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Abstract

We consider a Josephson junction system installed with a �nite lengthinhomogeneity, either of
microresistor or of microresonator type. The system can be modelled by a sine-Gordon equation
with a piecewise-constant function to represent the varying Josephson tunneling critical current.
The existence of pinned 
uxons depends on the length of the inhomogeneity, the variation in the
Josephson tunneling critical current and the applied bias current. We establish that a system
may either not be able to sustain a pinned 
uxon, or { for instance by varying the length of the
inhomogeneity { may exhibit various di�erent types of pinned 
uxons . Our stability analysis shows
that changes of stability can only occur at critical points of the length of the inhomogeneity as a
function of the (Hamiltonian) energy density inside the inhomogeneity { a relation we determine
explicitly. In combination with continuation arguments and Sturm-Lio uville theory, we determine
the stability of all constructed pinned 
uxons. It follows that if a giv en system is able to sustain at
least one pinned 
uxon, there is exactly one stable pinned 
uxon, i.e. the system selects one unique
stable pinned con�guration. Moreover, it is shown that both for mic roresistors and microresonators
this stable pinned con�guration may be non-monotonic { something which is not possible in the
homogeneous case. Finally, it is shown that results in the literature on localised inhomogeneities
can be recovered as limits of our results on microresonators.

Keywords : Josephson junction, inhomogeneous sine-Gordon equation, pinned 
uxon, stability .

AMS subject classi�cations : 34D35, 35Q53, 37K50 .

1 Introduction

In this paper we consider a sine-Gordon-type equation describing the gauge invariant phase di�erence
of a long Josephson junction

� tt = � xx � D sin(� ) + 
 � �� t ; (1)

wherex and t are the spatial and temporal variable respectively;� (x; t ) is the Josephson phase di�erence
of the junction; � > 0 is the damping coe�cient due to normal electron 
ow across the junction; and

 is the applied bias current. The parameterD represents the Josephson tunneling critical current,
which can vary as a function of the spatial variable.
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When D is constant (without loss of generality, we can takeD = 1) and there is no imposed current
and dissipation, i.e., 
 = � = 0, the system (1) is completely integrable [1] and has a family of travelling
kink solutions of the form

� (x; t ) = � 0

�
x + vt + x0p

1 � v2

�
; with � 0(� ) = 4 arctan( e� ) for any jvj < 1: (2)

In the study of Josephson junctions, this kink represents a 
uxon, i.e. a magnetic �eld with one

ux quantum � 0 � 2:07 � 10� 15 Wb. If there is a small induced current and dissipation but no
inhomogeneity, then there is a unique travelling 
uxon whose wave speed in lowest order is given by
v = �p

16(�=
 )2 + � 2
and no stationary 
uxons exist, see, e.g., [11].

An inhomogeneous Josephson critical current in the form ofD = 1+ d � (x), where � (x) is the Dirac
delta function, was �rst suggested in [25]. Using a piecewise constant representation, the inhomogeneous
D can also be written by the step-function

D(x; L; d) =

(
d; jxj < L;
1; jxj > L;

(3)

in the limit L ! 0. Note that as (1) without inhomogeneity is translationally invariant, it d oes not
matter where the inhomogeneity is placed. It was shown in [25] that due to the local perturbation,
stationary 
uxons can exist even if an imposed current is present (
 6= 0) and that a travelling 
uxon ( 2)
can be pinned by the inhomogeneity. About a decade after the �rst analysis of this phenomenon, it
is shown in [19] that the interaction between a soliton and an inhomogeneity can be non-trivial, i.e.
an attractive impurity, which is supposed to pin an incoming 
uxon, could totally re
ect the soliton
provided that there is no damping in the system. Recently it is proven that the �nal state at which a
soliton exits a collision depends in a complicated fractal way on the incoming velocity [13].

So far almost all of the analytical and theoretical work considers the local inhomogeneity described
by a delta function, i.e. L ! 0 [13, 18, 19, 25]. Yet, the length of an inhomogeneity in real experiments
is varying from (in dimensionless unit) 0.5 [35] to 5 [2, 33]. Current advances, such as superconductor-
insulator-ferromagnet-superconductor (SIFS) technology [22, 40], can also be used to create Josephson
junctions with defects whose lengths 2L and strengths d are highly controllable (see [41, 42, 34] and
references therein for reviews of the experimental setups). Therefore, such inhomogeneities are not
well described by delta-functions. Kivshar et al. [17] have considered thetime-dependent dynamics of
a Josephson 
uxon in the presence of this more realistic setup, i.e. 
uxon scattering that takes into
account the �nite size of the defectL > 0, within the framework of a perturbation theory, i.e., when �; 

are small andd � 1. Piette and Zakrzewski [31] recently studied the scattering of the 
uxon on a �nite
inhomogeneity, extending [19, 13] to �nite length defects in the case when neither applied bias current
nor dissipation is present. The existence and stability problem of pinned 
uxons in �nite Josephson
junctions with inhomogeneity (3) has been considered numerically by Boyadjiev et al. [3, 6, 7].

Static and dynamics properties of 
uxons in interactions with inhomogeneity are also of interest
from physical point of view because such an inhomogeneity could be present in experiments due to
the nonuniformity in the width of the transmission Josephson junction line (see, e.g., [2, 33]) or in
the thickness of the oxide barrier between the superconductors forming the junction (see, e.g., [35,
39]). When the parameter d is greater or less than one, the inhomogeneity is called a microresonator
respectively microresistor. In SIFS junctions, the inhomogeneity d can even be made to be negative,
i.e. d < 0 [41, 42, 34]. Recently, such inhomogeneous systems and their nonuniform ground states,
which can be viewed as trapped/pinned 
uxons, have been identi�ed as o�ering promising future
device applications, such as novel circuits for information storage and processing in both classical
and quantum limits [12], a single 
ux quantum-based logic circuit [28, 26] and arti�cial crystals for
simulating and studying energy levels and band structures in large systems of spins [37] (see also [16]
and references therein for experimental studies and observations of such trapped 
uxons).
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In this paper, we consider an in�nitely long Josephson junction with inhomogeneity (3). In partic-
ular, we focus on the case ofd � 0. We provide a full analytical study of the existence and stability of
pinned 
uxons, using dynamical systems techniques, Hamiltonian systems ideas, and Sturm-Liouville
theory. Our method enables us to analyse and identify all possible pinned 
uxons, including the un-
stable ones, which may be stabilised by introducing additional defects [21]. Hence, our study reveals
the rich family of pinned 
uxons in Josephson junctions with a �nite length inhomogeneity, that may
be observed in experiments and exploited further for technological applications.

For the existence of the pinned 
uxons we observe that, asD � 1 for jxj large, it follows immediately
that the asymptotic �xed points of ( 1) are given by sin� = 
 , and the temporally stable stationary
uniform solutions are � = arcsin 
 + 2k� . By de�nition, a pinned 
uxon is a stationary solution of ( 1),
which connects arcsin
 and arcsin
 + 2 � . Hence a pinned 
uxon is a solution of the boundary value
problem

� xx � D (x; L; d) sin � + 
 = 0;

lim
x!1

� (x) = arcsin 
 + 2 � and lim
x!�1

� (x) = arcsin 
:
(4)

First we observe that pinned 
uxons can only exist for bounded values of the applied bias current,
j
 j � 1 (where this upper bound is directly related to our choice toset D � 1 outside the defect).
Moreover, there are symmetries in this system. If� (x) is a pinned 
uxon connecting arcsin
 (at
x ! �1 ) and arcsin
 + 2 � (at x ! + 1 ), then � (� x) is a solution as well, connecting arcsin
 + 2 �
(x ! �1 ) and arcsin
 (x ! + 1 ). So the second solution is a pinned anti-
uxon. The symmetry
implies that we can focus on pinned 
uxons and all results forpinned anti-
uxons follow by using the
symmetry x ! � x. Another important symmetry is

� (x) ! 2� � � (� x) and 
 ! � 
:

Thus if � (x) is a pinned 
uxon with bias current 
 , then 2� � � (� x) is a pinned 
uxon with bias
current � 
 . This means that we can restrict to a bias current 0� 
 � 1 and the case� 1 � 
 < 0
follows from the symmetry above.

Furthermore, the di�erential equation in ( 4) is a (non-autonomous) Hamiltonian ODE with Hamil-
tonian

H =
1
2

p2 � D (x; L; d)(1 � cos� ) + 
�; where p = � x : (5)

The non-autonomous term has the form of a step function, which implies that on each individual
interval ( �1 ; � L ), ( � L; L ), and (L; 1 ) the Hamiltonian is �xed, though the value of the Hamiltonia n
will vary from interval to interval. Therefore the solution s of (5) can be found via a phase plane
analysis, consisting of combinations of the phase portraits for the system with D = 1 and D = d, see
also [36] for a similar approach to get existence of� -kinks. In the phase plane analysis, the length
of the inhomogeneity (2L) is treated as a parameter. Forx < � L , the pinned 
uxon follows one of
the two unstable manifolds of �xed point (arcsin 
; 0) of the reduced ODE (4). Similarly, for x > L
the pinned 
uxon follows one of the stable manifolds of the �xed point (arcsin 
 + 2 �; 0). Finally, for
jxj < L the pinned 
uxon corresponds to a part of one of the orbits of the phase portrait for the system
with D = d. The freedom in the choice of the orbit in this system impliesthe existence of pinned

uxons for various lengths of the inhomogeneity. See Figure1 for an example of the construction of a
pinned 
uxons when 
 = 0 :15 and d = 0 :2. Orbits of a Hamiltonian system can be characterised by
the value of the Hamiltonian, hence there is a relation between the value of the Hamiltonian inside the
inhomogeneity and the length of the inhomogeneity. The resulting pinned 
uxon is in H 2(R) \ C1(R).
As the ODE (4) usually implies that the second derivative of the pinned 
uxon will be discontinuous,
this is also the best possible function space for the pinned 
uxon solutions.
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Figure 1: Phase portraits when
 = 0 :15 and d = 0 :2. The dash-dotted red curves are the unstable
manifolds of (arcsin
; 0), the dashed magenta curves are the stable manifolds of (2� + arcsin 
; 0), and
the solid blue curves are examples of orbits for the dynamicsinside the inhomogeneity. The bold green
curve is an example of a pinned 
uxon.

After analysing the existence of the pinned 
uxons and having found a plethora of possible pinned

uxons when a bias current is applied to the Josephson junction (i.e., 
 6= 0), we will consider their
stability. First we will consider linear stability. To deri ve the linearised operator about a pinned

uxon � pin (x; L; 
; d ), write � (x; t ) = � pin (x; L; 
; d ) + e�t v(x; t ; L; 
; d ) and linearise about v = 0 to
get the eigenvalue problem

L pin v = � v; where � = � 2 + ��; (6)

and the linearisation operator L pin (x; L; 
; d ) is

L pin (x; L; 
; d ) = Dxx � D cos� pin (x; L; 
; d ) =

8
><

>:

Dxx � cos� pin (x; L; 
; d ); jxj > L ;

Dxx � d cos� pin (x; L; 
; d ); jxj < L:
(7)

The natural domain for L pin is H 2(R). We call � an eigenvalue of L pin if there is a function v 2 H 2(R),
which satis�es L pin (x; L; 
; d ) v = � v. This operator is self-adjoint, hence all eigenvalues willbe real.
Furthermore, it is a Sturm-Liouville operator, thus the Sobolev Embedding Theorem gives that the
eigenfunctions are continuously di�erentiable functions in H 2(R). Sturm's Theorem [38] can be applied,
leading to the fact that the eigenvalues are simple and bounded from above. Furthermore, if v1 is an
eigenfunction of L pin with eigenvalue � 1 and v2 is an eigenfunction ofL pin with eigenvalue � 2 with
� 1 > � 2, then there is at least one zero ofv2 between any pair of zeros ofv1 (including the zeros at
�1 ). Hence, the eigenfunctionv1 has a �xed sign (no zeros) if and only if � 1 is the largest eigenvalue
of L pin . The continuous spectrum of L pin is determined by the system at �1 . A short calculation
shows that the continuous spectrum is the interval (�1 ; �

p
1 � 
 2).

