Localized mode interactions in 0-7 Josephson junctions
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A long Josephson junction containing regions with a phase shift of 7 is considered. By exploiting
the defect modes due to the discontinuities present in the system, it is shown that Josephson
junctions with phase-shift can be an ideal setting for studying localized mode interactions. A
phase-shift configuration acting as a double-well potential is considered and shown to admit mode

tunnelings between the wells.

When the phase-shift configuration is periodic, it is shown that

localized excitations forming bright and dark solitons can be created. Multi-mode approximations

are derived confirming the numerical results.

PACS numbers: 63.20.Pw, 74.50.+r, 45.05.4x, 85.25.Cp

Introduction. A Josephson junction is a system con-
sisting of two layers of superconductors separated by a
nonsuperconducting barrier. Electrons forming so-called
Cooper pairs can tunnel across the resistive barrier even
when there is no applied voltage difference. Theoretically
predicted by Josephson' and first observed experimen-
tally in Ref. 2, the only requirement for the occurrence of
Josephson tunneling is a weak coupling of the wave func-
tions of the two superconductors. The supercurrent (1)
is proportional to the sine of the electron phase-difference
across the insulator (u), i.e. Iy ~ sinu.

Bulaevskii et al.>* proposed that a shift of 7 can be
introduced in the phase difference u of a Josephson junc-
tion by installing magnetic impurities, which has been
confirmed recently®. Present technological advances can
also impose a w-phase-shift in a long Josephson junction
using various means, including multilayer junctions with
controlled thicknesses over the insulating barrier®7”, pairs
of current injectors®, and junctions with unconventional
order parameter symmetry® 11,

New phenomena may occur when a junction with
phase-shifts is connected to a normal junction, i.e. 0-m
Josephson junctions. These include the presence of a
half magnetic flux quantum induced by spontaneously
created supercurrent circulating in a loop. Such unique
characteristics offer promising future device applications,
such as novel circuits for information storage and pro-
cessing in both classical and quantum limits'? and arti-
ficial crystals for simulating and studying energy levels
and band structures in large systems of spins'® (see also
Ref. 14 and references therein). Here, we demonstrate
that Josephson junctions with phase-shifts is an ideal set-
ting for showcasing many interesting features of localized
mode interactions. Arguably the dynamics of the super-
conductor phase-difference can be seen to be analogues to
that of atomic wave functions of Bose-Einstein conden-
sates (BEC)'5 1 in an external potential. In particular,
we consider Josephson junctions with phase-shift config-
urations acting as a double well and a periodic potential.

The interesting phenomenon of mode tunneling in
BECs in a double well potential was predicted by Smerzi
et al.?%2! followed by experimental observations??23,
Here, we will show that defect modes due to the pres-

ence of phase-discontinuities in 0-7 Josephson junctions
can be exploited to observe a similar mode tunneling,
which can also be viewed as Rabi oscillations of two in-
teracting modes.?* Periodic defects exhibiting mode self-
trapping analogues to BECs in optical lattices?® will also
be discussed.

Double-well potential. A 0-m Josephson junction with
the superconductor phase difference u at position x and
time ¢ is described by the sine-Gordon equation

Ut — Uz = —0(2) sinu, (1)

where x and ¢t have been normalized to the Josephson
penetration depth A\; and the inverse plasma frequency
wy 1 respectively. The function 6(z) is piecewise con-
stant representing the presence of 7 junctions. A double
well potential with two m-junctions of length a separated

by a 0-junction with length 2L is described by

0(x) = -1, L<|z|]<L+a,
)= 1, elsewhere.

At the points of discontinuities, the boundary conditions
are

(2)

lim u(z,t) = lim u(x, t);
z—+{L,L+a}t z—+{L,L+a}— (3)
lim Uug(z,t) = lim g (x,t).
z—+{L,L+a}t z—+{L,L+a}—

If ¢ solves (1), the linear stability of the solution can
be analyzed by substituting the spectral ansatz u = ¢ +
v(z)eM and linearizing about ||v||s small to yield the
eigenvalue problem v, — A\2v = 0 cos(¢)v.

Equation (1) has two constant solutions (mod 27),
uw = 0 and w = w. The solution v = 7 has unstable
continuous spectrum and hence is always unstable.?6 The
solution u = 0 has stable continuous spectrum A2 < —1
and the discrete spectrum (eigenvalues) can be calculated
analytically.?® Indeed, the largest two eigenvalues A4 of
u = 0 solve the equation
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The corresponding eigenmodes ®4 (x) of Ay are?®

67\/1+Ai(x7L7a)’
cos(y/1—Ay(x—L—a))

z>L+a;

Q=4 +Csin(y/1-Ar(x—L—a)), L<z<L+a;
K, cosh(y/1+ Aix)
+ K_ sinh(y/1 + Ayx), 0<z<L,
(5)
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As the linearisation operator is a Sturm-Liouville oper-
ator and even in z, the eigenmodes are simple and the
eigenfunction ®, is an even function and ®_ is odd. The
two eigenvalues AL are depicted as a function of a for
fixed L = 2 (to the left of the vertical dashed line).

