— Guide to solutions for the assessed coursework -

Q1. Consider the KdV equation in the form

$$
u_{t}+u u_{x}+u_{x x x}=0
$$

The conservation laws for mass and momentum are

$$
\begin{aligned}
M_{t}+Q_{x} & =0, \quad M=u, \quad Q=\frac{1}{2} u^{2}+u_{x x} \\
I_{t}+S_{x} & =0, \quad I=\frac{1}{2} u^{2}, \quad S=-\frac{1}{2} u_{x}^{2}+u u_{x x}+\frac{1}{3} u^{3} .
\end{aligned}
$$

Show that there also exists a conservation law of the form

$$
\frac{\partial}{\partial t}(x M-t I)+\frac{\partial}{\partial x}(\text { Flux })=0 .
$$

Determine an expression for Flux.
S1. Differentiating

$$
\begin{aligned}
\frac{\partial}{\partial t}(x M-t I) & =x M_{t}-t I_{t}-I \\
& =-x Q_{x}+t S_{x}-I \\
& =-(x Q)_{x}+Q+(t S)_{x}-I \\
& =-(x Q-t S)_{x}+Q-I
\end{aligned}
$$

But $Q-I=u_{x x}$ and so

$$
\frac{\partial}{\partial t}(x M-t I)=-(x Q-t S)_{x}+u_{x x}
$$

giving

$$
\text { Flux }=x Q-t S-u_{x} .
$$

Q2. Consider the nonlinear wave equation

$$
\begin{equation*}
u_{t t}+u_{x x}+u_{x x x x}+u+a u^{2}+b u^{3}=0 \tag{1}
\end{equation*}
$$

for the scalar-valued function $u(x, t)$.

- Find the dispersion for the linear problem $(a=b=0)$,
- Let $u(x, t)=U(\theta)$, with $\theta=k x-\omega t$. Reduce the PDE (1) to an ODE for $U(\theta)$, with ω and k appearing in the equation as coefficients.

Take $k>0$ to be fixed, and expand $U(\theta)$ and ω in a Taylor series in a small parameter ε,

$$
\begin{aligned}
U(\theta) & =\varepsilon U_{1}(\theta)+\varepsilon^{2} U_{2}(\theta)+\varepsilon^{3} U_{3}(\theta)+\cdots \\
\omega & =\omega_{0}+\varepsilon \omega_{1}+\varepsilon^{2} \omega_{2}+\cdots .
\end{aligned}
$$

By requiring $U(\theta)$ to be a 2π - periodic function of θ,

- solve for $\omega_{0}(k)$,
- show that $\omega_{1}=0$,
- determine ω_{2} as a function of a and b, and
- determine the particular solution for $U_{2}(\theta)$, when

$$
U_{1}(\theta)=A \mathrm{e}^{\mathrm{i} \theta}+\bar{A} \mathrm{e}^{-\mathrm{i} \theta},
$$

where A is a complex constant of order unity.
S2. The dispersion relation for the linear problem is obtained by substituting a normal mode solution $u=A \mathrm{e}^{\mathrm{i}(k x-\omega t)}$ into the linear equation

$$
0=u_{t t}+u_{x x}+u_{x x x x}+u=\left(-\omega^{2}-k^{2}+k^{4}+1\right) A \mathrm{e}^{\mathrm{i}(k x-\omega t)},
$$

giving

$$
\omega^{2}=1-k^{2}+k^{4} .
$$

Let $u(x, t)=U(\theta)$ with $\theta=k x-\omega t$. Substitution into (1) gives

$$
0=u_{t t}+u_{x x}+u_{x x x x}+u+a u^{2}+b u^{3}=\omega^{2} U^{\prime \prime}+k^{2} U^{\prime \prime}+k^{4} U^{\prime \prime \prime \prime}+U+a U^{2}+b U^{3} .
$$

Take $k>0$ to be fixed and expand $U(\theta)$ and ω in a Taylor series in a small parameter ε,

$$
\begin{aligned}
U(\theta) & =\varepsilon U_{1}(\theta)+\varepsilon^{2} U_{2}(\theta)+\varepsilon^{3} U_{3}(\theta)+\cdots \\
\omega & =\omega_{0}+\varepsilon \omega_{1}+\varepsilon^{2} \omega_{2}+\cdots
\end{aligned}
$$