If the largest eigenvalue � of L pin is not positive or if L pin does not have any eigenvalues, then
the pinned 
uxon is linearly stable, otherwise it is linearl y unstable. This follows immediately from
analysing the quadratic � = � 2 + �� . If � � 0, then both solutions � have non-positive real part.
However, if � > 0 is then there is a solution � with positive real part. Furthermore, the � -values of
the continuous spectrum also have non-positive real part asthe continuous spectrum ofL pin is on the
negative real axis.
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The linear stability can be used to show nonlinear stability. The Josephson junction system without
dissipation is Hamiltonian. De�ne P = � t , u = ( �; P ), then the equations (1) can be written as a
Hamiltonian dynamical system with dissipation on an in�nit e dimensional vector space ofx-dependent
functions, which is equivalent to H 1(R) \ L 1(R) � L 2(R):

d
dt

u = J � H (u) � � D u; with J =

 
0 1

� 1 0

!

; D =

 
0 0
0 1

!

;

and

H(u) = 1
2

� 1

�1

h
P2 + � 2

x + 2 D(x; L; d) (
p

1 � 
 2 � cos� )
i

dx

� 

� 1

0
[� � arcsin
 � 2� ] dx + 


� 0

�1
[� � arcsin
 ] dx:

(8)

Here we have chosen the constants terms in the
 -integrals such that they are convergent for the 
uxons.
Furthermore, for any solution u(t) of (1), we have

d
dt

H (u) = � �
� 1

�1
P2dx � 0: (9)

As a pinned 
uxon is a stationary solution, we have DH(� pin ; 0) = 0 and the Hessian ofH about a

uxon is

D 2H(� pin ; 0) =

 
�L pin 0

0 I

!

:

If L pin has only strictly negative eigenvalues, then it follows immediately that ( � pin ; 0) is a minimum of
the Hamiltonian and (9) gives that all solutions nearby the pinned 
uxon will stay n earby the pinned

uxon, see also [10].

After this introduction, we will start the paper with an over view of simulations for the interaction
of travelling 
uxons and the inhomogeneity in ( 1) for various values of d, L , 
 and � . This will
motivate the analysis of the existence and stability of the pinned 
uxons in the following sections.
We start the analysis of the existence and stability of pinned 
uxons by looking at a microresistor
with d = 0. The advantage of the cased = 0 is that several explicit expressions can be derived
and technical di�culties can be kept to a minimum, while it is also representative of the general case
d < 1. It will be shown that for 
 = 0 there is exactly one pinned 
uxon for each length of the
inhomogeneity. For 
 > 0, a plethora of solutions starts emerging. There is a minimum and maximum
length outside which the inhomogeneity cannot sustain pinned 
uxons. Between the minimal and the
maximal length there are at least two pinned 
uxons, often more. At each length between the minimum
and maximum, there is exactly one stable pinned 
uxon. If the length of the interval is (relatively)
large, the stable pinned 
uxons are non-monotonic. Note that stable non-monotonic 
uxons are not
possible in homogeneous systems, since for a homogeneous system the derivative of the 
uxon is an
eigenfunction for the eigenvalue zero of the operator associated with the linearisation about the 
uxon.
If the 
uxon is non-monotonous, then this eigenfunction has zeros. As the linearisation operator is
a Sturm-Liouville operator, this implies that the operator must have a positive eigenvalue as well,
hence the non-monotonous 
uxon is unstable. However, for inhomogeneous systems, the derivative
of the 
uxon is usually not di�erentiable, hence cannot give r ise to an eigenvalue zero (since the
eigenfunctions have to beC1) and stable non-monotonic 
uxons are in principle possible. This shows
that the inhomogeneity can give rise to qualitatively di�ere nt 
uxons.

For the existence analysis of the pinned 
uxons, the length of the inhomogeneity will be treated as
a parameter. The pinned 
uxons satisfy an inhomogeneous Hamiltonian ODE whose Hamiltonian is
constant inside the inhomogeneity. It will be shown that the existence and type of pinned 
uxons can
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be parametrised by the value of this Hamiltonian. The length of the inhomogeneity is determined by
the value of the Hamiltonian and the type of pinned 
uxon, leading to curves relating the length 2L
and the value of the Hamiltonian inside the inhomogeneity. In [21] it is shown, in the general setting
of an inhomogeneous wave equation, that changes in stability of the pinned 
uxons can be associated
with critical points of the length function relating L and the value of the Hamiltonian. The results of
this paper together with Sturm-Liouville theory give the st ability properties of the pinned 
uxons in
the general setting.

After giving full details for the case d = 0, for which the stability issue can be settled independent
of [21], an overview of the results ford > 0 is given. The general microresistor case (0< d < 1) is
very similar to the case d = 0. The microresonator case (d > 1) has some di�erent features, but the
same techniques as before can be used to analyse the existence and stability. We �nish the analysis of
the microresonator case by looking at the special case wheremicroresonators approximate a localised
inhomogeneity. We explicitly look at microresonators with d = �

2L and L very small. For 
 , � and �
small, the asymptotic results from [25] are recovered. Even in the limit of localised inhomogeneities,
our work generalises [25], since our methods allows us to consider
 , � and � larger as well.

The paper concludes with some further observations, conclusions and ideas for future research.

2 Simulations

To put the analysis of the existence and stability of the pinned 
uxons in the next sections in a wider
context, we look �rst at simulations of the interaction of a t ravelling 
uxon with an inhomogeneity.
Recall that in absence of dissipation and induced currents (� = 0 = 
 ), the system (1) without an
inhomogeneity (D � 1), has a family of travelling 
uxon solutions ( 2) for each wave speedjvj < 1. On
the other hand, if there is a small induced current and dissipation, but no inhomogeneity, then there
is a unique travelling 
uxon [ 11] with a selected speedv, jvj < 1. Speci�cally, if there is no induced
current ( 
 = 0) but dissipation is present (� > 0), then no travelling 
uxons exist in the homogeneous
system. Every travelling 
uxons slows down and becomes a stationary 
uxon. And if both an induced
current and dissipation are present, then an initial condition consisting of a travelling 
uxon with a
speed di�erent from the speed of the unique travelling 
uxon, will adapt its speed and shape and get
attracted to the unique travelling 
uxon.

In this section, we will look at the interaction of a travelli ng wave with the defect. We start with a
travelling wave for the defect-less system far away from thedefect and let it approach the defect. The
following can be observed and will be illustrated in the remainder of this section:

� Microresistor (d = 0):

{ In the absence of dissipation and induced currents (� = 0 = 
 ), but in the presence of
an microresistor inhomogeneity , the travelling waves get captured if the microresistor is
su�ciently long. However, if the microresistor is too short , the travelling waves passes
through the homogeneity (with some delay) but its speed is reduced. The critical length of
the microresistor depends on the speed of the incoming 
uxon: faster 
uxons have a longer
critical length. See Figure2.

{ If an induced current and dissipation are present (and hencethe travelling waves outside
the microresistor have a unique speed), a moderately long microresistor will capture the
travelling 
uxon if the dissipation is su�ciently large. Ho wever, a short microresistor or a
long micro resistor cannot capture the travelling 
uxon, however large the dissipation is.
See Figures3 and 4. In the next section it will be shown that pinned 
uxons do not exist for
short and long microresistors and the observed critical length in the simulations corresponds
well with the critical length found in the next section.
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{ The pinned 
uxon observed in the simulations is monotonic for shortish lengths, but becomes
non-monotonic once the microresistor becomes longer. See Figures 3 and 4. This ties in
with the stability analysis in the next section, which shows that there is a length interval for
which there exists a unique stable pinned 
uxons which is non-monotonic for larger lengths.

� Microresonator (d = 2):

{ In the absence of dissipation and induced currents (� = 0 = 
 ), but in the presence of an
microresonator inhomogeneity, no travelling 
uxons are captured. In the next section it is
shown that pinned 
uxons exist for any length of the microresonator, but none of them are
stable. See Figure5.

{ If an induced current and dissipation are present (and hencethe travelling waves outside
the microresistor have a unique speed), a su�ciently long microresistor will capture the
travelling 
uxon if the dissipation is su�ciently large, wh ile a short microresonator cannot
capture the travelling 
uxon, however large the dissipation is. See Figures6. Again, this ties
in with the analysis in the later sections. If there is an induced current, more branches of
pinned 
uxons exist including a stable branch. For 
 ! 0, the 
uxons on the stable branch
converge to 
uxons in resonators with length 0.

{ The pinned 
uxon observed in the simulations is monotonic for shortish lengths, but becomes
non-monotonic once the microresistor becomes longer. See Figures 6 and 7. This ties in
with the stability analysis in the next section, which shows that there is a length interval for
which there exists a unique stable pinned 
uxons which is non-monotonic for larger lengths.

First we look at the case � = 0 = 
 (no induced current, no dissipation) and the inhomogeneity
of microresistor type with d = 0. If the length is too short, the 
uxon will not be captured, but its
speed will be reduced by the passage through the inhomogeneity. If the length of the inhomogeneity
is su�ciently large, the travelling 
uxon will be captured. Some radiation is released in this process
and the 
uxon \bounces" backwards and forwards around the defect, especially if the length is \just
long enough". This is consistent with the results in [31] where a detailed analysis of the interaction
of a 
uxon with an inhomogeneity is studied in the case that no induced current and dissipation are
present. An illustration is given in Figure 2, here the initial condition is a travelling sine-Gordon 
ux on
with speed v = 0 :1. The defect is indicated by the two solid black lines. Note that the length of the

Figure 2: Simulation of a travelling wave with speedv = 0 :1 approaching an inhomogeneity withd = 0
when there is no induced current (
 = 0) or dissipation ( � = 0). The inhomogeneity is positioned
in the middle (around the zero position) and is indicated by the two solid black lines. The length of
the inhomogeneity on the left is 0:38 and the travelling 
uxon is captured by the inhomogeneity; note
that the \bounce" of the 
uxon is a lot larger than the length o f the inhomogeneity. The length of the
inhomogeneity on the right is 0:36 and the pinned 
uxon can just escape, but its speed is signi�cantly
reduced.
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defect which captures the 
uxon is a lot smaller than the init ial amplitude of the \bounce" of the

uxon. Observations suggest that the minimal length for the inhomogeneity to capture the travelling

uxon increases if the wave speed increases.

Next we look at the system with a microresistor with d = 0, now with an induced current 
 = 0 :1
and varying lengths and values of� . We start again with an inhomogeneity of length 0:38 (L = 0 :19).
When 
 = 0, this microresistor captures a 
uxon with speed v = 0 :1. With an induced current, it
cannot capture a 
uxon, however large we make� , i.e., however slow the 
uxon becomes. This is
illustrated in Figure 3. The microresistor slows the 
uxon down for a while, but eventually the 
uxon

Figure 3: Simulation of a travelling 
uxon approaching an inhomogeneity with d = 0 when the induced
current is 
 = 0 :1. On the left, the length is 0:38. Here the dissipation is� = 0 :9, but however large�
is taken, the 
uxon is never captured. In the middle and right plots, the length is 0:44. In the middle
the dissipation is � = 0 :48 and the 
uxon is captured, on the right the dissipation is � = 0 :47 and the

uxon can escape.

escapes with the same speed as it had earlier (as this speed isunique in a system with �; 
 6= 0). The
simulations suggest that the smallest length which can capture a 
uxon is 0:44 (L = 0 :22). In the next
section, it will be shown that for �; 
 6= 0, there is a minimal length below which no pinned 
uxon
can exist. This explains why the inhomogeneity with the shortest length cannot capture even a very
slow travelling 
uxon. In Figure 3 it is illustrated that, if the length can sustain pinned 
uxo ns, the
capture depends on the dissipation (hence on the speed of theincoming 
uxon). If the dissipation is
su�ciently large, hence the speed su�ciently slow, the pinn ed 
uxon will be captured.

