- Class Test : Wednesday 24 November -

1. For a normal mode solution, of a linear wave equation, with frequency ω and wavenumber vector $\mathbf{k}=(k . \ell)$, define the group velocity vector \mathbf{c}_{g}.
2. Consider the linear Zakharov-Kuznetsov equation

$$
u_{t}+u_{0} u_{x}+u_{x x x}+u_{x y y}=0
$$

for the scalar-valued function $u(x, t)$ where u_{0} is a nonzero constant. For a normal-mode solution of the form $u(x, t)=\widehat{u} \mathrm{e}^{\mathrm{i}(k x+\ell y=\omega t)}+c . c$., with \widehat{u} a complex constant, find (a) the dispersion relation and (b) the group velocity vector.
3. For the dispersion relation in Question 2, show that the group velocity vector \mathbf{c}_{g} and the wavenumber vector \mathbf{k} are not in general parallel.
4. Consider the nonlinear wave equation

$$
\begin{equation*}
u_{t t}-u_{x x}+4 u-6 u^{2}=0 \tag{1}
\end{equation*}
$$

for the scalar-valued function $u(x, t)$. Show that there is a stationary solitary wave solution of the steady problem of the form

$$
u(x, t):=\widehat{u}(x)=A \operatorname{sech}^{2}(B x)
$$

and determine A and B.
5. For the nonlinear wave equation (1), show that there is a conservation law of the form

$$
I_{t}+S_{x}=0 \quad \text { with } \quad I=u_{t} u_{x}
$$

Determine the flux $S(x, t)$ for this conservation law.
6. Consider the Euler equations for an inviscid fluid in two space dimensions and time,

$$
\begin{aligned}
u_{t}+u u_{x}+v u_{y}+\rho^{-1} p_{x} & =0 \\
v_{t}+u v_{x}+v v_{y}+\rho^{-1} p_{y}+g & =0
\end{aligned}
$$

where $g>0$ is the gravitational constant, ρ is the constant fluid density, $p(x, y, t)$ is the pressure and $(u(x, y, t), v(x, y, t))$ is the velocity field. With the assumptions $u=\phi_{x}$ and $v=\phi_{y}$, show that these equations can be reduced to Bernoulli's equation

$$
\phi_{t}+\frac{1}{2}\left(\phi_{x}^{2}+\phi_{y}^{2}\right)+g y+\frac{p}{\rho}=f(t)
$$

where $f(t)$ is an arbitrary function of time.
7. Suppose a wave ray is defined by the graph $(X, Y(X))$ and

$$
\frac{d Y}{d X}=\frac{\ell}{k}
$$

where (k, ℓ) are components of the wavenumber vector $\mathbf{k}=(k, \ell)$. Define

$$
\sigma^{2}=k^{2}+\ell^{2}, \quad k=\frac{\partial \Theta}{\partial X} \quad \text { and } \quad \ell=\frac{\partial \Theta}{\partial Y} .
$$

Show that

$$
\frac{\sigma}{\sqrt{1+Y_{X}^{2}}}=\frac{\partial \Theta}{\partial X}
$$

Derive the ray equation

$$
\frac{d}{d X}\left(\frac{\sigma Y_{X}}{\sqrt{1+Y_{X}^{2}}}\right)-\sigma_{Y} \sqrt{1+Y_{X}^{2}}=0
$$

8. Consider a normal mode solution in one space dimension and time, with frequency ω and wavenumber k. Prove the following relationship between the group velocity c_{g} and the phase velocity c_{p}

$$
c_{g}-c_{p}=k \frac{d c_{p}}{d k} .
$$

