x
=

∂

∂y

(
∂z

∂x

)
=

∂

∂y
(8x− 8y4) = −32y3

0.9 Example

Find all the first and second order partial derivatives of the function z = sin xy.
Solution.

∂z

∂x
= y cos xy

∂z

∂y
= x cos xy

∂2z

∂x2
= −y2 sin xy

∂2z

∂y2
= −x2 sin xy

∂2z

∂x∂y
=

∂

∂x

(
∂z

∂y

)
=

∂

∂x
(x cos xy) = x(−y sin xy) + cos xy = −xy sin xy + cos xy

∂2z

∂y∂x
=

∂

∂y

(
∂z

∂x

)
=

∂

∂y
(y cos xy) = y(−x sin xy) + cos xy = −xy sin xy + cos xy

0.10 Subscript notation for second order partial derivatives

If z = f(x, y) then

• zxx means ∂2z
∂x2

• zyy means ∂2z
∂y2
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• zxy means ∂2z
∂x∂y or ∂2z

∂y∂x

0.11 Important point

Unlike ordinary derivatives, partial derivatives do not behave like fractions, in par-
ticular

∂x

∂z
6= 1

∂z/∂x

0.12 Small changes

Let
z = f(x, y)

Imagine we change x to x + δx and y to y + δy with δx and δy very small. We ask:
what is the corresponding change in z? The answer is that the change is δz, given by

δz ≈ ∂z

∂x
δx +

∂z

∂y
δy (0.1)

This formula requires δx and δy to be very small and even then the formula is only an
approximate one. However, it becomes more and more exact as δx → 0 and δy → 0.
This fact is sometimes expressed by saying

dz =
∂z

∂x
dx +

∂z

∂y
dy

where dx, dy and dz are infinitesimal increments.
Let’s give some idea where formula (0.1) comes from. Let’s recall the analogous result
for a function of one variable and its derivation. For a function of one variable the
notation would be y = g(x) and the graph of this is a curve with a gradient dy/dx
at each point x. If consider two points on this curve, (x, y) and a neighbouring point
(x + δx, y + δy) then if this neighbouring point is sufficiently close the line joining
the two points, which has gradient δy/δx, is a good approximation to the tangent
line at (x, y) which has gradient dy/dx. This means that δy/δx ≈ dy/dx so that
δy ≈ (dy/dx)δx.
We want to generalise this idea to a function z = f(x, y) of two variables, whose
graph will be a surface.
In the (x, y) plane let A be the point with coordinates (x, y), let B be the point with
coordinates (x + δx, y), and C the point with coordinates (x + δx, y + δy).
The overall change in height, δz, from A to C is given by

δz = (change in height A to B) + (change in height B to C)

In calculating the change in height from A to B we are travelling across the surface
from A to B along a curve in which y is held fixed, so by the result for curves,

change in height A to B ≈ ∂z

∂x
δx
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Similarly

change in height B to C ≈ ∂z

∂y
δy

Therefore

δz ≈ ∂z

∂x
δx +

∂z

∂y
δy

and we have derived formula (0.1).

0.13 Example

A cylindrical tank is 1 m high and 0.3 m radius. If height is increased by 5 cm and
radius by 1 cm what is the effect on volume?
Solution. Let the radius be r and height be h. Then the volume V is given by

V = πr2h

so that ∂V
∂r = 2πrh and ∂V

∂h = πr2. Therefore in the notation of the present problem

formula (0.1) becomes

δV ≈ ∂V

∂r
δr +

∂V

∂h
δh

= 2πrh δr + πr2h δh

In our case r = 0.3, h = 1, δr = 1 cm = 0.01 m, δh = 5 cm = 0.05 m so

δV ≈ 2π(0.3)(1)(0.01) + π(0.3)2(0.05) = 0.033 m3

0.14 Example

The angle of elevation of the top of a tower is found to be 30o±0.5o from a point
300±0.1 m from the base. Estimate the towers height.
Solution. One could imagine that this sort of problem would arise when a surveyor
is unable to take completely accurate readings and wants to know the likely margin
of error.
Let θ be the angle of elevation, h the towers height and x the distance from tower to
observer. Then