A longish defect in a microresistor will also capture the travelling wave and the resulting pinned

uxon is not monotonic, see Figure 4! The length of the inhomogeneity is substantial, so the stationary
shape connecting the far �eld rest states at arcsin
 is a \bump". This \bump" is present at all the
rest states arcsin
 + 2k� for 
 6= 0 as arcsin
 + 2k� is not an equilibrium for the dynamics with
d 6= 1. From a phase plane analysis it can be seen that the amplitude of the homoclinic connection to
arcsin
 + 2k� grows with the length L of the defect. As shown in Figure4, for L = 6 :25, the travelling

uxon travels into this \bump" and gets captured. The result ing pinned 
uxon is not monotonic. In
the next section, the family of all possible pinned 
uxons is analysed and it is shown that for long
lengths the stable pinned 
uxon is non-monotonic. Moreover, it follows that there is an upper limit
on the length of inhomogeneities that can sustain pinned 
uxons. This is illustrated on the right in
Figure 4. The travelling 
uxon seems to be captured initially by the i nhomogeneity, but after a while
it escapes again. However large the dissipation is taken, this will always happen, illustrating that no
pinned 
uxons can exist.

Next we consider a microresonator withd = 2. As before, we consider the case without an induced
current ( 
 = 0) �rst. In this case, the 
uxon is never captured. For the sm aller speeds the 
uxon re
ects,
for larger speeds the 
uxon seems to get trapped, but it escapes after a while. This is illustrated in
Figure 5 for a microresonator with length 0:1. The 
uxon gets re
ected if the speed is v = 0 :21 and
gets through if v = 0 :22. In the next section, it will be shown that a system with a microresonator and
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Figure 4: Simulation of a travelling 
uxon approaching a longish inhomogeneity with d = 0 when the
induced current is 
 = 0 :1 and dissipation is � = 0 :5. On the left, the length is 12:5, the travelling
wave is captured and a non-monotonic pinned 
uxon is formed.On the right, the length is 35 and the
travelling wave escapes after a while, leaving in its wake a \bump" connecting 2� + arcsin 
 at both
ends. Note that the vertical scale and colouring is di�erent in both �gures; as a reference point, the
travelling wave on the right is the same in both cases.

no induced current sustains a unique pinned 
uxon for each length of the defect and that this pinned

uxon is unstable. This explains why no travelling 
uxons ge t trapped when d > 1. This contrasts
the behaviour for d < 1, where there are stable pinned 
uxons and the travelling 
uxons get trapped
if they travel with slow speed.

Figure 5: Simulation of a travelling wave approaching an inhomogeneity with d = 2 and length 0:1,
when there is no induced current and no dissipation (
 = 0 = � ). The speed on the left isv = 0 :21
and the travelling wave is bounced by the inhomogeneity. Thespeed on the right isv = 0 :22 and at
�rst the pinned 
uxon seems to be captured by the inhomogeneity, but after while it travels through
the inhomogeneity and seems to resume its original speed.

After the induction-less system, we consider a system with amicroresonator with d = 2 and an
induced current 
 = 0 :1. As with the microresistor there is a minimum length, under which the
microresonator cannot capture a 
uxon. The simulations suggest that the minimum length is 0:42
(L = 0 :21). In Figure 6, it is illustrated that a microresonator with length 0 :40 cannot capture a 
uxon
with � = 0 :9, whilst a microresonator with length 0:42 can capture a 
uxon with � = 0 :3, but it cannot

9



for � = 0 :29. This is consistent with the results in the next sections where it is shown that for �; 
 6= 0

Figure 6: Simulation of a travelling wave approaching an inhomogeneity with d = 2 when there is an
induced current (
 = 0 :1). On the left and middle is a microresonator with length 0:42. On the left
the dissipation is � = 0 :3 and the 
uxon is captured, whilst in the middle the dissipat ion is � = 0 :29
and the 
uxon escapes. On the right, the length is 0:4 and the dissipation is � = 0 :9 and the 
uxon
still escapes as the length is too short for a pinned 
uxon to exist.

there exists a minimal length under which no pinned 
uxons can be sustained by the inhomogeneity. If
the length can just sustain pinned 
uxons, then there are both a stable and an unstable pinned 
uxon
close to each other. In the left panels of Figures6 and 7 it can be observed that initially the travelling

uxon approaches the unstable pinned 
uxon, but then re
ect s to the stable one and settles down.

Finally we consider a microresonator with a longer length for which the travelling 
uxon gets
captured and becomes a non-monotonic pinned 
uxon. In Figure 7 it is illustrated that, for a mi-
croresonator with d = 4 and length 1.5 (L = 0 :75), the travelling 
uxon at 
 = 0 :2 and � = 0 :2 gets
attracted to a non-monotonic pinned 
uxon. Note that for mic roresonators (i.e., d > 1), the stable
non-monotonic pinned 
uxons have a \dip" as opposed to the ones for the microresistors which have a
\bump".

-10 -5 0 5 10
0

1

2

3

4

5

6

x

f

Figure 7: Simulation of a travelling wave approaching an inhomogeneity with d = 4 and length 1:5,
when the induced current is
 = 0 :2 and the dissipation is� = 0 :2. The resulting wave is non-monotonic
as can be seen on the right. Due to the weaker dissipation, it takes some time for the wave to converge
to its stable shape. Initially, the travelling wave approaches the monotonic unstable pinned 
uxon,
then de
ects from it and converges to the non-monotonic stable one.

3 No resistance (d=0)

We now analyse the existence and stability of the pinned 
uxons in a microresistor and a microresonator.
First we consider the case when there is no resistance in the inhomogeneity, hence a microresistor with

10



d = 0. This case provides a good illustration of the richness ofthe family of pinned 
uxons, shows
the essence of the analytic techniques for the existence andstability analysis, and has less technical
complications than the more general values ofd. The existence analysis for the case with no bias
current ( 
 = 0) is quite di�erent from the case when a bias current is applied (
 > 0). So we will
consider them separately.

3.1 Existence of pinned 
uxons without applied bias current

For 
 = 0, the pinned 
uxon has to connect the stationary states at � = 0 and � = 2 � . In the
background dynamics of the ODE (4) with D � 1, the unstable manifold of (0; 0) coincides with the
stable manifold of (2�; 0), as follows immediately by analysing the Hamiltonian (5) with D � 1. These
coinciding manifolds are denoted by a dash-dotted red curvein the phase portrait sketched in Figure8.
This curve and hence the stable/unstable manifolds represent the unperturbed sine-Gordon 
uxon ( 2).

0 2 4 6
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0.5
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f

f x
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f

f x

Figure 8: Phase portraits of the ODE (4) for 
 = 0 and d = 0. The dash-dotted red curve represents
the coinciding stable and unstable manifolds of the asymptotic �xed points. The solid blue curves
are orbits for the system inside the inhomogeneity. In the sketch on the right, the bold green curve
represents a pinned 
uxon.

The orbits generated by the Hamiltonian system with D � 0 are straight lines. In Figure 8, samples
of these orbits are given by the solid blue lines. Any solid blue line that crosses the dash-dotted red
stable/unstable manifold can be used to form a pinned 
uxon. An example is given in the panel on
the right in Figure 8, where the bold green curve represents a pinned 
uxon inH 2(R) \ C1(R).

As can be seen from Figure8, the value of the Hamiltonian inside the inhomogeneity is a convenient
parameter to characterise the pinned 
uxons. The points of intersection of the solid blue orbits and
dash-dotted red stable/unstable manifolds are denoted by (� in ; pin ) respectively (� out ; pout ) for the
�rst respectively second intersection. It follows immediately that pin = pout and � out = 2 � � � in .
Furthermore, the expression for the Hamiltonian, (5), gives the following relations for � in and pin :
0 = 1

2 p2
in � (1 � cos� in ) (D � 1) and h = 1

2 p2
in (D � 0), with 0 < h � 2 where h is the value of the

Hamiltonian inside the inhomogeneity. Thus

pin (h) =
p

2h and � in (h) = arccos(1 � h); with 0 < h � 2: (10)

Inside the inhomogeneity (jxj < L ), the pinned 
uxon related to the value h satis�es h = 1
2 � 2

x , thus
� x =

p
2h. Hence the half-lengthL and the parameter h are related by

L =
� 0

� L
dx =

� �

� in (h)

d�
� x

=
� �

� in (h)

d�
p

2h
=

� � arccos(1� h)
p

2h
: (11)
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As the numerator is a monotonic decreasing function ofh and the denominator is monotonic increasing,
it follows immediately that L is a monotonic decreasing function ofh. The function L takes values
in [0; 1 ) as lim

h! 0
L(h) = 1 and lim

h! 2
L(h) = 0. The h-L plot is given in Figure 9. We summarise the

existence results for pinned 
uxons without a bias current in the following lemma.
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Figure 9: Plot of the length L as a function of h, the value of the Hamiltonian in the inhomogeneity,
for 
 = 0 and d = 0.

Lemma 1 Let 
 = 0 and d = 0 . There exists a unique pinned 
uxon for any length 2L of the
inhomogeneity. The Hamiltonian inside the inhomogeneity ofthis pinned 
uxon has the valueh(L ),
implicitly given by (11). De�ne x � to be the shift such that� 0(� L + x � ) = � in (see (2) for the de�nition
of � 0), then the pinned 
uxon is given explicitly by

� pin (x; L; 0; 0) =

8
><

>:

� 0(x + x � ); x < � L;

� + � � arccos(1� h)
L x; jxj < L;

� 0(x � x � ); x > L:
(12)

3.2 Existence of pinned 
uxons with bias current

For 
 > 0, the pinned 
uxon has to connect the stationary states at � = arcsin 
 and � = 2 � +arcsin 
 .
In the background dynamics with D � 1 the unstable manifold of � = arcsin 
 no longer coincides with
the stable manifold of 2� + arcsin 
 . Furthermore, the orbits of the dynamics inside the inhomogeneity
are parabolic curves instead of straight lines. These two changes add substantial richness to the family
of pinned 
uxons.

Let us �rst consider the phase portraits. In Figure 10 we consider
 = 0 :15 as a typical example
to illustrate the ideas. In the dynamics with D � 1, the unstable manifolds to arcsin
 are denoted
by dash-dotted red curves, while the stable manifolds to 2� + arcsin 
 are denoted by dashed magenta
curves. The larger 
 gets, the wider the gap between the unstable and stable manifold becomes. The
dynamics within the inhomogeneity with D � 0 are denoted by solid blue orbits. These solid blue
orbits are nested and can be parametrised with a parameterh, using the Hamiltonian (5) with D � 0:

1
2

(� x )2 + 
� = H0(
 ) + h;

where H0(
 ) is given by the value of the Hamiltonian (5) on the dashed magenta stable manifold
(D � 1):

H0(
 ) = 
 arcsin
 � (1 �
p

1 � 
 2) + 2 �
: (13)
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Figure 10: Phase portrait at 
 = 0 :15 and d = 0. On the right is a zoom into the area around
(�; � x ) = (2 �; 0).

In the phase portrait we observe that the larger the value ofh is, the further to the right the extremum
of the solid blue orbits is.

For the existence of pinned 
uxons, a solid blue orbit has to connect the dash-dotted red unstable
manifold with the dashed magenta stable manifold. In Figure10, the furthest left possible solid blue
orbit for which pinned 
uxons may exist, is the one indicated with h = 0. In the zoom on the right,
it can be seen that this orbit just touches the dashed magentastable manifold. This solid blue orbit
intersects the dash-dotted red unstable manifold twice, both points give rise to a pinned 
uxon, as
sketched in Figure 11. Obviously, the pinned 
uxon in the second plot in Figure 11 will occur in a
defect with a shorter length than the one in the �rst plot. The furthest right possible orbit that gives
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Figure 11: Phase portrait at 
 = 0 :15 andd = 0 with the furthest left solid blue orbit for which pinned

uxons exist. There are two pinned 
uxons possible, represented by the bold green line. On the right
is a zoom into the area around (�; � x ) = (2 �; 0).

rise to pinned 
uxons is marked with hmax in Figure 10. This solid blue orbit touches the dash-dotted
red unstable manifold and crosses the dashed magenta stablemanifolds in 6 points. The leftmost (�rst)
intersection does not give rise to a pinned 
uxon as the dashed magenta stable manifold is intersected
before the dash-dotted red unstable one is. All other intersections represent di�erent pinned 
uxons,
hence 5 pinned 
uxons can be associated with this orbit. Moreover, for h just below hmax , the solid
blue orbit intersects the dash-dotted red unstable manifold twice (while it still intersects the dashed
magenta stable manifold 5 times: there are 10 di�erent pinned
uxons associate to such value ofh.

