
MATM106 Theory of Water Waves Semester 1, Autumn 2010

— Guide to solutions for the assessed coursework —

Q1. Consider the KdV equation in the form

ut + uux + uxxx = 0 .

The conservation laws for mass and momentum are

Mt + Qx = 0 , M = u , Q = 1
2u2 + uxx

It + Sx = 0 , I = 1
2u2 , S = −1

2u2
x + uuxx + 1

3u3 .

Show that there also exists a conservation law of the form

∂

∂t
(xM − tI) +

∂

∂x
(Flux) = 0 .

Determine an expression for Flux .

S1. Differentiating

∂
∂t

(xM − tI) = xMt − tIt − I

= −xQx + tSx − I

= −(xQ)x + Q + (tS)x − I

= −(xQ− tS)x + Q− I .

But Q− I = uxx and so

∂

∂t
(xM − tI) = −(xQ− tS)x + uxx ,

giving
Flux = xQ− tS − ux .

Q2. Consider the nonlinear wave equation

utt + uxx + uxxxx + u + au2 + bu3 = 0 , (1)

for the scalar-valued function u(x, t) .

• Find the dispersion for the linear problem (a = b = 0),

• Let u(x, t) = U(θ) , with θ = kx− ωt . Reduce the PDE (1) to an ODE for U(θ) , with ω

and k appearing in the equation as coefficients.

Take k > 0 to be fixed, and expand U(θ) and ω in a Taylor series in a small parameter ε ,

U(θ) = εU1(θ) + ε2U2(θ) + ε3U3(θ) + · · ·

ω = ω0 + εω1 + ε2ω2 + · · · .

By requiring U(θ) to be a 2π−periodic function of θ ,
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• solve for ω0(k) ,

• show that ω1 = 0,

• determine ω2 as a function of a and b , and

• determine the particular solution for U2(θ) , when

U1(θ) = Aeiθ + Ae−iθ ,

where A is a complex constant of order unity.

S2. The dispersion relation for the linear problem is obtained by substituting a normal
mode solution u = Aei(kx−ωt) into the linear equation

0 = utt + uxx + uxxxx + u = (−ω2 − k2 + k4 + 1)Aei(kx−ωt) ,

giving
ω2 = 1− k2 + k4 .

Let u(x, t) = U(θ) with θ = kx− ωt . Substitution into (1) gives

0 = utt + uxx + uxxxx + u + au2 + bu3 = ω2U ′′ + k2U ′′ + k4U ′′′′ + U + aU2 + bU3 .

Take k > 0 to be fixed and expand U(θ) and ω in a Taylor series in a small parameter
ε ,

U(θ) = εU1(θ) + ε2U2(θ) + ε3U3(θ) + · · ·
ω = ω0 + εω1 + ε2ω2 + · · · .

Substitution into the ODE governing U ,

(ω0 + εω1 + ε2ω2 + · · · )2(εU1
′′ + ε2U2

′′ + ε3U3
′′ + · · · )

+k2(εU1
′′ + ε2U2

′′ + ε3U3
′′ + · · · )

+k4(εU1
′′′′ + ε2U2

′′′′ + ε3U3
′′′′ + · · · ) + εU1 + ε2U2 + ε3U3 + · · ·

+a(εU1 + ε2U2 + ε3U3 + · · · )2 + b(εU1 + ε2U2 + ε3U3 + · · · )3

Define
Lφ = (ω2

0 + k2)φ′′ + k4φ′′′′ + φ .

Then the equations proportional to εn , for n = 1, 2, 3 are

LU1 = 0

LU2 = −2ω0ω1U1
′′ − aU2

1

LU3 = −ω2
1U1

′′ − 2ω0ω1U2
′′ − 2ω0ω2U1

′′ − 2aU1U2 − bU3
1 .

Using the proposed form for U1(θ) ,

0 = LU1 = (−ω2
0 − k2 + k4 + 1)U1 ,

showing that ω0(k) is determined by the dispersion relation of the linear problem

ω0(k) = ±
√

1− k2 + k4 . (2)
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Now consider the equation for U2 with U1 substituted into the right-hand side

LU2 = 2ω0ω1(Aeiθ + Ae−iθ)− a(A2e2iθ + 2|A|2 + A
2
e−2iθ) . (3)

There is a homogeneous solution Uh
2 and a particular solution Up

2 . The homogeneous
solution has the same form as U1 ,

Uh
2 = A21e

iθ + A21e
−iθ ,

with A21 an arbitrary complex constant.
The particular solution has the form

Up
2 = A22θe

iθ + A22θe
−iθ + A23|A|2 + A24e

2iθ + A24e
−2iθ .