Substitution into the ODE governing U,

$$
\begin{aligned}
& \left(\omega_{0}+\varepsilon \omega_{1}+\varepsilon^{2} \omega_{2}+\cdots\right)^{2}\left(\varepsilon U_{1}^{\prime \prime}+\varepsilon^{2} U_{2}^{\prime \prime}+\varepsilon^{3} U_{3}^{\prime \prime}+\cdots\right) \\
& \quad+k^{2}\left(\varepsilon U_{1}^{\prime \prime}+\varepsilon^{2} U_{2}^{\prime \prime}+\varepsilon^{3} U_{3}^{\prime \prime}+\cdots\right) \\
& \quad+k^{4}\left(\varepsilon U_{1}^{\prime \prime \prime \prime}+\varepsilon^{2} U_{2}^{\prime \prime \prime \prime}+\varepsilon^{3} U_{3}^{\prime \prime \prime \prime}+\cdots\right)+\varepsilon U_{1}+\varepsilon^{2} U_{2}+\varepsilon^{3} U_{3}+\cdots \\
& \quad+a\left(\varepsilon U_{1}+\varepsilon^{2} U_{2}+\varepsilon^{3} U_{3}+\cdots\right)^{2}+b\left(\varepsilon U_{1}+\varepsilon^{2} U_{2}+\varepsilon^{3} U_{3}+\cdots\right)^{3}
\end{aligned}
$$

Define

$$
\mathbf{L} \phi=\left(\omega_{0}^{2}+k^{2}\right) \phi^{\prime \prime}+k^{4} \phi^{\prime \prime \prime \prime}+\phi .
$$

Then the equations proportional to ε^{n}, for $n=1,2,3$ are

$$
\begin{aligned}
& \mathbf{L} U_{1}=0 \\
& \mathbf{L} U_{2}=-2 \omega_{0} \omega_{1} U_{1}^{\prime \prime}-a U_{1}^{2} \\
& \mathbf{L} U_{3}=-\omega_{1}^{2} U_{1}^{\prime \prime}-2 \omega_{0} \omega_{1} U_{2}^{\prime \prime}-2 \omega_{0} \omega_{2} U_{1}^{\prime \prime}-2 a U_{1} U_{2}-b U_{1}^{3}
\end{aligned}
$$

Using the proposed form for $U_{1}(\theta)$,

$$
0=\mathbf{L} U_{1}=\left(-\omega_{0}^{2}-k^{2}+k^{4}+1\right) U_{1},
$$

showing that $\omega_{0}(k)$ is determined by the dispersion relation of the linear problem

$$
\begin{equation*}
\omega_{0}(k)= \pm \sqrt{1-k^{2}+k^{4}} \tag{2}
\end{equation*}
$$

Now consider the equation for U_{2} with U_{1} substituted into the right-hand side

$$
\begin{equation*}
\mathbf{L} U_{2}=2 \omega_{0} \omega_{1}\left(A \mathrm{e}^{\mathrm{i} \theta}+\bar{A} \mathrm{e}^{-\mathrm{i} \theta}\right)-a\left(A^{2} \mathrm{e}^{2 \mathrm{i} \theta}+2|A|^{2}+\bar{A}^{2} \mathrm{e}^{-2 \mathrm{i} \theta}\right) . \tag{3}
\end{equation*}
$$

There is a homogeneous solution U_{2}^{h} and a particular solution U_{2}^{p}. The homogeneous solution has the same form as U_{1},

$$
U_{2}^{h}=A_{21} \mathrm{e}^{\mathrm{i} \theta}+\overline{A_{21}} \mathrm{e}^{-\mathrm{i} \theta}
$$

with A_{21} an arbitrary complex constant.
The particular solution has the form

$$
U_{2}^{p}=A_{22} \theta \mathrm{e}^{\mathrm{i} \theta}+\overline{A_{22}} \theta \mathrm{e}^{-\mathrm{i} \theta}+A_{23}|A|^{2}+A_{24} \mathrm{e}^{2 \mathrm{i} \theta}+\overline{A_{24}} \mathrm{e}^{-2 \mathrm{i} \theta} .
$$