It is clear that v = 0 has a stability window. The
change of stability occurs at a critical distance a. when
the critical eigenvalue crosses the horizontal axis A = 0.
Using the expression in (4), it follows that the critical
length a.(L) is a. = arctan(e?").

FIG. 1. The eigenvalues of the ground state as a function of a
for L = 2. The dashed vertical line indicates the bifurcation
point of the non uniform ground state, where on the left and
on the right of the vertical line w = 0 is stable and unstable,
respectively. The dashed lines show the eigenvalues of the
uniform solution in its instability region. The inset presents
a ground state when L = 2 and a = 1.65.

In the instability region, a non uniform time-
independent sign-definite ground state +up.(x) bifur-
cates. Its expression can be written in terms of Jacobian
elliptic functions?%27 as

4arctan(e”*t%0) x> L+ q;
Upe = 2arcsin(my sn(x — x1,m1)), L <z <L+ a;
m 4+ 2arcsin(mg sn(z — 22,m2)), 0 <z < L.
(6)
The parameters m; and msq are linked to the lengths a
and L by

a = 2K(my) —am™(7/4,m1)
—am™ ! (arcsin(y/2(1 + m? — m3)/2my), m1)
L = K(msg) —am™!(arcsin(y/2(1 +m3 — m?)/2ms), m2)

The translations x; are determined by the boundary con-
ditions (3). The non-uniform ground state and its eigen-

values are presented in Fig. 1 (to the right of the vertical
dashed line).

Mode tunneling. In the following, let us first consider
L = 2a = 2. For those parameter values, u = 0 is a
stable ground state. The numerically obtained time dy-
namics of an initially localized excitation in the left well
is presented in the top panels of Fig. 2, clearly showing
mode tunneling. Compare it with the time dynamics of
BECs reported in Refs. 20-23.
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FIG. 2. (Color online) Panel (a) shows the time dynamics of
an initially localized excitation in the left well with L = 2 and
a = 1. In panel (b), the oscillation amplitudes of the dynam-
ics presented in panel (a) are plotted against time. Panel (c)
depicts the oscillation amplitude on top of a nonzero back-
ground with a small initial amplitude for a double well with
L =2 and a = 1.65. Coupling coefficients appearing in (8) as
functions of a for L = 2 are shown in panel (d). In calculat-
ing the coefficients, the eigenfunctions have been normalized
t0 ||+ ||cc = 1. Approximations obtained from the two-mode
equation (8) are shown as red dashed curves.

Next, we consider a parameter combination of L = 2
and a = 1.65, i.e. v = 0 is unstable. In the instability
region of the constant solution, excitations will oscillate
on a non-zero background wuy,. (6). The oscillation am-
plitude in both wells as a function of time is presented
in panel (c) of Fig. 2. When the initial oscillation am-
plitude is large enough, we interestingly obtain chaotic
oscillations (not shown here).

Two-mode approzimations. We will explain the ob-
served mode tunneling using a two-mode approximation.
Looking for the solution of the time-dependent equation
(1) of the form

u(z,t) = ugs + A(t)P4 + B(t)P_, (7)

where ug4s is the ground state of the system, i.e. ugs =0
and ugs = U, when a is respectively on the left and right



of the vertical line in Fig. 1, substituting the ansatz (7)
into (1), and projecting the equation onto ®4 will yield
up to O(A"B* "), n=0,...,4

4 = A+A + (01A2 + CQBQ) + (03+A3 —|— C4+ABQ>(8)
B = A_B+ (Cs_-B*+C,_A’B);

with
Cy = % /jo 0'sin(ugs) @73 da, (9)
Cy = % /oo 0'sin(ugs)® 4 &% da, (10)
Csy = % /_OO 0 cos(uys )P4 da, (11)
Cyt = % /jo 0 cos(ugs) @3 @2 dz, (12)

-1
and Ky = (ffooo @idm) . The constants C; are plotted

against a in panel (d) of Fig. 2. The internal oscillation
amplitude u (+£(L 4 a/2),t) is respectively approximated
by ugs + (A(t) £ B(t))/2.

For the uniform ground state (ugs = 0), we have solved
(8) numerically and compared it with the oscillation am-
plitude of the original equation in panel (b) of Fig. 2. One
can observe that quantitative agreements are obtained.
An agreement is also obtained for mode tunneling on a
non-uniform background, as shown in panel (¢) of Fig.
2, provided that the tunneling mode amplitude is small
enough.

When A(0) and B(0) are large, it is interesting to note
that even though our two-mode approximation does not
quantitatively capture the dynamics of the chaotic tun-
nelings it captures the qualitative transition to chaotic
behavior.