In general, the pinned 
uxons are determined by two points in the phase plane: the point where
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pinned 
uxon enters the inhomogeneity (i.e. the crossing from the dash-dotted red unstable manifold
to the solid blue orbit), this point will be denoted by ( � in ; pin ) and the point where the pinned 
uxon
leaves the inhomogeneity (i.e. the crossing from the solid blue orbit to the dashed magenta stable
manifold), this point will be denoted by ( � out ; pout ). Thus the points ( � in ; pin ) and (� out ; pout ) are
determined by the set of equations

H0(
 ) � 2�
 = 1
2 p2

in � (1 � cos� in ) + 
� in ;

H0(
 ) + h = 1
2 p2

in + 
� in ;

H0(
 ) + h = 1
2 p2

out + 
� out ;

H0(
 ) = 1
2 p2

out � (1 � cos� out ) + 
� out :

(14)

Combining the equations in (14), we get expressions for� in and � out :

cos� in = 1 � (h + 2 �
 ) and cos� out = 1 � h: (15)

This is well-de�ned only if 0 � h � 2(1 � �
 ). Hence there are maximal values for
 and h, given by


 max =
1
�

and hmax = 2(1 � �
 ):

If 
 > 
 max , then there is no solid blue orbit that intersects both the dash-dotted red unstable manifold
and the dashed magenta stable manifold, hence no pinned 
uxons exist if the applied bias current is
larger than 
 max . If h > h max , then the solid blue orbits do not intersect the red manifold anymore.

Furthermore, � in must lie on the dash-dotted red unstable manifold, hence arcsin 
 � � in � � max (
 ),
where � max (
 ) is the maximal � -value of the orbit homoclinic to arcsin 
 . As h 2 [0; 2(1 � �
 )], this
implies that there are two possible values for� in and that pin > 0:

� in = � � arccos(2�
 � (1 � h)) and pin =
p

2 (H0(
 ) + h � 
� in ):

Note that the unstable manifold left of arcsin 
 only intersects with blue orbits that have � x < 0, hence
those orbits can never connect to one of the stable manifoldsof 2� + arcsin 
 .

The point ( � out ; pout ) has to lie on the dashed magenta stable manifolds, so there can be up to �ve
possible branches of solutions:

1. � out = 2 � � arccos(1� h) with pout > 0, for all 0 � h � hmax ;

2. � out = 2 � + arccos(1 � h) with pout � 0, for 0 � h � h2 and pout < 0, for h2 < h � hmax ;

3. � out = 2 � + arccos(1 � h) with pout � 0, for h2 < h � hmax ;

4. � out = 4 � � arccos(1� h) with pout � 0, for h1 < h � hmax ;

5. � out = 4 � � arccos(1� h) with pout < 0, for h1 < h � hmax .

Here h2 is the h-value such that the blue orbit intersects the magenta manifolds at the equilibrium
(2� + arcsin 
; 0), i.e., h2(
 ) = 1 �

p
1 � 
 2, and h1 is such that the blue orbit touches the magenta

manifold at (2� + � max (
 ); 0), the rightmost point, thus h1(
 ) = 1 � cos(� max (
 )). In all cases,
jpout j =

p
2 (H0(
 ) + h � 
� out ).

To satisfy h2(
 ) � hmax (
 ), we need that 
 � 
 2 = 4�
4� 2+1 � 0:3104. If 
 > 
 2, then only pinned


uxons with � out = 2 � � arcsin
 and pout > 0 exist. In order to have h1(
 ) � hmax (
 ), we need that

 � 
 1, where 
 1 is the implicit solution of cos � max (
 1) + 1 = 2 �
 1, i.e., 
 1 � 0:1811. If 
 > 
 1, then
no pinned 
uxons with � out = 4 � � arcsin
 exist. On the intervals of common existence, we have
0 � h2(
 ) � h1(
 ) � hmax (
 ), h1(
 1) = hmax (
 1), h2(
 2) = hmax (
 2), see Figure12.
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Figure 12: The extremal h-values h1(
 ), h2(
 ) and hmax (
 ).

In Figure 13, we have taken 
 = 0 :15 and h = ( h1 + hmax )=2 and have plotted all �ve possible
pinned 
uxons (i.e. all possibilities for ( � out ; pout )) with � in = � � arccos(2�
 � (1 � h)). Obviously,
�ve more pinned 
uxons with the same ( � out ; pout ) are possible with � in = � + arccos(2�
 � (1 � h)).

To determine the length of the inhomogeneity for the pinned 
uxons, we use that on the or-
bits in the inhomogeneity (solid blue curves in the phase portrait) � and � x are related by j� x j =p

2 (H0(
 ) + h � 
� ). Integrating this ODE, taking into account the sign of pout , we get that the
length of the pinned 
uxons with pout > 0 is given by

2L =

p
2




hp
H0 + h � 
� in �

p
H0 + h � 
� out

i
=

pin � pout



(16)

and for pout < 0, we have

2L =

p
2




hp
H0 + h � 
� in +

p
H0 + h � 
� out

i
=

pin � pout



: (17)

These lengths are plotted in Figure14 for 
 = 0 :15. The solid blue curve is formed by the branches
1 and 2, the dash-dotted red curve is branch 3 and the dashed green curve is formed by the branches
4 and 5. This plot shows that there is a positive minimal and maximal length for the inhomogeneity
to sustain pinned 
uxons. Inhomogeneities with shorter or longer lengths will not be able to sustain
pinned 
uxons. Figure 14 illustrates also that the maxima and minima of the possible length of the
inhomogeneity are attained inside the interval (0; hmax ), not at the endpoints. These extremal points
will play an important role in the stability analysis as we wi ll see in the next section.

Remark 2 At � out = 2 � + arcsin 
 , i.e h = h2, there is a homoclinic gluing bifurcation. To see
this, we look at the disappearing solution in the limith # h2. For h # h2, there is one solution with
� out � 2� +arcsin 
 and pout < 0 and one solution with� out � 2� +arcsin 
 and pout > 0. The solution
with pout < 0 remains very close to2� + arcsin 
 for x > L . However, the solution with pout > 0 is
tracking almost all of the homoclinic connection to2� + arcsin 
 . And in the limit h # h2 this solution
\splits" into the pinned 
uxon with pout = 0 and a full homoclinic connection (
uxon-anti
uxon pair).

In general, the derivation of the existence of the pinned 
uxons shows that for �xed 
 > 0 and d = 0,
there will always be a strictly positive minimal and maximal length for the existence of pinned 
uxons.
From Figure 12, it follows that the dashed green curve of pinned 
uxons with � out = 4 � � arccos(1� h)
is not present if 
 > 
 1. Similarly if 
 > 
 2, the dash-dotted red curve of pinned 
uxons with
� out = 2 � + arccos(1 � h) and pout > 0 are not present. Below we summarise the results for the
existence of the pinned 
uxons with an induced current:
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Figure 13: The �ve pinned 
uxons with � in = � � arccos(2�
 � (1 � h)) for 
 = 0 :15, d = 0 and
h = ( h1 + hmax )=2. Note that only the pinned 
uxon in the �rst panel is monoton ic. In the L-h of
Figure 14, the pinned 
uxons in the �rst two panels are on the solid blue curve, the third one is on the
dash-dotted red curve and the last two are on the dashed greencurve.

Theorem 3 For d = 0 and every 0 < 
 � 1
� , there are L min (
 ) and L max (
 ), such that for every

L 2 (L min ; L max ), there are at least two pinned 
uxons (at least one forL = L min or L = L max ).
Furthermore

lim

 #0

L min (
 ) = 0 ; lim

 #0

L max (
 ) = 1 ;

and

lim

 " 1=�

L min (
 ) = lim

 " 1=�

L max (
 ) =

r
�
2

�
arcsin 1

� +
p

� 2 � 1
�

�

r
�
2

�
arcsin 1

� +
p

� 2 � 1 � �
�

� 1:8:

For given L 2 [L min ; L max ], the maximum possible number of simultaneously existing pinned 
uxons
is 6. For 
 > 1

� , there exist no pinned 
uxons.

To relate the rich family of pinned 
uxons which exists for 
 > 0 with the unique pinned 
uxons for

 = 0, we have sketched theL-h curves for 
 = 0 :001 in Figure 15. The bold blue curve is very close
to the curve in Figure 9 and if 
 goes to 0, it converges to this curve. The pinned 
uxons on thebold
blue curve have� in = � � arccos(2�
 � (1 � h)) = arccos(1 � h � 2�
 ) and � out = 2 � � arccos(1� h)
and for 
 ! 0, these 
uxons converge to the ones observed for
 = 0. There are some other convergent
L -h curves as well. The length of the solid blue curve associatedwith the pinned 
uxons with � in =
� + arccos(2�
 � (1 � h)) = 2 � � arccos(1� h � 2�
 ) and � out = 2 � � arccos(1� h) goes to zero as
expected. It can be shown that dash-dotted red and dashed green curves can be associated to lengths
of 4� -
uxons. A 4 � -
uxon is a connection between 0 and 4� . Such 
uxon do not exist without an
inhomogeneity, but with an inhomogeneity such connectionsare possible and some 4� -
uxons are stable.
There are four possible 4� -
uxons if 
 = 0 and the 
uxons on the dashed green and dashed-dotted red
curves converge to those 4� -
uxons. For more details, see [20].
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Figure 14: The lengths of the pinned 
uxons for 
 = 0 :15 andd = 0. The lengths of the pinned 
uxons
with � out = 4 � � arccos(1� h) are plotted as the dashed green curve (branches 4 and 5), thelengths of
pinned 
uxons with � out = 2 � + arccos(1 � h) and pout > 0 are the dash-dotted red curve (branch 3).
The lengths of the remaining pinned 
uxons (branches 1 and 2)are indicated by the solid blue curves.
The panels on the right zoom into the top and bottom and show that the minimal and maximal length
are not obtained for hmax , but a smaller value.

3.3 Stability of the pinned 
uxons with d = 0

As seen in the introduction, the stability of the pinned 
uxo ns is determined by the eigenvalues of the
linearisation operator L pin as de�ned in (7). For d = 0, the linearisation operator takes the form

L pin (x; L; 
; 0) =

8
><

>:

Dxx � cos� pin (x; L; 
; 0); jxj > L ;

Dxx ; jxj < L:

where � pin is one of the pinned 
uxons found in the previous section.
When there is no induced current (
 = 0), expressions for the eigenvalues ofL pin can be found

explicitly. Recall that for d = 0 and 
 = 0, there is a unique pinned 
uxon for each length L � 0, see
Lemma 1.

Lemma 4 For 
 = 0 and d = 0 , the linear operator L pin associated to the unique pinned 
uxon in the
defect with lengthL has a largest eigenvalue� max 2 (� 1; 0) given implicitly by the largest solution of

� �
h
� + 1

2

p
2(1 + cos� in )

i
+ 1

2 (1 � cos� in ) =

�
p

1 � � 2
h
� + 1

2

p
2(1 + cos� in )

i
tan

� p
1 � � 2 � � � inp

2(1� cos� in )

�
;

(18)
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Figure 15: L -h curves of the pinned 
uxons for 
 = 0 :001.

where � =
p

1 + � max 2 (0; 1) and the relation between� in and L is given in (10) and (11).

In Figure 16, � max is sketched as function of the half-lengthL of the pinned 
uxon. The proof of
Lemma 4 is quite technical; it is given in appendix A.