h = x tan θ

so that ∂h
∂x = tan θ and ∂h

∂θ = x sec2 θ. Therefore

δh ≈ ∂h

∂x
δx +

∂h

∂θ
δθ

= tan θ δx + x sec2 θ δθ

Now θ = 30o = π/6 radians and δθ = 0.5o = 0.008727 radians. Also x = 300 m and
δx = 0.1 m. Therefore

δh ≈ (tan π/6)(0.1) + 300(sec2 π/6)(0.008727) = 3.55 m
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From h = x tan θ, we get h = 173.21 m. Our conclusion is that the height is 173.21±
3.55 m.
NB: If you had not converted degrees to radians your final answer would
be wrong.

0.15 Absolute, relative and percentage change

• absolute change is δz

• relative change is δz
z

• percentage change is δz
z × 100

0.16 Example on percentage change

Length and width of a rectangle are measured with errors of at most 3% and 5%
respectively. Estimate the maximum percentage error in the area.
Solution. Let x = length, y = width and A = area. Then, of course, A = xy. So
∂A
∂x = y and ∂A

∂y = x. Therefore

δA ≈ ∂A

∂x
δx +

∂A

∂y
δy

= y δx + x δy

We want percentage change in A, which is relative change multiplied by 100 so let’s
work out relative change first. This is given by

δA

A
≈ yδx

A
+

xδy

A

=
δx

x
+

δy

y

since A = xy. What we are told is that

−0.03 ≤ δx

x
≤ 0.03 and − 0.05 ≤ δy

y
≤ 0.05

What we need to do now is identify the worst case scenario, i.e. the maximum
possible value for δA/A given the above constraints. This happens when δx/x = 0.03
and δy/y = 0.05, giving δA/A = 0.08. This is relative error, so the (worst) percentage
error is 8%.
NB: in some problems the worst case scenario is obtained by setting one
of δx/x or δy/y to be its most negative (rather than most positive) possible
value.
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0.17 Chain rule for partial derivatives

Recall the chain rule for ordinary derivatives:

if y = f(u) and u = g(x) then
dy

dx
=

dy

du

du

dx

In the above we call u the intermediate variable and x the independent variable.
For partial derivatives the chain rule is more complicated. It depends on how many
intermediate variables and how many independent variables are present. Below three
formulae are given which it is hoped indicate the general points. Essentially, every
intermediate variable has to have a term corresponding to it in the right hand side
of the chain rule formula. For example in the second one below there are three
intermediate variables x, y and z and three terms in the RHS.
Formula 3 below illustrates a case when there are 2 intermediate and 2 independent
variables.

(1) if z = f(x, y) and x and y are functions of t (x = x(t) and y = y(t)) then z is
ultimately a function of t only and

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

(2) if w = f(x, y, z) and x = x(t), y = y(t), z = z(t) then w is ultimately a function
of t only and

dw

dt
=

∂w

∂x

dx

dt
+

∂w

∂y

dy

dt
+

∂w

∂z

dz

dt

(3) if z = f(x, y) and x = x(u, v), y = y(u, v) then z is a function of u and v and

∂z
∂u = ∂z

∂x
∂x
∂u + ∂z

∂y
∂y
∂u

∂z
∂v = ∂z

∂x
∂x
∂v + ∂z

∂y
∂y
∂v

0.18 Example

Let z = x2y, x = t2 and y = t3. Calculate dz/dt by (a) the chain rule, (b) expressing
z as a function of t and finding dz/dt directly.
Solution. (a) by the chain rule

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

= (2xy)(2t) + (x2)(3t2)