Substitution then gives

L(A22θe
iθ) = 2i(ω2

0 + k2 − 2k4)A22e
iθ = 2ω0ω1Aeiθ ,

and so

A22 = −i
ω0ω1A

ω2
0 + k2 − 2k4

= −i
ω0ω1A

(1− k4)
.

Similarly,
A23 = −2a ,

and

A24 = − aA2

1− 4ω2
0 − 4k2 + 16k4

=
a

3

A2

(1− 4k4)
.

However, the requirement that Uj(θ) be 2π−periodic in θ forces A22 to be zero, which
can only be satisfied if ω1 = 0. In summary the general solution for U2(θ) is

U2 = A21e
iθ + A21e

−iθ − 2a|A|2 +
a

3

1

(1− 4k4)
(A2e2iθ + A

2
e−2iθ) .

With A21 an arbitrary complex constant.
Now we are in a position to solve the equation for U3 . Substituting for U1 and U2

into the equation for U3 gives

LU3 = 2ω0ω2(Aeiθ + Ae−iθ)

−2a(Aeiθ + Ae−iθ)

(
A21e

iθ + A21e
−iθ − 2a|A|2 + a

3
1

(1−4k4)
(A2e2iθ + A

2
e−2iθ)

)
−b

(
A3e3iθ + 3|A|2Aeiθ + 3|A|2Ae−iθ + A

3
e−3iθ

)
.

To determine ω2 only the terms on the right-hand side proportional to eiθ need to be
retained, giving

LU3 =

(
2ω0ω2 + 4a2|A|2 − 2

3
a2 1

(1− 4k4)
|A|2 − 3b|A|2

)
Aeiθ + · · · .

The term on the right-hand side generates a particular solution for U3 that is not
2π−periodic. Setting it to zero then gives an expression for ω2

ω2 =
1

2ω0

(
− 4a2 +

2

3
a2 1

(1− 4k4)
+ 3b

)
|A|2 (4)
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Hence, the frequency has the form

ω = ω0 + ω2ε
2 + · · · ,

with ω0 one of the roots of (2) and ω2 given in (4).

Q3. Consider the NLS equation in the form

iAt + Axx + |A|2A = 0 ,

for the complex-value function A(x, t) . Show that there exists a solitary wave solution of the
form

A(x, t) = eiωtA0 sech(Bx) ,

with ω , B and A0 real parameters. Find expressions for B and A0 as functions of ω .

S3. Starting with the assumed form for A(x, t) ,

At = iωA

Ax = −B tanh(Bx) A

Axx = B2A− 2B2sech2(Bx) A

|A|2 = A2
0 sech2(Bx) .

Substituting into the NLS equation,

0 = iAt + Axx + |A|2A
= −ωA + B2A− 2B2 sech2(Bx)A + A2

0 sech2(Bx) A

= (B2 − ω)A + (A2
0 − 2B2) sech2(Bx)A .

Hence there exists a solution of NLS of the form proposed if

B = ±
√

ω and A0 = ±
√

2ω ,

with the additional requirement that ω > 0. There are four solutions depending on the
sign choices

A+
±(x, t) =

√
2ω sech(±

√
ωx) and A−

±(x, t) = −
√

2ω sech(±
√

ωx) ,

but they are related by A−
±(x, t) = −A+

±(x, t) , and the two sign choices for the argument
are obtained by reversing the sign of x :

A±
−(x, t) = A±

+(−x, t) .

Q4. A weakly nonlinear dispersive wave is described by the equation

utt + uxx + uxxxx + u = εu3 . (5)

Introduce variables X = εx , T = εt and θ where

θx = k(X, T ) and θt = −ω(X, T ) ⇒ kT + ωX = 0 .
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Seek a solution of (5) in the form

u = u0(θ, X, T ) + εu1(θ, X, T ) + · · · as ε → 0 .

Write u0 = A(X, T )eiθ + c.c. and obtain the equation for A(X, T ) at first order which ensures
that u1 is periodic in θ .