Remark 5 For L large (hence� in small), equation (18) has more solutions. Hence for those pinned

uxons L pin has some smaller eigenvalues in(� 1; 0) too.

Corollary 6 If there is no induced bias current (
 = 0 ) and the microresistor has d = 0 , then the
unique pinned 
uxon in the defect with lengthL is linearly and nonlinearly stable under perturbations
in H 2(R) \ L 1(R). The pinned 
uxon is asymptotically stable if � > 0.
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Figure 16: The largest eigenvalue of the linearised operator L pin at d = 0 and 
 = 0 as function of the
half-length L of the inhomogeneity.

Next we consider the case that there is an induced bias current ( 
 > 0). In the previous section
we have seen that in this case the pinned 
uxons come in families, characterised by the solid blue,
dash-dotted red and dashed green curves in Figure14. Locally along those curves, we can write either
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L as a function of h, or, h as a function of L . Along those curves, we will look for changes of stability,
i.e., �nd whether the operator L pin has an eigenvalue 0 (recall that eigenvalues ofL pin must be real.
We will show that L pin has an eigenvalue 0 if and only if along theh-L curve we have dL

dh = 0 or the
pinned 
uxon is isolated. Isolated pinned 
uxons occur when 
 is maximal, i.e., 
 = 1

� or when 
 = 
 1,
the maximal 
 -value for which pinned 
uxons with � out = 4 � � arccos(2�
 � 1) exist. This lemma is a
special case of a more general theorem presented in [21]. The proof simpli�es considerably in this case.

Lemma 7 For any 
 � 0, the linear operator L pin (x; L; 
; 0) has an eigenvalue zero if and only if

� dL
dh = 0 ;

� or 
 = 1
� (this eigenvalue zero is the largest eigenvalue);

� or 
 = 
 1 � 0:18, the solution of cos� max (
 1) + 1 = 2 �
 1 (see section3.2), and � pin is such that
� in = � , � out = 4 � � arccos(2�
 1 � 1) = 2 � + � max (
 1) (this eigenvalue zero is not the largest
eigenvalue).

Proof First we observe that di�erentiating ( 4) with respect to x shows that � 0
pin satis�es (Dxx �

D (x) cos� pin (x)) � 0
pin (x) = 0, for x 6= � L . However, it follows immediately from (4) that � 0

pin is not
continuously di�erentiable, except when there exist k� 2 N such that � in = k� � and � out = k+ � .
From the existence results, it follows that this happens only if 
 = 1

� and in this case � 0
pin is twice

di�erentiable, so L pin � 0
pin = 0 and � 0

pin is an eigenfunction with the eigenvalue zero. Note, that for

 = 1

� , there is only one pinned 
uxon and the solid blue curve in Figure 14 has become a single point
(there are no red or green curves).

In all other cases, � 0
pin 62C1(R) � H 2(R) so � 0

pin is not an eigenfunction with the eigenvalue
zero. However, � 0

pin still plays a role in the eigenfunction related to any eigenvalue zero. Indeed,
on both intervals (1 ; � L ) and (L; 1 ), the second order linear ODE L pin  = 0 has two linearly
independent solutions. As the asymptotic system is hyperbolic, one solution is exponentially decaying
whilst the other is exponentially growing. Thus if the linear operator L has an eigenvalue zero, then
the eigenfunction in the intervals (�1 ; L ) and (L; 1 ) must be a multiple of the exponentially decaying
solution. As � 0

pin is exponentially decaying for jxj ! 1 and satis�es L � 0
pin = 0 for jxj > L , it follows

that for any eigenvalue zero, the eigenfunction must be a multiple of � 0
pin for jxj > L , unless� 0

pin � 0.
The case� 0

pin � 0 happens only when� out = 2 � + arcsin 
 and x > L . In this case, the appropriate

eigenfunction is a multiple of e� 4
p

1� 
 2 (x � L ) .
Next we look inside the inhomogeneity, i.e.,jxj < L . The linearised problem inside the defect for

an eigenvalue zero can be solved explicitly and gives an eigenfunction of the form A + B (x + L), with
A and B free parameters andjxj < L .

To conclude, if the linear operator L pin has an eigenvalue zero, and� out 6= 2 � + arcsin 
 (we will
consider the case� out = 2 � + arcsin 
 later), then the eigenfunction is of the form

 =

8
>>>><

>>>>:

� 0
pin (x); x < � L;

A + B (x + L); jxj < L;

K � 0
pin (x); x > L;

(19)

where A, B and K are free parameters. We have to choose the free parameters such that  is con-
tinuously di�erentiable at � L . As there are only three free parameters and four matching conditions,
this will give us a selection criterion on the lengthL for which an eigenvalue zero exists. The matching
conditions are

A = � 0
pin (� L � ); B = � 00

pin (� L � ); B = K� 00
pin (L + ); and A + 2BL = K� 0

pin (L + ); (20)
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where the notation � 0
pin (� L � ) = lim x"� L � 0

pin (x), � 0
pin (L + ) = lim x#L � 0

pin (x), etc. Using that pin=out =
� 0

pin (� L ) and 
 + � 00
pin (� L � ) = sin � (� L ) = sin � in=out , this can be written as

A = pin ; B = sin � in � 
; B = K (sin � out � 
 ); and A + 2BL = Kp out :

Equations (16) and (17) show that L = pin � pout
2
 , hence the parameters are given by

A = pin ; B = sin � in � 
; and K (sin � out � 
 ) = sin � in � 


and the compatibility condition on L , or equivalently h, is

0 = pin sin � in (sin � out � 
 ) � pout sin � out (sin � in � 
 ): (21)

To derive this expression, we have multiplied the remainingequation [A+2BL = Kp out ] with 
 (sin � out �

 ). This term would be zero if sin� out = 
 , hence� out = 2 � + arcsin 
 but this case is not considered
now.

For completeness, we also consider the case where we assume that the eigenfunction vanishes for
x < � L . If this is the case, then matching at x = � L gives immediately that A = 0 = B . Thus this
leads to a non-trivial eigenfunction only if � 0

pin (L ) = 0 = lim x#L � 00
pin (x). In other words, when � pin is a

�xed point for x > L . This happens only if � out = 2 � + arcsin 
 . This case we will be considered later.
Next we link the expression (21) to the derivative of L with respect to h. As L = pin � pout

2
 , the
derivatives of pin and pout are needed. Di�erentiating (14) and (15), we get

pin
dpin

dh
= 1 � 
� 0

in (h); sin � in
d� in

dh
= 1 and pout

dpout

dh
= 1 � 
� 0

out (h); sin � out
d� out

dh
= 1 :

Thus di�erentiating L = pin � pout
2
 gives that

pin sin � in pout sin � out
dL
dh

=
1

2

[pout sin � out (sin � in � 
 ) � pin sin � in (sin � out � 
 )] (22)

So we have shown that if� out 6= 2 � + arcsin 
 and the operator L pin has an eigenvalue zero, then either
dL
dh (h; 
 ) = 0 or pin sin � in pout sin � out = 0. Considering pin sin � in pout sin � out = 0 in more detail, we
get:

� sin � out = 0 would mean that � out = 2 � . Going back to the compatibility condition ( 21), this
implies that 
p in sin � in = 0, which only happens if also sin� in = 0 or pin = 0. In the existence
section we have seenpin > 0, hence
p in sin � in = 0 can only happen if � in = � , hence if 
 = 1

� ;

� sin � in = 0 implies that � in = � . Going back to the compatibility condition ( 21), this implies
that 
p out sin � out = 0, which only happens if also sin� out = 0 or pout = 0. Hence either 
 = 1

�
or 
 = 
 1, as the case� out = 2 � + arcsin 
 is excluded at this moment;

� pin 6= 0 as we have seen before;

� pout = 0 happens if � out = 2 � + arcsin 
 or � out = 2 � + � max (
 ). Going back to the compatibility
condition (21), this implies that pin sin � in (sin � out � 
 ) = 0. Since � � arcsin
 < � max (
 ) < 2� ,
this implies this only happens if sin� in = 0, which case is considered before.

So altogether we have if� out 6= 2 � + arcsin 
 and the operator L pin has an eigenvalue zero, then either

� dL
dh (h; 
 ) = 0 or

� � in = � and � out = 2 � , which only happens when
 = 1
� . The eigenfunction in this case is� 0

pin ,
which does not have any zeros, hence the eigenvalue zero is the largest eigenvalue.
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� � in = � and � out = 2 � + � max (
 ) (i.e. pout = 0), which only happens if 
 = 
 1. In this case the
eigenfunction is� 0

pin for x < L and 
 1

 1 � sin � max (
 1 ) � 0

pin for x > L . This eigenfunction has a zero at
x = L , hence the eigenvalue zero is not the largest eigenvalue. Note that when 
 = 
 1 the green
L(h) curve in Figure 14 has degenerated to an isolated point related to the pinned 
uxon � pin

considered in this case.

To show that the converse is true, we look at the three casesdL
dh (h; 
 ) = 0, 
 = 1

� and 
 = 
 1 and
(� out ; pout ) = (2 � + � max ; 0). It is straightforward to verify that the eigenfunctions as described earlier
can be constructed in those cases.

Finally we look at the case� out = 2 � + arcsin 
 . In this case 
 � 4�
1+4 � 2 and h = h2 = 1 �

p
1 � 
 2.

Furthermore, the pinned 
uxons satis�es � 0
pin � 0 for x > L . In this case, the general form of an

eigenfunction for an eigenvalue zero is

 =

8
>>>><

>>>>:

� 0
pin (x); x < � L;

A + B (x + L); jxj < L;

K e � 4
p

1� 
 2 (x � L ) ; x > L;

where A, B and K are free parameters. We have to choose the free parameters such that  is contin-
uously di�erentiable at = � L , i.e.

A = � 0
pin (� L � ); B = � 00

pin (� L � ); K = A + 2BL; and B = � K 4
p

1 � 
 2:

As L = pin � pout
2
 = pin

2
 , this implies that A = pin , B = sin � in � 
 and K = pin sin � in

 , with the matching

condition


 (sin � in � 
 ) = � 4
p

1 � 
 2 sin � in pin : (23)

If � in = � + arccos(2�
 �
p

1 � 
 2), then sin � in < 0 and (23) cannot be satis�ed as pin > 0 and

 > 0. If � in = � � arccos(2�
 �

p
1 � 
 2), then the phase portrait in the existence section shows

that sin � in > 
 , thus (sin � in � 
 ) > 0 and again (23) cannot be satis�ed. Thus no eigenvalue zero can
occur at � out = 2 � + arcsin 
 . 2

Lemma 7 allows us to conclude the stability of pinned 
uxons. An important consequence of
Lemma 7 is that changes of stability of the pinned 
uxons along a h-L -curve can only happen at points
with dL

dh = 0 (i.e. at critical points of this curve), as the two special cases correspond to isolated pinned

uxons.

Theorem 8 For d = 0 , every 0 < 
 � 1
� , and every L 2 [L min (
 ); L max (
 )], there is exactly one

stable pinned 
uxon. This pinned 
uxon is linearly and nonlin early stable (and asymptotically stable

for � > 0). For L su�ciently large

 

L >

r
� +arcsin 
 +arccos(2 �
 �

p
1� 
 2 )

2


!

, the stable pinned 
uxons are

non-monotonic.

See Figure17 for an illustration of this theorem.

Proof If 
 = 1
� , then only the inhomogeneity with half-length exactly L =

r
�
2

�
arcsin 1

� +
p

� 2 � 1
�

�
r

�
2

�
arcsin 1

� +
p

� 2 � 1 � �
�

� 1:8 has a pinned 
uxon. From Lemma 7, it follows that the linearisa-

tion for this pinned 
uxon has a largest eigenvalue 0, so thispinned 
uxon is linearly stable.
In Corollary 6, we have seen that the unique pinned 
uxons for
 = 0 are stable.

