— Unassessed Coursework 1 -

Consider the linear wave equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}-c_{0}^{2} \frac{\partial^{2} u}{\partial x^{2}}+\beta u=0 \tag{1}
\end{equation*}
$$

for the scalar-valued function $u(x, t)$, where c_{0} and β are given positive constants.

1. Determine the dispersion relation, $D(\omega, k)$, associated with plane wave solutions of the form

$$
u(x, t)=\operatorname{Re}\left(A \mathrm{e}^{\mathrm{i}(k x-\omega t)}\right),
$$

where k is a wavenumber and ω the frequency.
2. Determine the phase velocity c_{p} and the group velocity c_{g} of the plane wave solutions. Show that the group velocity is slower than the phase velocity.
3. Show that $u(x, t)=\operatorname{Re}\left(u^{c}(x, t)\right)$, where

$$
u^{c}(x, t)=\int_{-\infty}^{\infty} A(k) \mathrm{e}^{\mathrm{i}(k x-\omega(k) t)} \mathrm{d} k,
$$

is a solution of (1) when $\omega(k)$ satisfies the dispersion relation. You may assume without proof that the integral is absolutely convergent. Suppose

$$
u(x, 0)=\cos \left(k_{0} x\right),
$$

for some fixed $k_{0}>0$. What is $A(k)$?
4. The energy density for (1) is

$$
E=\frac{1}{2} u_{t}^{2}+\frac{1}{2} c_{0}^{2} u_{x}^{2}+\frac{1}{2} \beta u^{2} .
$$

Determine the energy flux density F and show that the energy conservation law is

$$
E_{t}+F_{x}=0 .
$$

5. Let

$$
u(x, t)=A \mathrm{e}^{\mathrm{i} \theta}+\bar{A} \mathrm{e}^{-\mathrm{i} \theta}, \quad \theta=k x-\omega t,
$$

(here \bar{A} denotes complex conjugate) and substitute it into the energy density and energy flux and average over θ

$$
\bar{E}=\frac{1}{2 \pi} \int_{0}^{2 \pi} E(\theta) \mathrm{d} \theta, \quad \bar{F}=\frac{1}{2 \pi} \int_{0}^{2 \pi} F(\theta) \mathrm{d} \theta,
$$

(here \bar{E} denotes average). Show that $\bar{F}=c_{g} \bar{E}$ where c_{g} is the group velocity.
6. Answer questions 1 and 2 for the linear wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-c_{0}^{2} \frac{\partial^{2} u}{\partial x^{2}}-\beta \frac{\partial^{4} u}{\partial t^{2} \partial x^{2}}=0
$$