Substitution then gives

$$
\mathbf{L}\left(A_{22} \theta \mathrm{e}^{\mathrm{i} \theta}\right)=2 \mathrm{i}\left(\omega_{0}^{2}+k^{2}-2 k^{4}\right) A_{22} \mathrm{e}^{\mathrm{i} \theta}=2 \omega_{0} \omega_{1} A \mathrm{e}^{\mathrm{i} \theta},
$$

and so

$$
A_{22}=-\mathrm{i} \frac{\omega_{0} \omega_{1} A}{\omega_{0}^{2}+k^{2}-2 k^{4}}=-\mathrm{i} \frac{\omega_{0} \omega_{1} A}{\left(1-k^{4}\right)} .
$$

Similarly,

$$
A_{23}=-2 a,
$$

and

$$
A_{24}=-\frac{a A^{2}}{1-4 \omega_{0}^{2}-4 k^{2}+16 k^{4}}=\frac{a}{3} \frac{A^{2}}{\left(1-4 k^{4}\right)} .
$$

However, the requirement that $U_{j}(\theta)$ be 2π-periodic in θ forces A_{22} to be zero, which can only be satisfied if $\omega_{1}=0$. In summary the general solution for $U_{2}(\theta)$ is

$$
U_{2}=A_{21} \mathrm{e}^{\mathrm{i} \theta}+\overline{A_{21}} \mathrm{e}^{-\mathrm{i} \theta}-2 a|A|^{2}+\frac{a}{3} \frac{1}{\left(1-4 k^{4}\right)}\left(A^{2} \mathrm{e}^{2 \mathrm{i} \theta}+\bar{A}^{2} \mathrm{e}^{-2 \mathrm{i} \theta}\right) .
$$

With A_{21} an arbitrary complex constant.
Now we are in a position to solve the equation for U_{3}. Substituting for U_{1} and U_{2} into the equation for U_{3} gives

$$
\begin{aligned}
\mathbf{L} U_{3}= & 2 \omega_{0} \omega_{2}\left(A \mathrm{e}^{\mathrm{i} \theta}+\bar{A} \mathrm{e}^{-\mathrm{i} \theta}\right) \\
& -2 a\left(A \mathrm{e}^{\mathrm{i} \theta}+\bar{A} \mathrm{e}^{-\mathrm{i} \theta}\right)\left(A_{21} \mathrm{e}^{\mathrm{i} \theta}+\overline{A_{21}} \mathrm{e}^{-\mathrm{i} \theta}-2 a|A|^{2}+\frac{a}{3} \frac{1}{\left(1-4 k^{4}\right)}\left(A^{2} \mathrm{e}^{2 \mathrm{i} \theta}+\bar{A}^{2} \mathrm{e}^{-2 \mathrm{i} \theta}\right)\right) \\
& -b\left(A^{3} \mathrm{e}^{3 \mathrm{i} \theta}+3|A|^{2} A \mathrm{e}^{\mathrm{i} \theta}+3|A|^{2} \bar{A} \mathrm{e}^{-\mathrm{i} \theta}+\bar{A}^{3} \mathrm{e}^{-3 \mathrm{i} \theta}\right) .
\end{aligned}
$$

To determine ω_{2} only the terms on the right-hand side proportional to $\mathrm{e}^{\mathrm{i} \theta}$ need to be retained, giving

$$
\mathbf{L} U_{3}=\left(2 \omega_{0} \omega_{2}+4 a^{2}|A|^{2}-\frac{2}{3} a^{2} \frac{1}{\left(1-4 k^{4}\right)}|A|^{2}-3 b|A|^{2}\right) A \mathrm{e}^{\mathrm{i} \theta}+\cdots
$$