21



0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10

h

L

-10 -5 0 5 10
0

1

2

3

4

5

6

x

f

-10 0 10
0

2

4

6

8

10

12

x

f

Figure 17: Stability for d = 0 and 
 = 0 :15. The bold magenta curve represents stable solutions, all
other solutions are unstable. On the right there is an example of a stable monotonic pinned 
uxon (at
L = 0 :38) and a stable non-monotonic one (atL = 10), Both stable pinned 
uxons have h = 1, i.e.
they are near minimal respectively maximal length, which are at L min = 0 :35 and L max = 10:13.

If 0 < 
 < 1
� , then there are at least two pinned 
uxons if L 2 (L min ; L max ), see Theorem3. As

seen before, theL-h curves for the pinned 
uxons form three isolated curves:� out = 4 � � arccos(1� h)
(dashed green curve), the (dash-dotted red) curve of pinned
uxons with � out = 2 � + arccos(1 � h)
and pout > 0 (exists for h > h 2), and the other pinned 
uxons (solid blue curve). The type and colour
coding refers to Figures14 and 17. The 
uxons on the solid blue curve exist for all 0 � 
 � 1

� ; the
existence of the other curves depends on the value of
 .

The linearisation about the pinned 
uxon at the minimum on th e dash-dotted red curve has an
eigenvalue zero asdL

dh = 0 at this point (Lemma 7). The associated eigenfunction is a multiple of� 0
pin

for x > L . On the dash-dotted red curve,pout > 0 and � 0
pin (x) < 0 for x large. Thus this eigenfunction

has a zero. Using Sturm-Liouville theory, we can conclude that the eigenvalue zero is not the largest
eigenvalue. As there is only one 
uxon with dL

dh = 0 on the red curves, all pinned 
uxons on the
dash-dotted red curve are linearly unstable.

Similarly, the minimum and maximum on the dashed green curveare associated with pinned 
uxons
whose linearisation has an eigenvalue zero. Again, the associated eigenfunction for x > L is a multiple
of � 0

pin . As for the dash-dotted red curve, at the minimum we havepout > 0 and � 0
pin (x) < 0 for x

large. Thus this eigenfunction has a zero and we can concludethat the eigenvalue zero is not the largest
eigenvalue. The dashed green curve is a closed curve with only two points with dL

dh = 0, so topologically
it follows that the eigenvalue zero at the maximum cannot be the largest eigenvalue either. Thus we
can conclude that all pinned 
uxons on the dashed green curveare linearly unstable.

Finally we consider the solid blue curve. We use the stability of the pinned 
uxons at d = 0, 
 = 0
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to derive the stability properties of the pinned 
uxons on th is curve. The pinned 
uxons that can be
continued to 
 = 0 are the connections between� in = � � arccos(2�
 � 1 + h) = arccos(1 � h � 2�
 )
and � out = 2 � � arccos(1� h). The eigenvalues of the linearisation operator are continuous in 
 , hence
those solutions are stable. Using that zero eigenvalues canonly occur if L (h) has a critical point, the
solid blue curve can be divided in stable and unstable solutions. The stable solutions are in the part
of the curve L(h) curve between the minimum and maximum that contains the pinned 
uxons with
� in = � � arccos(2�
 � 1 + h) and � out = 2 � � arccos(1� h). The pinned 
uxons in the other part are
unstable as the zero eigenvalue is simple. In (19) and (20), an explicit expression for the eigenfunction
with the eigenvalue zero is given. Using this expression, itcan be veri�ed that the eigenfunctions
related to the zero eigenvalues on this curve indeed do not have any zeroes.

So altogether we can conclude that for each length there is exactly one stable and at least one
unstable solution. The stable 
uxons are non-monotonic if L is larger than the length of the 
uxon
at h = h2(
 ) = 1 �

p
1 � 
 2 with � in = � � arccos(2�
 �

p
1 � 
 2) and � out = 2 � + arcsin 
 , hence

L >

r
� +arcsin 
 +arccos(2 �
 �

p
1� 
 2 )

2
 . 2

4 General case ( d > 0)

After analysing the existence and stability of pinned 
uxons in microresistors with d = 0 in full detail,
in this section we will sketch the existence and stability ofthe pinned 
uxons for a general microresistor
or microresonator.

4.1 Microresistors ( 0 < d < 1)

The existence of pinned 
uxons for 0< d < 1 follows from similar arguments as for the cased = 0.
Using the matching of appropriate solutions in the phase planes again, it can be shown that pinned

uxons exist for 0 � 
 � 1� d

� . The Hamiltonian dynamics in the inhomogeneity satis�es the relation

1
2

� 2
x � d(1 � cos� ) + 
� = H0(
 ) + h;

whereh is a parameter for the value of the Hamiltonian as before. Thecase
 = 0 (no induced current)
is more or less identical to before, with a unique pinned 
uxon for any L > 0. For 
 > 0, a similar
calculation as in the cased = 0 shows that there are two possible entry angles:

� in = � � arccos
�

2�
 � (1� d� h)
1� d

�
or � in = � + arccos

�
2�
 � (1� d� h)

1� d

�

and up to three possible exit angles:

� out = 2 � � arccos
�

1� d� h
1� d

�
; � out = 2 � + arccos

�
1� d� h

1� d

�
; or � out = 4 � � arccos

�
1� d� h

1� d

�
;

with 0 � h � 2(1� d� �
 ). If 
 > d > 0 (i.e., d is su�ciently close to zero), then there is still a minimal
length L min (
 ) > 0 and a maximal length L max (
 ) for the inhomogeneity at which pinned 
uxons can
exist. However, if 
 is less thand (0 < 
 � d), then there is no upper bound on the possible length of
the inhomogeneity anymore, i.e.,L max = 1 . This new phenomenon appears for
=d � 1, due to the
fact that now the dynamics in the inhomogeneity have �xed points at ( �; p ) = (2 k� + arcsin( 
=d ); 0),
k 2 Z. If h corresponds to an orbit which contains such a �xed point, then the length of an orbit
with pout < 0 goes to in�nity. To illustrate this, in Figure 18, we have sketched the phase portraits for
d = 0 :2 and 
 = 0 :15 < d and 
 = 0 :22 > d .

As before, the length of the inhomogeneity for the pinned 
uxons parametrised with h can be
determined by using the relation j� x j =

p
2(H0(
 ) + h + d(1 � cos� ) � 
� ) and integrating the ODE,

taking care of the sign of � x . The resulting integrals cannot be expressed analyticallyin elementary
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Figure 18: Phase portrait at d = 0 :2 and 
 = 0 :15 (left) and 
 = 0 :22 (right). Note that in the left

graph, the third solid blue orbit has a �xed point. So the pinn ed 
uxon with � out = 2 � +arccos
�

1� d� h
1� d

�

and pout < 0 does not exist for this h-value. Nearby pinned 
uxons will be in a defect with a length
that goes to in�nity. In the right graph, there are no �xed poi nts anymore as 


d > 1. Thus the defect
lengths for which pinned 
uxons exist are bounded.

functions anymore, but they can be evaluated numerically. To illustrate this, we have determined the
L-h curves as function ofh for d = 0 :2 and 
 = 0 :15 (
 < d ) and 
 = 0 :22 (
 > d ). The L-h curves are
presented in Figure19. Note the unbounded length curve for
 = 0 :15.
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Figure 19: L -h curves ford = 0 :2 and 
 = 0 :15 (left) and 
 = 0 :22 (right). For 
 = 0 :15, the L-h curves
are unbounded as
 is less thand. The line and colour coding is as before, hence the bold magenta
curve correspond to the stable 
uxons.

In the following theorem, we summarise the existence of pinned 
uxons for 0 < d < 1 and give their
stability.

Theorem 9 For 0 < d < 1 and

� 
 = 0 , there is a unique stable pinned 
uxon for eachL � 0;

� 0 < 
 � min
�
d; 1� d

�

�
, there is a minimal length L min (
 ) > 0 such that for all L > L min there
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exists at least two pinned 
uxons (one forL = L min ). For each L � L min , there is exactly one
stable pinned 
uxon;

� d < 
 � 1� d
� , there are minimal and maximal lengths, L min (
 ) > 0 respectively L max (
 ) such

that for all L min < L < L max there exists at least two pinned 
uxons, one pinned 
uxon if L is
maximal or minimal, and no pinned 
uxons exist for other lengths. For each L min � L � L max ,
there is exactly one stable pinned 
uxon;

� for 
 > 1� d
� , there exists no pinned 
uxon.

Note that the third case will be relevant only if 0 < d < 1
� +1 .

To prove the stability result for the pinned 
uxons, we will u se Theorem 4.5 from [21]. In [21],
the stability of fronts or solitary waves in a wave equation with an inhomogeneous nonlinearity is
considered. It links the existence of an eigenvalue zero of the linearisation with critical points of the
L-h curve. The proof has similarities with the proof of the cased = 0 in Lemma 7, but several extra
issues have to be overcome. Theorem 4.5 of [21], applied to our pinned 
uxons for 0 < d < 1, leads to
the following lemma, which is very similar to Lemma 7 which holds for the microresistor with d = 0.

Lemma 10 If 0 < d < 1, then the linear operator L pin (x; L; 
; d ) has an eigenvalue zero if and only if

� dL
dh = 0 ;

� or 
 = 1� d
� (this eigenvalue zero is the largest eigenvalue);

� or 
 is such that it solves(1 � d)(cos� max (
 ) + 1) = 2 �
 and the pinned 
uxon is such that
� in = 2 � + � max (
 ) (this eigenvalue zero is not the largest eigenvalue).

The veri�cation of Lemma 10 can be found in [21, x4.4]. As far as the special cases in this lemma is
concerned, if
 = 1� d

� or 
 is such that it solves (1� d)(cos(� max (
 ) + 1) = 2 �
 and the pinned 
uxon
is such that � in = 2 � + � max (
 ), then the pinned 
uxon under consideration corresponds anisolated
\green" point and dL

dh does not exist. In the case of
 = 1� d
� , there is exactly one value of the lengthL

for which there exists a pinned 
uxon. In the other case, there are more pinned 
uxons, but on other
branches. In the case of an isolated pinned 
uxon, either thederivative of the pinned 
uxon is an
eigenfunction with the eigenvalue zero or a combination of multiples of the derivative of the pinned

uxon is an eigenfunction.

The stability result of Theorem 9 follows by combining Lemmas4 and 10.

Proof of Theorem 9 The existence is described in the �rst part of this section, in this proof we
focus on the stability. For 0 � d < 1 and 
 = 0, there is a unique pinned 
uxon for each length L . It
is straightforward to show that for each 0 � d < 1, the length function L(h) is monotonic decreasing
in h. Thus dL

dh 6= 0 and none of the pinned 
uxons has an eigenvalue zero. As allpinned 
uxons are
nonlinearly stable for d = 0 (Lemma 4) and no change of stability can happen, all pinned 
uxons with

 = 0 are nonlinearly stable for all 0 � d < 1.

If 0 < d < 1 and 0< 
 < 1� d
� , then the L-h curve follows as a smooth deformation from the curve

for d = 0. And the unique stable pinned 
uxon for each length follows.
If 0 < d < 1 and 
 = 1� d

� , then the pinned 
uxon is an isolated point and Lemma 10 gives that it
is stable. 2

4.2 Microresonator ( d > 1)

The existence results of pinned 
uxons ford > 1 are slightly di�erent from the ones for d < 1. The main
di�erence is the type of solutions used in the inhomogeneous system. For d < 1, we used solutions that
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were part of unbounded orbits or homo/heteroclinic orbits in the phase plane. Ford > 1, we have to use
periodic orbits. The most simple way to understand this crucial di�erence between the microresistor
and the microresonator case is to consider the phase portraits without applied bias current ( 
 = 0) {
see Figure20. When d < 1, respectively d > 1, the (dash-dotted red) heteroclinic orbit of the system
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Figure 20: Phase portraits at
 = 0 for various values ofd. The dash-dotted red curve is the heteroclinic
connection at d = 1. The solid blue curves are orbits for d = 1

2 and the dashed green ones are orbits
for d = 2.

outside the inhomogeneity is outside, resp. inside, the (solid blue resp. dashed green) heteroclinic orbit
of the system inside the inhomogeneity { see Figure20. As a consequence, a pinned defect can only
be constructed with (unbounded) orbits that are outside the (solid blue) inhomogeneous heteroclinic
orbit in the microresistor case, while one has to use bounded, periodic orbits in microresonator case {
see the bold green lines in Figure20.