Periodic defects. One can also include more phase
shifts and derive a multi-mode approximation. Below
we consider the case of periodic shifts alternating -
junctions of length a with 0-junctions of length L, i.e.,

1, elsewhere. (13)

0 { -1, z€k(L+a)+(-%,%),keZ
It is known that in the limit L — oo (i.e., one well),
u = 0 is stable for a < 7/4 and unstable otherwise?®. The
eigenfunction corresponding to the critical eigenvalue Ag
of the ground state ugys in the limit L — oo will be de-
noted by ®o(x). For a < w/4 and ugs =0,

Bo(x) = { cos(vT= Rga)e VITRle1-0/2) ] > a/2,
cos(v/1 — Apx), || < a/2.
(14)
When L > 1, a tight-binding approximation can be
used to describe the interaction of the defect modes in
the system with periodic defects. We write

u(z,t) = ugs + Z An(t)@n(2), (15)

n=—oo
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FIG. 3. (Color online) The left panels show the profile of
numerically exact bright and dark lattice solitons obtained
from the lattice equation (16). The insets depict the Floquet
multipliers of the solution. The right panels present the cor-
responding time dynamics of (1) using the initial condition
(15) with A,(0) shown in the adjacent left panel. All panels
have L = 10, the upper two have a = 0.5, the lower a = 1.6.
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where @, (z) = ®¢ (x — n(a + L)). Performing the same
procedure as before, one will obtain the lattice equation

A, = AoA, + Ko A2 + K3A3

+ > Cil(Kyj — No)Any; — K2 AL, — K3 A ](16)
j==+1

where

Cyy =K© / o ()P (z) de,

Ky = CilK(O)/

— 00

®o(z) (92 — O cosugs) Py1(z)da,
Ky, =K / %sin(ugs)q)g(:c) dz,

<1
K3 =K / 8 cos(ugs )Py () da,

— 00



-1
and KO = (ffooo o3 dm) . Neglecting the nonlinear

couplings to the neighboring sites (C Ko, CK3), the dis-
crete equation above becomes the lattice equation con-
sidered by Kivshar?®, admitting many types of localized
excitations. In the following, we consider the special
type, namely unstaggered bright and staggered dark lat-
tice solitons. In particular, we will show that the lat-
tice equation (16) can predict the stability of the soli-
tons in the original equation (1), provided that L is large
enough. In doing so, we first solve Eq. (16) numerically
for localized modes using a shooting method and corre-
spondingly study their stability (see, e.g., the review Ref.
29) and then use the ansatz (15) at ¢ = 0 as an initial
condition for the governing equation (1). In the follow-
ing, periodic boundary conditions are used, which are
relevant experimentally.3’ Examples are shown in Fig.
3. Presented in the left and right panels are numerically
exact solutions obtained from the lattice equation (16)
and their corresponding time evolution in the original
equation (1). The insets on the left panels depict the
corresponding Floquet multipliers, where the instability
is indicated by the presence of eigenvalues lying outside
the unit circle (dash-dotted line).

First, we consider the parameter values L = 10 and a =
0.5, representing the case of stable constant solution u =
0. Shown in the first and the second row are numerically
exact bright and dark solitons with the oscillation period
P =7.08 (Ag = —0.8) and their dynamics. According
to the lattice equation (16), the bright soliton is stable
and the dark one unstable. One can note from the right
panels that the prediction provided by the lattice is in
agreement with the dynamics in the original system. The
instability of the dark soliton manifests in the form of the

destruction of the configuration.

Next, we consider the parameter values L = 10 and
a = 1.6, which represent the case of nonuniform ground
state. The localized mode will then oscillate on a nonzero
background. Shown in the third and fourth row are nu-
merically exact bright and dark lattice solitons with the
oscillation period P = 30 (Ag ~ —0.0527).

According to the lattice equation (16), the bright soli-
ton has the same stability as the case on stable uniform
ground state, which is confirmed by the time dynamics
of the original equation. The stability of the soliton for
the chosen parameter values is not surprising as the sites
are rather uncoupled.

As for the dark soliton, it is interesting to note that
in the present case it is stable, which is also confirmed
by the dynamics of the full equation. This implies that
a nonzero background may act as a stabilizer. More-
over, it is also important to note that the modes in dif-
ferent lattices have different oscillation frequencies. The
multi-frequency breathers discussed in Ref. 31 and 32
may therefore be potentially observed in experiments.

Conclusions. We have considered Josephson junctions
with phase-shifts of 7. By exploiting the defect modes
present due to the phase-discontinuities, the system has
been shown to be an ideal setting for studying mode in-
teractions. In particular, we have shown that mode tun-
neling in a double-well potential can be implemented in
the system and presented the existence and stability of
bright and dark solitons in a periodic potential. We have
shown that the analysis proved by a multi-mode approx-
imation gives a quantitative agreement with dynamics of
the original system.
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