= 4xyt + 3x2t2

= 4t2t3t + 3t4t2

= 7t6

(b) z = x2y and x = t2, y = t3 so z = t4t3 = t7. Differentiating gives dz/dt = 7t6.
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It might be tempting to say that approach (b) is clearly easier so why bother with the
chain rule? But the fact remains that the chain rule is of fundamental importance
in many applications of partial derivatives. We shall see below the use of the chain
rule in studying rates of change. And the chain rule is also of importance in the
derivation of the partial differential equations that govern many physical processes
(eg the Navier Stokes equations of fluid dynamics); in such cases you are not simply
playing around with trivial functions but dealing with unknown functions.

0.19 Example

Let w = xy + z with x = cos t, y = sin t and z = t. Calculate dw/dt.
Solution.

dw

dt
=

∂w

∂x

dx

dt
+

∂w

∂y

dy

dt
+

∂w

∂z

dz

dt

= y(− sin t) + x(cos t) + (1)(1)

= − sin2 t + cos2 t + 1

0.20 Example

Let u = x2 − 2xy + 2y3 with x = s2 ln t and y = 2st3. Find ∂u/∂s and ∂u/∂t.
Solution. This time u is a function of 2 variables x and y, each of which is itself a
function of 2 variables s and t.

∂u

∂s
=

∂u

∂x

∂x

∂s
+

∂u

∂y

∂y

∂s

= (2x− 2y)(2s ln t) + (−2x + 6y2)(2t3)

= (2s2 ln t− 4st3)(2s ln t) + (−2s2 ln t + 24s2t6)(2t3)

∂u

∂t
=

∂u

∂x

∂x

∂t
+

∂u

∂y

∂y

∂t

= (2x− 2y)

(
s2

t

)
+ (−2x + 6y2)(6st2)

= (2s2 ln t− 4st3)

(
s2

t

)
+ (−2s2 ln t + 24s2t6)(6st2)

0.21 Rates of change: an application of the chain rule

We will do some applications of the chain rule to rates of change.
Example. What rate is the area of a rectangle changing if its length is 15 m and
increasing at 3 ms−1 while its width is 6 m and increasing at 2 ms−1.
Solution. Let x be the length, y the width, A the area and t = time. The information
given tells us that

dx

dt
= 3 ms−1,

dy

dt
= 2 ms−1
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Obviously A = xy. We want dA/dt when x = 15 and y = 6. This is given by the
chain rule as follows:

dA

dt
=

∂A

∂x

dx

dt
+

∂A

∂y

dy

dt
= y

dx

dt
+ x

dy

dt
= (6)(3) + (15)(2) = 48 m2s−1.

Example. The height of a tree increases at a rate of 2 ft per year and the radius
increases at 0.1 ft per year. What rate is the volume of timber increasing at when
the height is 20 ft and the radius is 1.5 ft. (Assume the tree is a circular cylinder).
Solution. The volume V is given by V = πr2h. The chain rule gives

dV

dt
=

∂V

∂r

dr

dt
+

∂V

∂h

dh

dt

= 2πrh
dr

dt
+ πr2 dh

dt

We are told that dh/dt = 2 ft per year and dr/dt = 0.1 ft per year. So, when h = 20
and r = 1.5,

dV

dt
= 2π(1.5)(20)(0.1) + π(1.5)2(2) = 32.99 ft3/year

0.22 The chain rule and implicit differentiation

Suppose we cannot find y explicitly as a function of x, only implicitly through the
equation F (x, y) = 0 (for example, F (x, y) might be an awkward expression such that
F (x, y) = 0 cannot in practice be solved to give y in terms of x). We want a formula
for dy/dx.
We know that F (x, y) = 0 defines y as a function of x, y = y(x), even if we cannot
in practice find the expression for y in terms of x. This means that we could write
F (x, y) = 0 as F (x, y(x)) = 0. Differentiating both sides of this, using the chain rule
on the left hand side, gives