One consequence is that if one solution for a inhomogeneity of a certain length exists, then there
are also solutions for inhomogeneities with lengths that are this length plus a multiple of the length of
the periodic orbit. This implies that the number of pinned 
u xons for a defect of lengthL may grow
without bound as L increases { which is very di�erent from the microresistor (d < 1). We will focus on
the existence of solutions which use less than a full periodic orbit as the other ones follow immediately
from this.

Using similar techniques as in the previous sections, it canbe shown that if bd is the solution of
� 5�

2 +arcsin 1
d +

p
d2 � 1+ d� 1 = 0, ( bd � 4:37), then for d > bd, pinned 
uxons exist for any 0 � 
 � 1.

If d � bd, then pinned 
uxons exist for 0 � 
 < 
 max , where 
 max (d) is the (implicit) solution of
� 2�
 � 


�
arcsin
 � arcsin 


d

�
+

p
d2 � 
 2 �

p
1 � 
 2 + ( d � 1) = 0.

For illustration, phase portraits for d = 4 and various values of 
 are sketched in Figure21. This
illustrates that the solutions used in the inhomogeneous system (solid blue lines) are all part of a
periodic orbit. Note that for 
 > 0 both unstable manifolds of arcsin
 and only the unbounded stable
manifold of 2� +arcsin 
 are used as opposed to the microresistor case where only the bounded unstable
manifold of arcsin
 and both stable manifolds of 2� + arcsin 
 are used.

As before, the dynamics in the inhomogeneity satis�es the relation

1
2

� 2
x � d(1 � cos� ) + 
� = H0(
 ) + h;

where h is a parameter for the value of the Hamiltonian. Again it can be shown that the entry and
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Figure 21: Phase portrait at d = 4 and 
 = 0 :2 (upper row), 
 = 0 :5 (bottom, left) and 
 = 0 :95
(bottom, right). As before, the dash-dotted red curves are the unstable manifolds to arcsin
 and the
dashed magenta ones are the stable manifolds to 2� +arcsin 
 . The solid blue curves are orbits inside the
inhomogeneity. The inner solid blue curve with angles between 0 and 2� is the orbit with the minimal
h-value for which pinned 
uxons exist. The solid blue curves give rise to pinned 
uxons up to (but not
including) the solid blue homoclinic connection to arcsin(
d ). Some of the periodic orbits with negative
angles will also play a role in the construction of the pinned
uxons. If 
 = 0 :95 > 
 max (d) � 0:9 (right
plot), the solid blue homoclinic orbit (that encloses the 
u xon's limit value at �1 , i.e., (arcsin
; 0))
does not intersect the dashed magenta stable manifold; illustrating that there cannot be pinned 
uxons
for 
 > 
 max (d).

exit angles satisfy

cos� in =
2�
 + d � 1 + h

d � 1
and cos� out =

d � 1 + h
d � 1

;

where now � 2(d � 1) � h < h max . Here hmax corresponds to theh-value of the orbit homoclinic to
arcsin 


d in the inhomogeneous system; it can be shown thathmax < 0. As we use periodic orbits
inside the inhomogeneity, the entry and exit angles will di�er by less than 2� . For any h value in
[� 2(d � 1); hmax ), there will be pinned 
uxons with entry angles between arcsin 


d and 2� . For 
 small
relative to d, entry angles less than arcsin
d are also possible and they can be related to smaller (more
negative) h values. The p-values for the exit points are always positive, while the entry points can
have both positive and negativep-values if the entry angle is larger than arcsin


d . The pinned 
uxons
with entry angles less than arcsin
 have only negativepin -values and hence those pinned 
uxons are
non-monotonic and \dip down".

For 
 = 0, at least one pinned 
uxon exists for each L � 0. If L is su�ciently large, there will
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be more pinned 
uxons. This is di�erent to the case with d < 1, where for 
 = 0, there is a unique
pinned 
uxon for each length, it is due to the fact that the pin ned 
uxons are built from periodic
orbits (that may be travelled in various ways before leaving the inhomogeneity). For 
 > 0, there is
minimum length L min such that there are at least two pinned 
uxons for each lengthL > L min (one
for L minimal). The L-h curves for d = 4 and various 
 values are given in Figure22. Only lengths of
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Figure 22: L -h curves at d = 4 and 
 = 0 (left), 
 = 0 :2 (middle) and 
 = 0 :5 (right). The
solid blue and dash-dotted red curves are associated with pinned 
uxons with arcsin 
=d < � in < � .
The dash-dotted red curve are pinned 
uxons with pin < 0 and arcsin
 < � in < � . The pinned

uxons in the solid blue curve have pin > 0 for � in > arcsin
 and pin < 0 for � in < arcsin
 . The
dashed green curves are associated with pinned 
uxons with� in > � . In the middle panel (
 = 0 :2)
there are also black curves, which are associated with pinned 
uxons with � in < arcsin 


d . The solid
black curves are lengths for pinned 
uxons with � 2� + arcsin 


d < � in < arcsin 

d , the dashed ones

for pinned 
uxons with � 4� + arcsin 

d < � in < � 2� + arcsin 


d , the dotted ones for pinned 
uxons
� 6� + arcsin 


d < � in < � 4� + arcsin 

d .

the pinned 
uxons that use less than a full periodic orbit are plotted.
In the following theorem, we summarise the existence of pinned 
uxons for d > 1 and give their

stability.

Theorem 11 Let bd be the solution of� 5�
2 +arcsin 1

d +
p

d2 � 1+ d� 1 = 0 ( bd � 4:37) and for d > 1, let

 max (d) be the (implicit) solution of � 2�
 � 


�
arcsin
 � arcsin 


d

�
+

p
d2 � 
 2 �

p
1 � 
 2 +( d� 1) = 0 .

� For d > 1 and 
 = 0 , there is at least one pinned 
uxon for eachL � 0 and all pinned 
uxons
are unstable;

� For 1 < d � bd and 0 < 
 < 
 max (d), there is a minimal length L min (
 ) > 0 such that for all
L > L min there exist at least two pinned 
uxons (one forL = L min ). For each L � L min , there is
at least one stable pinned 
uxon.

� For d > bd and 0 < 
 � 1, there is a minimal length L min (
 ) > 0 such that for all L > L min there
exist at least two pinned 
uxons (one for L = L min ). For each L � L min , there is at least one
stable pinned 
uxon.
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In Figure 22, the stable pinned 
uxons are the pinned 
uxons on the increasing part of the lower
right solid blue curve. Note that these pinned 
uxons are non-monotonic past the meeting point with
the dash-dotted red curve, hence for most lengths. The 
uxons on the other solid blue curve and
dash-dotted red and dashed green curves are unstable. As before, the proof of the stability properties
of Theorem 11 is based on Theorem 4.5 from [21]. The proof of Theorem11 is very similar to the proof
of Theorems8 and 9. The main di�erence is that we can not track our stability argu ments back to the
cased = 0 (i.e. Lemma 4) as we did before. The role of Lemma4 will now be taken over by Lemma12
in Appendix A, in which it is explicitly established that the pinned 
uxon on the solid blue curve has
exactly one positive eigenvalue for
 = 0 and d near one.

The stability of the 
uxons on the black curves cannot easily be related to 
uxons at 
 = 0 (they
\split" in a homoclinic \dip" and a 
uxon for 
 = 0). So a stability analysis for this case goes outside
the scope of this paper. In section5, we will show numerically that there are some stable 
uxons on
the black curve.

4.3 A microresonator approximating a localised inhomogene ity

There have been quite a number of investigations on the in
uence of a localised inhomogeneity, i.e.,
D (x) = (1 + �� (x)) or D (x) = (1 +

P N
i =1 � i � (x � x i )) in ( 1). In this section we will con�rm that our

existence and stability results, applied to short microresonators with large d, reproduce in the limit for
L ! 0 and d ! 1 the existence and stability results for pinning by microresistors in [25]. In [25] it
is shown that for D (x) = (1 + �� (x)) and 
 , � , and � of order " , with " small and �


� � 4
3
p

3
+ O("),

there is one stable and one unstable pinned 
uxon, both approximated by � 0(x � X 0) + O("), where
X 0 are the two solutions of � �


2� + sech2X tanh X .
To approximate the localised inhomogeneities of� -function type with �nite length ones, we look at

microresonators with length L = 1=(2d) and d = 1 + � d for d large. Thus the microresonators have
short lengths and we can restrict to pinned 
uxons with

� in = arccos
�

2�
 + d � 1 + h
d � 1

�
= arccos

�
1 +

2�
 + h
� d

�
; pin > 0;

and

� out = arccos
�

d � 1 + h
d � 1

�
= arccos

�
1 +

h
� d

�
:

Hence the pinned 
uxons of [25] correspond to solutions on the lower solid blue curve in Figure 22.
Introducing h = � dh, we get that � 2 < h < 0 and we are interested inh away from 0 ash-values close
to zero correspond to long lengths. Using the expressions for � in , pin � out , and pout and the ODE for
the pinned 
uxon, we can derive an asymptotic expression forthe length L(h) if d is large and
 , � are
order " , where " is small:

L (h) =
�


� h� d
p

2(2 + h)
+ O(d� 2 + "d� 1); "; d� 1 ! 0:

Thus L(h) has a minimum at h = � 4
3 + O(d� 1 + ") and the condition L(h) = 1 =2d can be satis�ed

if the cubic h2(2 + h) = 2 � 2 
 2

� 2 + O(d� 1 + ") can be solved for someh < 0. For h < 0, this cubic has

a maximum at h = � 4
3 + O(d� 1 + "), thus L(h) = 1

2d has two solutions with h between � 2 and 0 i�
�

� � 4

3
p

3
+ O(d� 1 + ") (i.e., there are no solutions for
=� too large). From the analysis in the previous

section, we can conclude that this corresponds to one stablepinned 
uxon (least negative value of h)
and one unstable pinned 
uxon.

Finally, for 
 = O("), with " small, both the unstable manifold to arcsin
 and the stable manifold
to 2� + arcsin 
 are close to the heteroclinic connection for the unperturbed sine-Gordon equation.
Thus for x > L , we have� pin (x) = � 0(x � X 0) + O("), where � 0 is the shape of the stationary 
uxon
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in the sine-Gordon equation (and a similar relation for x < � L ). Substituting this into the equation
for � out , with L = 1=2d (henceh is a solution of the cubic introduced earlier), we get thatX 0 is one of
the two solutions of � �


2� + sech2X tanh X = 0.

5 Conclusions and further work

This paper exhibits a full analysis for the existence and stability of pinned 
uxons in microresistors
and microresonators for which the Josephson tunneling critical current is modelled by a step-function.
It is shown that for �xed d (Josephson tunneling critical current inside the inhomogeneity) and �xed
bias current 
 > 0, there is an interval of lengths for which a rich family of pinned 
uxons exists. In the
case when an induced current is present, there is a lower bound on the length of inhomogeneities for
which pinned 
uxons can exist. If the inhomogeneity is too short, no pinned 
uxons can be sustained.
The lower bound on the length increases if the induced current increases. For microresistors with a
su�ciently large induced current, there is also an upper bound on the length for pinned 
uxons and
the upper and lower bounds collide when the maximal value of the induced current for which pinned

uxons can exist, is attained

Compared to the case of homogeneous wave equations, a new phenomenon is observed: longer
microresistors and microresonators have non-monotonic stable pinned 
uxons. In the case of mi-
croresistors (d < 1), the non-monotonic stable pinned 
uxons have a \bump" inside and behind the
inhomogeneity and the values in the bump exceed the asymptotic state 2� + arcsin 
 . In the case of
the microresonators (d > 1), the stable pinned 
uxons have a \dip" before and near the inhomogeneity
and the values in the dip are between arcsin
=d and arcsin
 , i.e., below the left asymptotic state.

