UNIVERSITY OF SURREY

Faculty of Engineering and Physical Sciences
 Department of Mathematics

M.Math Undergraduate Programme in Mathematical Studies
 - Examination -
 MMath Module MSM.TWW - THEORY OF WATER WAVES

Attempt FOUR questions.
If any candidate attempts more than FOUR questions, only the best FOUR solutions will be taken into account.

Question 1

(Linear sloshing with surface tension)
Consider the irrotational linear 2D water-wave problem in finite depth - bewteen two fixed walls - with both gravitational and surface tension forces acting on the fluid.

The velocity potential $\phi(x, y, t)$ is required to satisfy Laplace's equation in the fluid interior and

$$
\begin{gathered}
\phi_{y}=0 \quad \text { at } y=-h, \\
\phi_{x}=0 \quad \text { at } x=0 \quad \text { and } \quad x=L .
\end{gathered}
$$

At the free surface the boundary conditions are

$$
\eta_{t}=\phi_{y} \quad \text { and } \quad \phi_{t}+g \eta-\tau \eta_{x x}=0
$$

where $\tau>0$ is the coefficient of surface tension.
(a) Consider solutions of the form

$$
\eta(x, t)=A(x) \mathrm{e}^{-\mathrm{i} \omega t}+\mathrm{c} . \mathrm{c} . \quad \text { and } \quad \phi(x, y, t)=B(x) \cosh k(y+h) \mathrm{e}^{-\mathrm{i} \omega t}+\mathrm{c} . \mathrm{c} .
$$

Find an expression for $B(x)$ and show that the boundary conditions require $\frac{k L}{\pi}$ to be an integer.
(b) Find a relationship between $A(x)$ and $B(x)$.
(c) Use the free surface boundary conditions to find the infinite set of frequencies ω_{n}^{2} for sloshing.
(d) Show that, in the limit as $h \rightarrow \infty$, the set of frequencies are

$$
\omega_{n}^{2}=g \frac{n \pi}{L}+\tau \frac{n^{3} \pi^{3}}{L^{3}}
$$

(e) For the case $h \rightarrow \infty$ show that there exists values of g, L and τ where resonance occurs: $\omega_{2}=2 \omega_{1}$.

Question 2

(The Kadomtsev-Petviashvili equation)
Consider the KP equation which is a generalization of the KdV equation

$$
\begin{equation*}
u_{t}+u u_{x}+u_{x x x}+v_{y}=0 \quad u_{y}=v_{x} . \tag{1}
\end{equation*}
$$

(a) Consider the linearized version

$$
u_{t}+u_{0} u_{x}+u_{x x x}+v_{y}=0 \quad u_{y}=v_{x}
$$

where u_{0} is a constant. Taking solutions of the form

$$
(u(x, y, t), v(x, y, t))=(\widehat{u}, \widehat{v}) \mathrm{e}^{\mathrm{i}(k x+\ell y-\omega t)}+\text { c.c. },
$$

with $k \neq 0$, find the dispersion relation.
(b) Consider the nonlinear equation and assume a form for the solution

$$
u(x, y, t)=\widehat{u}(\xi), \quad \xi=x-c t+\ell y
$$

for some $c>0$ and $\ell>0$. Show that there exists a solution of the form

$$
\widehat{v}(\xi)=\ell \widehat{u}(\xi), \quad \widehat{u}(\xi)=A \operatorname{sech}^{2}(B \xi)
$$

and find expressions for A and B.
(c) What condition does c need to satisfy for existence of the solitary wave solutions found in part (b)?
(d) The KP equation has conservation law for momentum of the form

$$
I_{t}+S_{x}+F_{y}=0, \quad \text { with } \quad I=\frac{1}{2} u^{2},
$$

when u satisfies KP. Find expressions for the fluxes S and F.

Question 3

(Wave refraction)
Consider the steady propagation of waves in shallow water governed by the ray equations. The graph of a ray is given by $(X, Y(X))$ with $Y(X)$ satisfying

$$
\begin{equation*}
\frac{d}{d X}\left(\frac{\sigma Y_{X}}{\sqrt{\left(1+Y_{X}^{2}\right)}}\right)-\sigma_{Y} \sqrt{\left(1+Y_{X}^{2}\right)}=0 . \tag{2}
\end{equation*}
$$

where $D(X, Y)$ is determined by bottom topography, and $\sigma(X, Y)$ is determined from the equation

$$
\left(g \sigma(X, Y)+\tau \sigma(X, Y)^{3}\right) \tanh (\sigma(X, Y) D(X, Y))=\text { constant }
$$

where $\tau>0$ is the coefficient of surface tension.
(a) Suppose $\sigma_{Y}=0$. Derive Snell's Law, $\sigma(X) \sin \theta=$ constant, where $\theta=\tan ^{-1}\left(Y_{X}\right)$ with $0<\theta<\pi / 2$.
(b) In cylindrical polar coordinates, (r, θ), suppose the wave rays depend only on r. Then Fermat's integral becomes

