UNIVERSITY OF SURREY

School of Electronics and Physical Sciences

Department of Mathematics

M.Math Undergraduate Programme in Mathematical Studies
 Examination
 Module MSM.TWW THEORY OF WATER WAVES

Time allowed - 2.5 hrs
Spring Semester 2007

Attempt FOUR questions.
If any candidate attempts more than FOUR questions, only the best FOUR solutions will be taken into account.

Question 1

(Quintic nonlinear Schrödinger equation)
The nonlinear Schrödinger equation with quintic nonlinearity, for the complexvalued function $A(x, t)$, is

$$
\begin{equation*}
\text { i } A_{t}+A_{x x}+a|A|^{4} A=0, \quad a= \pm 1 . \tag{1}
\end{equation*}
$$

Associated with quintic NLS are the conserved densities

$$
M=|A|^{2}, \quad I=-\mathrm{i}\left(\bar{A} A_{x}-A \overline{A_{x}}\right), \quad E=\left|A_{x}\right|^{2}-\frac{a}{3}|A|^{6} .
$$

(a) Find fluxes Q, S and F such that when A is a solution of (1) then

$$
M_{t}+Q_{x}=0, \quad I_{t}+S_{x}=0, \quad E_{t}+F_{x}=0
$$

(b) Suppose $A(x, t) \rightarrow 0$ as $x \rightarrow \pm \infty$. Show that

$$
\int_{-\infty}^{+\infty} S(x, t) \mathrm{d} x=C \int_{-\infty}^{+\infty} E(x, t) \mathrm{d} x
$$

and determine the value of the constant C.
(c) Suppose $A(x, t) \rightarrow 0$ as $x \rightarrow \pm \infty$ and consider the moment of inertia of a solution,

$$
J(t)=\int_{-\infty}^{+\infty} x^{2}|A(x, t)|^{2} \mathrm{~d} x .
$$

By differentiating $J(t)$ and using the conservation laws show that

$$
\frac{d^{2} J}{d t^{2}}=2 \int_{-\infty}^{+\infty} S(x, t) \mathrm{d} x .
$$

(d) What can one conclude about existence of solutions of (1)? Consider the cases $a=-1$ and $a=+1$ separately.

Question 2

(Conservation of wave action)
Consider the nonlinear wave equation

$$
\begin{equation*}
u_{t t}-u_{x x}+u=\varepsilon u^{3}, \tag{2}
\end{equation*}
$$

where ε is a small parameter.
(a) For the linear equation, $u_{t t}-u_{x x}+u=0$, determine the dispersion relation and group velocity for normal-mode solutions: $u(x, t)=A \mathrm{e}^{\mathrm{i}(k x-\omega t)}+c . c$.
(b) Let $X=\varepsilon x$ and $T=\varepsilon t$ and define a phase by $\theta_{x}=k(X, T)$ and $\theta_{t}=$ $-\omega(X, T)$. Using the chain rule:

$$
\frac{\partial}{\partial t}=-\omega \frac{\partial}{\partial \theta}+\varepsilon \frac{\partial}{\partial T}, \quad \frac{\partial}{\partial x}=k \frac{\partial}{\partial \theta}+\varepsilon \frac{\partial}{\partial X},
$$

transform the PDE into an equation for $u(\theta, X, T, \varepsilon)$.
(c) Let

$$
u(\theta, X, T, \varepsilon)=u_{0}(\theta, X, T)+\varepsilon u_{1}(\theta, X, T)+\cdots,
$$

and take $u_{0}=A(X, T) \mathrm{e}^{\mathrm{i} \theta}+\overline{A(X, T)} \mathrm{e}^{-\mathrm{i} \theta}$ By requiring u_{1} to be $2 \pi-$ periodic in θ, show that the solvability condition requires $A(X, T)$ to satisfy

$$
\begin{equation*}
\omega_{T} A+2 \omega A_{T}+k_{X} A+2 k A_{X}-3 \mathrm{i}|A|^{2} A=0 . \tag{3}
\end{equation*}
$$

(d) Show that conservation of wave action

$$
\frac{\partial}{\partial T}\left(\frac{E}{\omega}\right)+\frac{\partial}{\partial X}\left(c_{g} \frac{E}{\omega}\right)=0, \quad \text { where } \quad E=\omega^{2}|A|^{2}
$$

follows from (3).

Question 3

(Wave refraction and ray theory)
Consider the steady propagation of waves in shallow water governed by the ray equations. The graph of a ray is given by $(X, Y(X))$ with $Y(X)$ satisfying

$$
\begin{equation*}
\frac{d}{d X}\left(\frac{\sigma Y_{X}}{\sqrt{\left(1+Y_{X}^{2}\right)}}\right)-\sigma_{Y} \sqrt{\left(1+Y_{X}^{2}\right)}=0 . \tag{4}
\end{equation*}
$$

where $\sigma(X, Y)$ is determined from the equation

$$
g \sigma(X, Y) \tanh (\sigma(X, Y) D(X, Y))=\text { constant }
$$

and $D(X, Y)$ is determined by bottom topography. You may assume throughout that $\frac{d Y}{d X}>0$.
(a) Suppose $\sigma_{Y}=0$ and $\sigma^{\prime}(X)>0$ (signifying decreasing depth). Show that