The term on the right-hand side generates a particular solution for U_{3} that is not 2π-periodic. Setting it to zero then gives an expression for ω_{2}

$$
\begin{equation*}
\omega_{2}=\frac{1}{2 \omega_{0}}\left(-4 a^{2}+\frac{2}{3} a^{2} \frac{1}{\left(1-4 k^{4}\right)}+3 b\right)|A|^{2} \tag{4}
\end{equation*}
$$

Hence, the frequency has the form

$$
\omega=\omega_{0}+\omega_{2} \varepsilon^{2}+\cdots,
$$

with ω_{0} one of the roots of (2) and ω_{2} given in (4).
Q3. Consider the NLS equation in the form

$$
\mathrm{i} A_{t}+A_{x x}+|A|^{2} A=0,
$$

for the complex-value function $A(x, t)$. Show that there exists a solitary wave solution of the form

$$
A(x, t)=\mathrm{e}^{\mathrm{i} \omega t} A_{0} \operatorname{sech}(B x),
$$

with ω, B and A_{0} real parameters. Find expressions for B and A_{0} as functions of ω.
S3. Starting with the assumed form for $A(x, t)$,

$$
\begin{aligned}
A_{t} & =\mathrm{i} \omega A \\
A_{x} & =-B \tanh (B x) A \\
A_{x x} & =B^{2} A-2 B^{2} \operatorname{sech}^{2}(B x) A \\
|A|^{2} & =A_{0}^{2} \operatorname{sech}^{2}(B x)
\end{aligned}
$$

Substituting into the NLS equation,

$$
\begin{aligned}
0 & =\mathrm{i} A_{t}+A_{x x}+|A|^{2} A \\
& =-\omega A+B^{2} A-2 B^{2} \operatorname{sech}^{2}(B x) A+A_{0}^{2} \operatorname{sech}^{2}(B x) A \\
& =\left(B^{2}-\omega\right) A+\left(A_{0}^{2}-2 B^{2}\right) \operatorname{sech}^{2}(B x) A .
\end{aligned}
$$

Hence there exists a solution of NLS of the form proposed if

$$
B= \pm \sqrt{\omega} \quad \text { and } \quad A_{0}= \pm \sqrt{2 \omega}
$$

with the additional requirement that $\omega>0$. There are four solutions depending on the sign choices

$$
A_{ \pm}^{+}(x, t)=\sqrt{2 \omega} \operatorname{sech}(\pm \sqrt{\omega} x) \quad \text { and } \quad A_{ \pm}^{-}(x, t)=-\sqrt{2 \omega} \operatorname{sech}(\pm \sqrt{\omega} x)
$$

but they are related by $A_{ \pm}^{-}(x, t)=-A_{ \pm}^{+}(x, t)$, and the two sign choices for the argument are obtained by reversing the sign of x :

$$
A_{-}^{ \pm}(x, t)=A_{+}^{ \pm}(-x, t)
$$

Q4. A weakly nonlinear dispersive wave is described by the equation

$$
\begin{equation*}
u_{t t}+u_{x x}+u_{x x x x}+u=\varepsilon u^{3} . \tag{5}
\end{equation*}
$$

Introduce variables $X=\varepsilon x, T=\varepsilon t$ and θ where

$$
\theta_{x}=k(X, T) \quad \text { and } \quad \theta_{t}=-\omega(X, T) \Rightarrow k_{T}+\omega_{X}=0 .
$$

Seek a solution of (5) in the form

$$
u=u_{0}(\theta, X, T)+\varepsilon u_{1}(\theta, X, T)+\cdots \quad \text { as } \quad \varepsilon \rightarrow 0
$$

Write $u_{0}=A(X, T) \mathrm{e}^{\mathrm{i} \theta}+$ c.c. and obtain the equation for $A(X, T)$ at first order which ensures that u_{1} is periodic in θ.