$$
L(\theta)=\int_{r_{1}}^{r_{2}} \sigma(r) \sqrt{1+r^{2} \theta_{r}^{2}} \mathrm{~d} r
$$

where $\theta_{r}=\frac{d \theta}{d r}$. Show that the Euler-Lagrange equation associated with this integral leads to the following equation for θ_{r}

$$
\left(\frac{d \theta}{d r}\right)^{2}=\frac{K^{2}}{r^{2}\left(\sigma^{2} r^{2}-K^{2}\right)}
$$

where K is a constant.
(c) By defining an angle α

$$
\sin \alpha=\frac{r \theta_{r}}{\sqrt{1+r^{2} \theta_{r}^{2}}},
$$

derive a form of Snell's law in polar coordinates.

Question 4

(Conservation of wave action for modified KdV)
Consider the modified ${ }^{1} \mathrm{KdV}$ equation in standard form

$$
\begin{equation*}
u_{t}+a u_{x}+\varepsilon u^{2} u_{x}+u_{x x x}=0, \tag{3}
\end{equation*}
$$

where a is a constant and ε is a small parameter.
(a) For the linear equation $u_{t}+a u_{x}+u_{x x x}=0$, determine the dispersion relation and group velocity for normal-mode solutions: $u(x, t)=$ $A \mathrm{e}^{\mathrm{i}(k x-\omega t)}+c . c$.
(b) Let $X=\varepsilon x$ and $T=\varepsilon t$ and define a phase by $\theta_{x}=k(X, T)$ and $\theta_{t}=$ $-\omega(X, T)$. Using the chain rule:

$$
\frac{\partial}{\partial t}=-\omega \frac{\partial}{\partial \theta}+\varepsilon \frac{\partial}{\partial T}, \quad \frac{\partial}{\partial x}=k \frac{\partial}{\partial \theta}+\varepsilon \frac{\partial}{\partial X},
$$

transform the PDE into an equation for $u(\theta, X, T, \varepsilon)$.
(c) Let

$$
u(\theta, X, T, \varepsilon)=u_{0}(\theta, X, T)+\varepsilon u_{1}(\theta, X, T)+\cdots,
$$

and take $u_{0}=A(X, T) \mathrm{e}^{\mathrm{i} \theta}+\overline{A(X, T)} \mathrm{e}^{-\mathrm{i} \theta}$ By requiring u_{1} to be $2 \pi-$ periodic in θ, show that the solvability condition requires $A(X, T)$ to satisfy

$$
\begin{equation*}
A_{T}+c_{g} A_{X}-3 k k_{X} A+\mathrm{i} k|A|^{2} A=0 \tag{4}
\end{equation*}
$$

(d) Show that conservation of wave action

$$
\frac{\partial}{\partial T}\left(|A|^{2}\right)+\frac{\partial}{\partial X}\left(c_{g}|A|^{2}\right)=0
$$

follows from (4).

[^0]
Question 5

(The Benjamin-Bona-Mahoney equation)
The BBM equation is a model equation for shallow water waves of the form

$$
\begin{equation*}
u_{t}+u u_{x}-\alpha(x)^{2} u_{x x t}=0, \tag{5}
\end{equation*}
$$

where α is a given nonzero function of x.
(a) Suppose α is constant, say $\alpha:=\alpha_{0}$. Find the dispersion relation of the linearized version

$$
\begin{equation*}
u_{t}+u_{0} u_{x}-\alpha_{0}^{2} u_{x x t}=0, \tag{4}
\end{equation*}
$$

for normal-mode solutions of the form $u(x, t)=\widehat{u} \mathrm{e}^{\mathrm{i}(k x-\omega t)}+\mathrm{c} . \mathrm{c}$. .
(b) Show that the group velocity associated with the linear waves in part (a) is negative for large k and find the value, k_{0}, such that $c_{g}<0$ for $k>k_{0}$.
(c) Consider the nonlinear problem with α constant. Show that there exists solitary wave solutions of the form

$$
u(x, t)=A \operatorname{sech}^{2}(B \xi), \quad \xi=x-c t, \quad \text { taking } \quad c>0
$$

and find expressions for A and B.
(d) For the solitary waves in part (c), does the speed increase or decrease with increasing amplitude?
(e) Now, consider the case where $\alpha(x)$ varies with x. Show that solutions of BBM have the following perturbed conservation law

$$
E_{t}+F_{x}=\alpha^{\prime}(x) R(x, t), \quad \text { with } \quad E=\frac{1}{2} u^{2}+\frac{1}{2} \alpha(x)^{2} u_{x}^{2},
$$

and find expressioins for F and R.

[^0]: 1 "Modified" means that the nonlinearity is cubic rather than quadratic.