$$
\frac{d}{d X}\left(\frac{d Y}{d X}\right)<0
$$

(b) Let $Y_{X}=\tan (\theta)$ with $0<\theta<\pi / 2$ and $\sigma_{Y}=0$. Show that rays satisfy Snell's Law

$$
\sigma(X) \sin \theta=\text { constant } .
$$

(c) Suppose $\sigma(Y)$; that is, a function of Y only. Show that rays satisfy

$$
\frac{\sigma(Y)}{\sqrt{1+Y_{X}^{2}}}=\text { constant }
$$

(d) Suppose as in part (c) that σ depends on Y only, and $\sigma_{Y}>0$. Does

$$
\frac{d}{d X}\left(\frac{d Y}{d X}\right)
$$

increase or decrease along rays?

Question 4

(The Korteweg-DeVries equation)
Consider the KdV equation with variable dispersion

$$
\begin{equation*}
u_{t}+u u_{x}+a(x) u_{x x x}=0 . \tag{5}
\end{equation*}
$$

(a) Suppose $a(x)=-1$ for all x (negative dispersion) and consider travelling wave solutions of (5) of the form $u(x, t)=\eta(\xi)$ with $\xi=x+c t$ with positive wave speed $c>0$. Show that η satisfies

$$
\begin{equation*}
-\eta_{\xi \xi}+\frac{1}{2} \eta^{2}+c \eta=\text { constant } . \tag{6}
\end{equation*}
$$

(b) Take $a=-1, c>0$ and constant $=0$. Show that there is a solitary wave solution $\eta(\xi)$ of (6) with $\eta(\xi) \rightarrow 0$ as $\xi \rightarrow \pm \infty$. Give an explicit expression for $\eta(\xi)$. How is this solitary wave different from the classical KdV solitary wave where $a(x):=+1$?
(c) Consider (5) with $a(x)$ a given smooth function which is not identically zero and let $M(x, t):=u(x, t)$ and $Q(x, t)=\frac{1}{2} u^{2}+a(x) u_{x x}$. Show that

$$
M_{t}+Q_{x}=R_{1}(x, t),
$$

where $R_{1}(x, t)$ is not zero when $a(x)$ is nonconstant, even when $u(x, t)$ satisfies (5). Give an expression for $R_{1}(x, t)$.
(d) Similar to part (c) show that the momentum conservation law for (5) is perturbed to

$$
I_{t}+S_{x}=R_{2}(x, t), \quad I(x, t)=\frac{1}{2} u(x, t)^{2},
$$

when $u(x, t)$ is a solution of (5). Give expressions for $S(x, t)$ and $R_{2}(x, t)$.

Question 5

(Dispersion properties of interfacial waves)
Consider a fluid configuration with two layers of fluid with different densities and irrotational flow. The lower layer has density ρ_{1} and extends from $y=0$ to $y=h$. The upper layer has density ρ_{2} and extends from $y=h$ to $y=+\infty$.

The governing equation and boundary conditions are

$$
\begin{array}{ll}
\Delta \phi_{1}=0 & \text { for } 0<y<h, \quad \frac{\partial \phi_{1}}{\partial y}=0 \text { at } y=0, \\
\Delta \phi_{2}=0 & \text { for } h<y<+\infty, \quad \frac{\partial \phi_{2}}{\partial y} \rightarrow 0 \text { as } y \rightarrow+\infty
\end{array}
$$

where Δ is the Laplacian. The boundary conditions at the interface $y=h$ are

$$
\frac{\partial \eta}{\partial t}=\frac{\partial \phi_{1}}{\partial y}, \quad \frac{\partial \phi_{1}}{\partial y}=\frac{\partial \phi_{2}}{\partial y}, \quad \rho_{1} \frac{\partial \phi_{1}}{\partial t}-\rho_{2} \frac{\partial \phi_{2}}{\partial t}+\left(\rho_{1}-\rho_{2}\right) g \eta=0
$$

where g is the positive gravitational constant.
(a) Consider normal mode solutions of the form $\eta(x, t)=A \mathrm{e}^{\mathrm{i}(k x-\omega t)}+c . c$. and
$\phi_{1}(x, y, t)=B_{1}(y) \mathrm{e}^{\mathrm{i}(k x-\omega t)}+c . c . \quad$ and $\quad \phi_{2}(x, y, t)=B_{2}(y) \mathrm{e}^{\mathrm{i}(k x-\omega t)}+c . c .$,
where A is a complex constant. Determine expressions for $B_{1}(y)$ and $B_{2}(y)$ satisfying the Laplace equation in interior and the boundary conditions at $y=0$ and $y \rightarrow \infty$.
(b) Using the boundary conditions at $y=h$ determine a relationship between $B_{1}(h)$ and A and $B_{2}(h)$ and A.
(c) Show that the dispersion relation for the system is

$$
\omega^{2}=\frac{\left(\rho_{1}-\rho_{2}\right) g k \tanh (k h)}{\rho_{1}+\rho_{2} \tanh (k h)} .
$$

(d) Suppose $k>0$ and $\rho_{1}<\rho_{2}$. What does this mean physically? Using the dispersion relation as a guide, discuss the implication for the time evolution.