Using the dispersion relation of the linearised problem, simplify the solvability condition in order to show that

$$
\begin{equation*}
A_{T}+\omega^{\prime}(k) A_{X}=\frac{3 \mathrm{i}}{2 \omega} A|A|^{2}-\frac{1}{2} k_{X} \omega^{\prime \prime}(k) A \tag{6}
\end{equation*}
$$

From (6) derive the following form of conservation of wave action for (5),

$$
\frac{\partial}{\partial T}\left(|A|^{2}\right)+\frac{\partial}{\partial X}\left(c_{g}|A|^{2}\right)=0
$$

S4. With new variables X, T and θ, the derivatives transform to

$$
\frac{\partial}{\partial x}=k \frac{\partial}{\partial \theta}+\varepsilon \frac{\partial}{\partial X} \quad \text { and } \quad \frac{\partial}{\partial t}=-\omega \frac{\partial}{\partial \theta}+\varepsilon \frac{\partial}{\partial T}
$$

Hence

$$
\begin{aligned}
u_{t t} & =\omega^{2} u_{\theta \theta}-\varepsilon \omega_{T} u_{\theta}-2 \varepsilon \omega u_{\theta T}+\varepsilon^{2} u_{T T} \\
u_{x x} & =k^{2} u_{\theta \theta}+\varepsilon k_{X} u_{\theta}+2 \varepsilon k u_{\theta X}+\varepsilon^{2} u_{X X} \\
u_{x x x x} & =k^{4} u_{\theta \theta \theta \theta}+4 \varepsilon k^{3} u_{\theta \theta \theta X}+6 \varepsilon k^{2} k_{X} u_{\theta \theta \theta}+\mathcal{O}\left(\varepsilon^{2}\right) .
\end{aligned}
$$

Substitute into the governing equation,

$$
\begin{align*}
& \left(\omega^{2}+k^{2}\right) u_{\theta \theta}+k^{4} u_{\theta \theta \theta \theta}+u-\varepsilon u^{3} \\
& \quad-\varepsilon\left(\omega_{T} u_{\theta}+2 \omega u_{\theta T}-k_{X} u_{\theta}-2 k u_{\theta X}\right) \tag{7}\\
& \quad+\varepsilon\left(4 k^{3} u_{\theta \theta \theta X}+6 k^{2} k_{X} u_{\theta \theta \theta}\right)+\mathcal{O}\left(\varepsilon^{2}\right)=0
\end{align*}
$$

Now expand u in a perturbation series in ε,

$$
u(\theta, X, T, \varepsilon)=u_{0}(\theta, X, T)+\varepsilon u_{1}(\theta, X, T)+\mathcal{O}\left(\varepsilon^{2}\right)
$$

Substitute into (7) and then equate terms proportional to like powers of ε to zero. The equation proportional to ε^{0} is

$$
\mathbf{L} u_{0}=0
$$

where

$$
\mathbf{L}:=\left(\omega^{2}+k^{2}\right) \frac{\partial^{2}}{\partial \theta^{2}}+k^{4} \frac{\partial^{4}}{\partial \theta^{4}}+1
$$

At first order in ε,

$$
\begin{array}{r}
-\mathbf{L} u_{1}=-\omega_{T} \frac{\partial u_{0}}{\partial \theta}-2 \omega \frac{\partial^{2} u_{0}}{\partial \theta \partial T}+k_{X} \frac{\partial u_{0}}{\partial \theta}+2 k \frac{\partial^{2} u_{0}}{\partial \theta \partial X} \\
+4 k^{3} \frac{\partial^{4} u_{0}}{\partial \theta^{3} \partial X}+6 k^{2} k_{X} \frac{\partial^{3} u_{0}}{\partial \theta^{3}}-u_{0}^{3}
\end{array}
$$

The solution for u_{0} is a normal mode solution

$$
u_{0}(\theta, X, T)=A(X, T) \mathrm{e}^{\mathrm{i} \theta}+c . c .
$$

where $A(X, T)$ is to be determined. $\mathbf{L} u_{0}=0$ then gives

$$
0=\mathbf{L} u_{0}=\left(-\omega^{2}-k^{2}+k^{4}+1\right) A \mathrm{e}^{\mathrm{i} \theta}+c . c . .
$$