Using the dispersion relation of the linearised problem, simplify the solvability condition in
order to show that

AT + ω′(k)AX =
3i
2ω

A|A|2 − 1
2 kXω′′(k)A . (6)

From (6) derive the following form of conservation of wave action for (5),

∂

∂T

(
|A|2

)
+

∂

∂X

(
cg|A|2

)
= 0 .

S4. With new variables X , T and θ , the derivatives transform to

∂

∂x
= k

∂

∂θ
+ ε

∂

∂X
and

∂

∂t
= −ω

∂

∂θ
+ ε

∂

∂T
.

Hence
utt = ω2uθθ − εωT uθ − 2εωuθT + ε2uTT

uxx = k2uθθ + εkXuθ + 2εkuθX + ε2uXX

uxxxx = k4uθθθθ + 4εk3uθθθX + 6εk2kXuθθθ + O(ε2) .

Substitute into the governing equation,

(ω2 + k2)uθθ + k4uθθθθ + u− εu3

−ε
(
ωT uθ + 2ωuθT − kXuθ − 2kuθX

)
+ε

(
4k3uθθθX + 6k2kXuθθθ

)
+ O(ε2) = 0 .

(7)

Now expand u in a perturbation series in ε ,

u(θ,X, T, ε) = u0(θ,X, T ) + εu1(θ,X, T ) + O(ε2) .

Substitute into (7) and then equate terms proportional to like powers of ε to zero. The
equation proportional to ε0 is

Lu0 = 0 ,

where

L := (ω2 + k2)
∂2

∂θ2
+ k4 ∂4

∂θ4
+ 1 .

At first order in ε ,

−Lu1 = −ωT
∂u0

∂θ
− 2ω

∂2u0

∂θ∂T
+ kX

∂u0

∂θ
+ 2k

∂2u0

∂θ∂X

+4k3 ∂4u0

∂θ3∂X
+ 6k2kX

∂3u0

∂θ3
− u3

0 .

The solution for u0 is a normal mode solution

u0(θ, X, T ) = A(X, T )eiθ + c.c. ,
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where A(X, T ) is to be determined. Lu0 = 0 then gives

0 = Lu0 = (−ω2 − k2 + k4 + 1)Aeiθ + c.c. .

Hence the dispersion relation is

ω2 = 1− k2 + k4 .

Substituting u0 into the right-hand side of the u1 equation

−Lu1 = eiθ
(
−iωT A− 2iωAT + ikXA + 2ikAX − 4ik3AX − 6ik2kXA

)
+c.c.−(Aeiθ+Aeiθ)3 .

In order for u1 to be a 2π−periodic function of θ , we require the term proportional to
eiθ to be zero

−iωT A− 2iωAT + ikXA + 2ikAX − 4ik3AX − 6ik2kXA− 3|A|2A = 0 . (8)

This equation can be simplified using the dispersion relation

2ωω′(k) = −2k + 4k3 and 2ωω′′(k) + 2ω′ω′ = −2 + 12k2 .

Hence (8) simplifies to

ωT A + 2ωAT + 2ωω′(k)AX + (ωω′′ + ω′ω′)kXA− 3i|A|2A = 0 . (9)

Now use the property

ωX + kT = 0 ⇒ kT + ω′(k)kX = 0 ,

and so
ωT + ω′ω′kX = ωT + ω′(−kT ) = ωT − ωT = 0 .

Hence (9) simplies to

2ωAT + 2ωω′(k)AX + ωω′′kXA− 3i|A|2A = 0 .

Dividing by 2ω then gives the required form

AT + ω′(k)AX =
3i

2ω
|A|2A− 1

2
ω′′kXA . (10)

To determine conservation of wave action multiply (10) by A ,

AAT + ω′(k)AAX =
3i

2ω
|A|4 − 1

2
ω′′kX |A|2 .

The complex conjugate of this equation is

AAT + ω′(k)AAX = − 3i

2ω
|A|4 − 1

2
ω′′kX |A|2 .

Adding these two equations

AAT + AAT + ω′(k)(AAX + AAX) = −ω′′(k)kX |A|2 ,

or
∂

∂T
|A|2 + ω′(k)

∂

∂X
|A|2 + ω′′(k)kX |A|2 = 0 .

The second and third terms combine to give

∂

∂T

(
|A|2

)
+

∂

∂X

(
cg|A|2

)
= 0 ,

which is the required form of the conservation of wave action.
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