∂F

∂x
(1) +

∂F

∂y

dy

dx
= 0

Hence
dy

dx
= −∂F/∂x

∂F/∂y

As an example of the use of this formula, let us find dy/dx for the function y defined
by x2 + xy + y3− 7 = 0. Let F (x, y) = x2 + xy + y3− 7. Then by the above formula,

dy

dx
= −∂F/∂x

∂F/∂y
= −(2x + y)

x + 3y2

Alternatively you could deduce this result by using implicit differentiation (a tech-
nique which you should know about from previous study). It should, of course, give
the same answer.
As an extension of the above idea, let the equation f(x, y, z) = 0 define z as a
function of x and y, so that x and y are viewed as independent variables. We want
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to find ∂z/∂x and ∂z/∂y. The calculation here is a somewhat subtle one, in which
x actually plays the role of both an intermediate variable and an independent one.
Differentiating the equation f(x, y, z) = 0 with respect to x using the chain rule gives

∂f

∂x
(1) +

∂f

∂y

∂y

∂x
+

∂f

∂z

∂z

∂x
= 0

Now ∂y/∂x is, in fact, zero. The reason is that y and x are independent of each other.
So

∂f

∂x
+

∂f

∂z

∂z

∂x
= 0

Hence
∂z

∂x
= −∂f/∂x

∂f/∂z

and similarly
∂z

∂y
= −∂f/∂y

∂f/∂z

0.23 Transforming to polars

Let u = u(x, y) be a function of x and y. Let

x = r cos θ, y = r sin θ

Our aim is to show that

∂2u

∂x2
+

∂2u

∂y2
=

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
(0.2)

which is the expression for the Laplacian operator in plane polar coordinates. It
is useful for solving, for example, the steady state heat equation in situations with
circular geometry.
By the chain rule,

∂u

∂r
=

∂u

∂x

∂x

∂r
+

∂u

∂y

∂y

∂r

i.e.
∂u

∂r
= cos θ

∂u

∂x
+ sin θ

∂u

∂y

Differentiating the above expression with respect to r gives

∂2u

∂r2
= cos θ

∂

∂r

(
∂u

∂x

)
+ sin θ

∂

∂r

(
∂u

∂y

)

= cos θ

(
∂2u

∂x2

∂x

∂r
+

∂2u

∂x∂y

∂y

∂r

)
+ sin θ

(
∂2u

∂x∂y

∂x

∂r
+

∂2u

∂y2

∂y

∂r

)

= cos2 θ
∂2u

∂x2
+ sin θ cos θ

∂2u

∂x∂y
+ sin θ cos θ

∂2u

∂x∂y
+ sin2 θ

∂2u

∂y2
.
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Also

∂u

∂θ
=

∂u

∂x

∂x

∂θ
+

∂u

∂y

∂y

∂θ

= −r sin θ
∂u

∂x
+ r cos θ

∂u

∂y

and, after a long calculation,

∂2u
∂θ2 = r2 sin2 θ∂2u

∂x2 + r2 cos2 θ∂2u
∂y2 − 2r2 sin θ cos θ ∂2u

∂x∂y

−r cos θ∂u
∂x − r sin θ∂u

∂y

It follows that

∂2u
∂r2 + 1

r
∂u
∂r + 1

r2
∂2u
∂θ2 = cos2 θ∂2u

∂x2 + 2 sin θ cos θ ∂2u
∂x∂y + sin2 θ∂2u

∂y2

+ 1
r

(
cos θ∂u

∂x + sin θ∂u
∂y

)
+ 1

r2

(
r2 sin2 θ∂2u

∂x2 + r2 cos2 θ∂2u
∂y2 − 2r2 sin θ cos θ ∂2u

∂x∂y − r cos θ∂u
∂x − r sin θ∂u

∂y

)
= ∂2u

∂x2 + ∂2u
∂y2

so that (0.2) is proved.
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