Hence the dispersion relation is

$$
\omega^{2}=1-k^{2}+k^{4} .
$$

Substituting u_{0} into the right-hand side of the u_{1} equation
$-\mathbf{L} u_{1}=\mathrm{e}^{\mathrm{i} \theta}\left(-\mathrm{i} \omega_{T} A-2 \mathrm{i} \omega A_{T}+\mathrm{i} k_{X} A+2 \mathrm{i} k A_{X}-4 \mathrm{i} k^{3} A_{X}-6 \mathrm{i} k^{2} k_{X} A\right)+c . c .-\left(A \mathrm{e}^{\mathrm{i} \theta}+\bar{A} \mathrm{e}^{\mathrm{i} \theta}\right)^{3}$.
In order for u_{1} to be a 2π-periodic function of θ, we require the term proportional to $e^{\mathrm{i} \theta}$ to be zero

$$
\begin{equation*}
-\mathrm{i} \omega_{T} A-2 \mathrm{i} \omega A_{T}+\mathrm{i} k_{X} A+2 \mathrm{i} k A_{X}-4 \mathrm{i} k^{3} A_{X}-6 \mathrm{i} k^{2} k_{X} A-3|A|^{2} A=0 \tag{8}
\end{equation*}
$$

This equation can be simplified using the dispersion relation

$$
2 \omega \omega^{\prime}(k)=-2 k+4 k^{3} \quad \text { and } \quad 2 \omega \omega^{\prime \prime}(k)+2 \omega^{\prime} \omega^{\prime}=-2+12 k^{2} .
$$

Hence (8) simplifies to

$$
\begin{equation*}
\omega_{T} A+2 \omega A_{T}+2 \omega \omega^{\prime}(k) A_{X}+\left(\omega \omega^{\prime \prime}+\omega^{\prime} \omega^{\prime}\right) k_{X} A-3 \mathrm{i}|A|^{2} A=0 \tag{9}
\end{equation*}
$$

Now use the property

$$
\omega_{X}+k_{T}=0 \quad \Rightarrow \quad k_{T}+\omega^{\prime}(k) k_{X}=0
$$

and so

$$
\omega_{T}+\omega^{\prime} \omega^{\prime} k_{X}=\omega_{T}+\omega^{\prime}\left(-k_{T}\right)=\omega_{T}-\omega_{T}=0
$$

Hence (9) simplies to

$$
2 \omega A_{T}+2 \omega \omega^{\prime}(k) A_{X}+\omega \omega^{\prime \prime} k_{X} A-3 \mathrm{i}|A|^{2} A=0 .
$$

Dividing by 2ω then gives the required form

$$
\begin{equation*}
A_{T}+\omega^{\prime}(k) A_{X}=\frac{3 \mathrm{i}}{2 \omega}|A|^{2} A-\frac{1}{2} \omega^{\prime \prime} k_{X} A \tag{10}
\end{equation*}
$$

To determine conservation of wave action multiply (10) by \bar{A},

$$
\bar{A} A_{T}+\omega^{\prime}(k) \bar{A} A_{X}=\frac{3 \mathrm{i}}{2 \omega}|A|^{4}-\frac{1}{2} \omega^{\prime \prime} k_{X}|A|^{2} .
$$

The complex conjugate of this equation is

$$
A \bar{A}_{T}+\omega^{\prime}(k) A \bar{A}_{X}=-\frac{3 \mathrm{i}}{2 \omega}|A|^{4}-\frac{1}{2} \omega^{\prime \prime} k_{X}|A|^{2} .
$$

Adding these two equations

$$
\bar{A} A_{T}+A \bar{A}_{T}+\omega^{\prime}(k)\left(\bar{A} A_{X}+A \bar{A}_{X}\right)=-\omega^{\prime \prime}(k) k_{X}|A|^{2}
$$

or

$$
\frac{\partial}{\partial T}|A|^{2}+\omega^{\prime}(k) \frac{\partial}{\partial X}|A|^{2}+\omega^{\prime \prime}(k) k_{X}|A|^{2}=0
$$

The second and third terms combine to give

$$
\frac{\partial}{\partial T}\left(|A|^{2}\right)+\frac{\partial}{\partial X}\left(c_{g}|A|^{2}\right)=0
$$

which is the required form of the conservation of wave action.

