— Unassessed Coursework 2 -

- Consider the KdV equation with general coefficients

$$
a_{0} \frac{\partial u}{\partial t}+a_{1} u \frac{\partial u}{\partial x}+a_{2} \frac{\partial^{3} u}{\partial x^{3}}=0,
$$

where a_{0}, a_{1}, a_{2} are arbitrary nonzero parameters. Introduce a scaling of the dependent and independent variables leading to dimensionless variables

$$
\widetilde{u}=\frac{u}{A}, \quad \widetilde{x}=\frac{x}{\alpha}, \quad t=\frac{t}{\beta} .
$$

Determine expressions for the scaling parameters A, α and β (as functions of $\left.a_{0}, a_{1}, a_{2}\right)$ so that the KdV equation reduces to

$$
\frac{\partial \widetilde{u}}{\partial \widetilde{t}}+u \frac{\partial \widetilde{u}}{\partial \widetilde{x}}+\delta \frac{\partial^{3} \widetilde{u}}{\partial \widetilde{x}^{3}}=0,
$$

where

$$
\delta=\operatorname{sign}\left(a_{0} a_{2}\right) .
$$

What is the significance of sign of δ ?

- The Benjamin-Bona-Mahoney equation (BBM equation) is a model equation for shallow water waves that is equivalent to the KdV equation. The $u_{x x x}$ term is replaced by a $u_{x x t}$ term. Here is a generalisation of it to include x-dependent dispersion

$$
\begin{equation*}
u_{t}+u u_{x}-\alpha(x)^{2} u_{x x t}=0, \tag{1}
\end{equation*}
$$

where α is a given nonzero function of x.

- Suppose α is constant, say $\alpha:=\alpha_{0}$. Find the dispersion relation of the linearized version

$$
u_{t}+u_{0} u_{x}-\alpha_{0}^{2} u_{x x t}=0,
$$

for normal-mode solutions of the form $u(x, t)=\widehat{u} \mathrm{e}^{\mathrm{i}(k x-\omega t)}+\mathrm{c} . c$. .

- Show that the group velocity associated with the linear waves in part (a) is negative for large k and find the value, k_{0}, such that $c_{g}<0$ for $k>k_{0}$.
- Consider the nonlinear problem with $\alpha=\alpha_{0}$ constant. Show that there exists solitary wave solutions of the form

$$
u(x, t)=A \operatorname{sech}^{2}(B \xi), \quad \xi=x-c t, \quad \text { taking } \quad c>0
$$

and find expressions for A and B.

- For the above solitary waves, does the speed increase or decrease with increasing amplitude?
- Now, consider the case where $\alpha(x)$ varies with x. Show that solutions of BBM have the following perturbed conservation law

$$
E_{t}+F_{x}=\alpha^{\prime}(x) R(x, t), \quad \text { with } \quad E=\frac{1}{2} u^{2}+\frac{1}{2} \alpha(x)^{2} u_{x}^{2},
$$

and find expressions for F and R.

- Consider a fluid configuration with two layers of fluid with different densities and irrotational flow. The lower layer has density ρ_{1} and extends from $y=0$ to $y=h_{0}$. The upper layer has density ρ_{2} and extends from $y=h_{0}$ to $y=+\infty$.

The governing equation and boundary conditions for the linear version of this problem are

$$
\begin{array}{ll}
\Delta \phi_{1}=0 & \text { for } 0<y<h_{0}, \quad \frac{\partial \phi_{1}}{\partial y}=0 \text { at } y=0 \\
\Delta \phi_{2}=0 & \text { for } h_{0}<y<+\infty, \quad \frac{\partial \phi_{2}}{\partial y} \rightarrow 0 \text { as } y \rightarrow+\infty
\end{array}
$$

where Δ is the Laplacian. The boundary conditions at the interface $y=h_{0}$ are

$$
\frac{\partial \eta}{\partial t}=\frac{\partial \phi_{1}}{\partial y}, \quad \frac{\partial \phi_{1}}{\partial y}=\frac{\partial \phi_{2}}{\partial y}, \quad \rho_{1} \frac{\partial \phi_{1}}{\partial t}-\rho_{2} \frac{\partial \phi_{2}}{\partial t}+\left(\rho_{1}-\rho_{2}\right) g \eta=0
$$

where g is the positive gravitational constant.

- Consider normal mode solutions of the form $\eta(x, t)=A \mathrm{e}^{\mathrm{i}(k x-\omega t)}+c . c$. and

$$
\phi_{1}(x, y, t)=B_{1}(y) \mathrm{e}^{\mathrm{i}(k x-\omega t)}+c . c . \quad \text { and } \quad \phi_{2}(x, y, t)=B_{2}(y) \mathrm{e}^{\mathrm{i}(k x-\omega t)}+c . c .,
$$

where A is a complex constant. Determine expressions for $B_{1}(y)$ and $B_{2}(y)$ satisfying the Laplace equation in interior and the boundary conditions at $y=0$ and $y \rightarrow \infty$.

- Using the boundary conditions at $y=h_{0}$ determine a relationship between $B_{1}\left(h_{0}\right)$ and A and $B_{2}\left(h_{0}\right)$ and A.
- Show that the dispersion relation for the system is

$$
\omega^{2}=\frac{\left(\rho_{1}-\rho_{2}\right) g k \tanh \left(k h_{0}\right)}{\rho_{1}+\rho_{2} \tanh \left(k h_{0}\right)} .
$$

- Suppose $k>0$ and $\rho_{1}<\rho_{2}$. What happens to the frequencies? What does this mean physically? Using the dispersion relation as a guide, discuss the implication for the time evolution.

