— Assessed Coursework -

1. Consider the KdV equation in the form

$$
u_{t}+u u_{x}+u_{x x x}=0 .
$$

The conservation laws for mass and momentum are

$$
\begin{aligned}
M_{t}+Q_{x} & =0, \quad M=u, \quad Q=\frac{1}{2} u^{2}+u_{x x} \\
I_{t}+S_{x} & =0, \quad I=\frac{1}{2} u^{2}, \quad S=-\frac{1}{2} u_{x}^{2}+u u_{x x}+\frac{1}{3} u^{3}
\end{aligned}
$$

Show that there also exists a conservation law of the form

$$
\frac{\partial}{\partial t}(x M-t I)+\frac{\partial}{\partial x}(\text { Flux })=0 .
$$

Determine an expression for Flux.
2. Consider the nonlinear wave equation

$$
\begin{equation*}
u_{t t}+u_{x x}+u_{x x x x}+u+a u^{2}+b u^{3}=0, \tag{1}
\end{equation*}
$$

for the scalar-valued function $u(x, t)$.

- Find the dispersion for the linear problem $(a=b=0)$,
- Let $u(x, t)=U(\theta)$, with $\theta=k x-\omega t$. Reduce the PDE (1) to an ODE for $U(\theta)$, with ω and k appearing in the equation as coefficients.

Take $k>0$ to be fixed, and expand $U(\theta)$ and ω in a Taylor series in a small parameter ε,

$$
\begin{aligned}
U(\theta) & =\varepsilon U_{1}(\theta)+\varepsilon^{2} U_{2}(\theta)+\varepsilon^{3} U_{3}(\theta)+\cdots \\
\omega & =\omega_{0}+\varepsilon \omega_{1}+\varepsilon^{2} \omega_{2}+\cdots
\end{aligned}
$$

By requiring $U(\theta)$ to be a 2π - periodic function of θ,

- solve for $\omega_{0}(k)$,
- show that $\omega_{1}=0$,
- determine ω_{2} as a function of a and b, and
- determine the particular solution for $U_{2}(\theta)$, when

$$
\begin{equation*}
U_{1}(\theta)=A \mathrm{e}^{\mathrm{i} \theta}+\bar{A} \mathrm{e}^{-\mathrm{i} \theta}, \tag{10}
\end{equation*}
$$

where A is a complex constant of order unity.
3. Consider the NLS equation in the form

$$
\mathrm{i} A_{t}+A_{x x}+|A|^{2} A=0
$$

for the complex-value function $A(x, t)$. Show that there exists a solitary wave solution of the form

$$
A(x, t)=\mathrm{e}^{\mathrm{i} \omega t} A_{0} \operatorname{sech}(B x),
$$

with ω, B and A_{0} real parameters. Find expressions for B and A_{0} as functions of ω.
4. (This question is based on Q1.54 on page 59 of Johnson ${ }^{1}$)

A weakly nonlinear dispersive wave is described by the equation

$$
\begin{equation*}
u_{t t}+u_{x x}+u_{x x x x}+u=\varepsilon u^{3} . \tag{2}
\end{equation*}
$$

Introduce variables $X=\varepsilon x, T=\varepsilon t$ and θ where

$$
\theta_{x}=k(X, T) \quad \text { and } \quad \theta_{t}=-\omega(X, T),
$$

which implies

$$
k_{T}+\omega_{X}=0 \quad \text { and } \quad k_{T}+c_{g} k_{X}=0 .
$$

Seek a solution of (2) in the form

$$
u=u_{0}(\theta, X, T)+\varepsilon u_{1}(\theta, X, T)+\cdots \quad \text { as } \quad \varepsilon \rightarrow 0
$$

Write $u_{0}=A(X, T) \mathrm{e}^{\mathrm{i} \theta}+$ c.c. and obtain the equation for $A(X, T)$ at first order which ensures that u_{1} is periodic in θ.
Using the dispersion relation of the linearised problem, simplify the solvability condition in order to show that

$$
\begin{equation*}
A_{T}+\omega^{\prime}(k) A_{X}=\frac{3 \mathrm{i}}{2 \omega} A|A|^{2}-\frac{1}{2} k_{X} \omega^{\prime \prime}(k) A \tag{3}
\end{equation*}
$$

From (3) derive the following form of conservation of wave action for (2),

$$
\frac{\partial}{\partial T}\left(|A|^{2}\right)+\frac{\partial}{\partial X}\left(c_{g}|A|^{2}\right)=0
$$

[^0]
[^0]: ${ }^{1}$ R.S. Johnson. A modern introduction to the mathematical theory of water waves, CUP (1997)