To complement and illustrate the analytical results in the previous sections, we have numerically
solved the stationary equation (4) for the pinned 
uxons and the corresponding linear eigenvalue
problem (6) using a simple �nite di�erence method and presented the results in Figures 23{ 26. Without
loss of generality as far as stability is concerned, we depict the eigenvalues for� = 0, i.e., � = � 2. Thus
an instability is indicated by the presence of a pair of eigenvalues with non-zero real parts.

First, we consider the case of inhomogeneous Josephson junctions for a microresistor with d = 0. As
is shown in Figure 17, when 
 = 0 :15 and the defect length parameterL = 4 :2, there are four possible
pinned 
uxons. In Figure 23, the numerically obtained pro�les of pinned 
uxons are shown; all of them
are clearly non-monotonic. The insets show the eigenvaluesof the 
uxons in the complex plane. Only
one of them has no eigenvalues with non-zero real parts, con�rming that there is exactly one stable
pinned 
uxon, which is non-monotonous for these parameter values. The four pinned 
uxons belong
to two di�erent families, the ones with the smallest bump, i.e. panel (a), are on the solid blue curve
and the others, i.e. panel (b), on the dashed green curve in Figure 17.

In Figure 17, the existence and the stability of the pinned 
uxons for �xe d d and 
 are presented
in the (h; L )-plane and it is shown that each pair of the 
uxons collide in a saddle-node bifurcation at
a critical L for a �xed 
 . To complement these results, we takeL = 4 :2 and numerically follow the
largest eigenvalue � = � 2 of the various 
uxons when the induced current 
 changes. The results are
shown in Figure 24. As before, the line and colour coding corresponds the one inFigure 17. Figure 24
shows that there is a critical current for the existence of a pinned 
uxon for a given length and depth
of the inhomogeneity. The solid blue and dashed green 
uxonsdisappear in a saddle-node bifurcation.
This happens at a smaller value of
 for the dashed green 
uxons (solutions in panel (b) in Figure23)
than for the solid blue 
uxons (panel (a)). A physical interp retation of the saddle-node bifurcation is
that the inhomogeneity is too short or long to pin a 
uxon when the applied current exceeds the critical
value. For 
 = 0 :15, there are no dash-dotted red 
uxons at this length, but they will exist for smaller
values of
 . The dash-dotted red 
uxons disappear when the 
uxon \split s" in a homoclinic connection
to 2� + arcsin 
 and a solid blue pinned 
uxon, see Remark2. Only one curve of dash-dotted red
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Figure 23: The four pinned 
uxons admitted by the Josephson system with d = 0 L = 4 :2, and

 = 0 :15. The insets show the eigenvalues of each 
uxon; the top inset is related to the upper 
uxon
and the bottom inset to the lower 
uxon. The vertical dashed l ines show the edges of the defect.


uxons is visible. In theory, there is a second curve, but this exist in a tiny 
 -interval only and hence
is not visible.

0 0.05 0.1 0.15 0.2 0.25 0.3
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

g

m
ax

(l
2 )

Figure 24: The largest eigenvalue � = � 2 of the various 
uxons as function of the induced current 
 .
The maximal eigenvalue at 
 = 0 :15 of the 
uxons in Figure 23 is at the intersection between the
curves and the vertical dashed line. Note that the solid blueand dashed green 
uxons disappear in a
saddle-node bifurcation.

In Figures 25{ 26, we consider the case of a microresonator withd = 4. From the middle panel in
Figure 22, it follows that there exist �ve pinned 
uxons when 
 = 0 :2, and L = 0 :75. In Figure 25
we show the numerically computed pro�les of those pinned 
uxons and their eigenvalues, where the
line and colour coding is as in Figure22. The solid blue non-monotonic 
uxon is stable while the solid
blue monotonic one and dash-dotted red one are unstable. This con�rms our analytical �ndings (see
Theorem 11: there is at least one stable pinned 
uxon). Moreover, it shows that there can be more
than one stable 
uxon: one of the 
uxons on the black curve is stable too. So for d > 1, there is
bi-stability for some values of L and 
 .
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Figure 25: The same as in Figure23, but for a microresonator with d = 4, L = 0 :75, and 
 = 0 :2,
where there are �ve pinned 
uxons. Note that there are two stable 
uxons, one in the left plot (on the
solid blue curve) and one in the right plot (on the dotted black curves).

In Figure 26 we also present the critical eigenvalues of the �ve 
uxons asa function of 
 when
L = 0 :75 is �xed. As in Figure 24, the pairs of solid blue and black 
uxons collide in a saddle-node
bifurcation, while the dash-dotted red 
uxon breaks up at th e maximal value of 
 .
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Figure 26: The same as in Figure24, but for the �ve pinned 
uxons in Figure 25. Note the two stable

uxons, one on the solid blue and one on dotted black curve.

For future research, it is of interest to expand our study to the case of two-dimensional Josephson
junction with inhomogeneities. A particular example is the so-called window Josephson junction, which
is a rectangular junction surrounded by an inhomogeneous 'idle' region with d = 0. The interested
reader is referred to [4, 5, 8] and references therein for reviews of theoretical and experimental results
on window Josephson junctions. Recently, 
uxon scatterings in a 2D setup in the presence of a non-zero
defect has been considered as well in [29].

One can also apply our method to study the existence of trapped solitons by inhomogeneities in
Schr•odinger equations, such as pinned optical solitons ina nonlinear Bragg media with a �nite-size
inhomogeneity (see, e.g., [14] and references therein) and trapped Bose-Einstein condensates by a �nite
square-well potential (see, e.g., [9, 27]). In general, the ideas presented in this paper are applicable
to any system with locally (piecewise constant) varying parameters in the equations as can be seen in
preprints by some of us [24] and [15].

Finally, the simulations in section 2 show how inhomogeneities can capture travelling 
uxons. This
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suggests that the pinned 
uxons analysed in this paper can beattractive or repelling, just as observed
in [25] in case of the localised inhomogeneities. We are currentlyinvestigating the attractive and
repelling interaction of the travelling 
uxons with the pin ned 
uxons and will report on this in a future
paper.

Acknowledgement We would like to thank Daniele Avitabile for the use of his suite of simulation
codes.

A Largest eigenvalue of linearisation with no induced curre nt

Proof of Lemma 4 Let 
 = 0, d = 0, and �x the length L of the inhomogeneity. We denote the
unique pinned 
uxon with length L by � pin (x) (suppressing all other parameters). From (12), we see
that � pin equals the sine-Gordon 
uxon outside the inhomogeneity (jxj > L ) and the linearisation about
the sine-Gordon 
uxon is well-studied. The shifted pinned 
 uxon � pin (x) � � is an odd function, hence
a quick inspection shows that the operatorL pin (x) is even in x (we suppress all other parameters in
L pin ). All eigenvalues ofL pin are simple, thusL pin (x) being even implies that all eigenfunctions are odd
or even. The eigenfunction for the largest eigenvalue does not have any zeroes, thus this eigenfunction
is even.

For �xed �, the linear ODE associated with ( L pin � �)	 = 0 has two linearly independent solutions.
The asymptotic limits of � pin for x ! �1 correspond to saddle points in the ODE (4) and the decay
rate to these �xed points is like e� x . This implies that for � > � 1, there is one solution of the ODE
(L pin � �)	 = 0 that is exponentially decaying at + 1 and there is one solution that is exponentially
decaying at �1 . We denote the exponentially decaying function at�1 by v� (x; L; �).

In [23], the linearisation of the sine-Gordon equation about the the 
uxon � 0 is studied in great
detail. Using the results in this paper, we can derive an explicit expression for the solutionsv� (x; L; �)
(see also [10]), they are

v� (x; L; 0) = sech(x + x � (L )) ; x < � L

v� (x; L; �) = e� (x+ x � (L )) [tanh(x + x � (L )) � � ]; x < � L where � =
p

� + 1 ;

where x � (L ) is given in Lemma 1. In the inhomogeneity, the linearised operator is simplyL pin = Dxx ,
hence the even solutions ofL pin � � are

vinhom (x; �) = A cos(
p

� � x); jxj < L; if � < 0;

vinhom (x; 0) = A; jxj < L ;

vinhom (x; �) = A cosh(
p

� x); jxj < L; if � > 0.

To have a continuously di�erentiable solution of (L pin � �)  = 0 in H 2(R), we have to match v� and
vinhom and its derivatives at x = � L (the conditions for x = L following immediately from this as the
eigenfunction is even). This gives:

� If � = 0 (thus � = 1):

A = sech� � and 0 = � sech� � tanh � �

with � � = � L + x � (L ). This implies that � � = 0 and A = 0. From the relation for x � (L ) in
Lemma 1, it follows � � 6= 0 only if L = 0, hence when there is no inhomogeneity. This con�rms
that the stationary sine-Gordon 
uxon (the pinned 
uxon for L = 0) has an eigenvalue zero, but
none of the pinned 
uxons with L > 0 will have an eigenvalue zero for its linearisationL pin .
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� If � > 0 (thus � > 1), with y� = L
p

� 2 � 1 and again � � = � L + x � (L ):

A coshy� = e�� �
[tanh � � � � ]

�
p

1 � � 2 A sinhy� = e�� �
[� (tanh � � � � ) + sech2� � ]

Hence� (thus �) is determined by

� [tanh � � � � ] + sech2� � = �
p

� 2 � 1 [tanh � � � � ] tanh y� :

Using Lemma1, this can be written as a relation between� and � in (and hence� and L as there
is a bijection between� in 2 (0; � ) and L > 0):

� �
h
� + 1

2

p
2(1 + cos� in )

i
+ 1

2 (1 � cos� in ) =
p

� 2 � 1
h
� + 1

2

p
2(1 + cos� in )

i
tanh

� p
� 2 � 1 � � � inp

2(1� cos� in )

�
:

(24)

It can be seen immediately that the right-hand side of (24) is positive. The left-hand side of (24)
is always negative for� > 1 as

� � (� + T) + 1 � T2 = 1 � � 2 � �T � T2 � � T � T2 < 0;

where we wroteT = 1
2

p
2(1 + cos� in ), hence 1

2 (1 � cos� in ) = 1 � T2. Thus (24) has no solutions
and there do no exist any eigenvalues �> 0.

� If � 1 < � < 0 (thus 0 < � < 1), again with � � = � L + x � (L ) and now y� = L
p

1 � � 2:

A cosy� = e�� �
[tanh � � � � ] and

p
1 � � 2 A siny� = e�� �

[� (tanh � � � � ) + sech2� � ]:

Hence� (thus also �) is determined by

� [tanh � � � � ] + sech2� � =
p

1 � � 2 [tanh � � � � ] tan y� :

Using the same relations as before, this can be written as a relation between � and � in :

� �
h
� + 1

2

p
2(1 + cos� in )

i
+ 1

2 (1 � cos� in ) =

�
p

1 � � 2
h
� + 1

2

p
2(1 + cos� in )

i
tan

� p
1 � � 2 � � � inp

2(1� cos� in )

�
:

Bringing all terms to the left and writing T(L ) = 1
2

p
2(1 + cos� in (L )) 2 (0; 1) gives on the left

F (L; � ) := � � [� + T] + 1 � T2 +
p

1 � � 2 [� + T] tan
� p

1 � � 2L
�

:

Taking � = 1 in this expression givesF (L; 1) = � T � T2 � 0. If L < �
2 , then F (L; 0) = 1 �

T2 + T tan L > 0 asT 2 (0; 1). If L � �
2 , then � in < �

2 and T > 1
2

p
2, thus F (L;

p
L 2 � (�= 2� " )2

L ) �

� 2 + (�= 2� " )
p

2
2L tan( �

2 � " ) = O( 1
L" ), for " ! 0. As L is �xed, we can choose" such that this

expression is positive. Thus we can conclude that for allL > 0, there is at least one� 2 (0; 1)
that solves F (L; � ) = 0. If L gets very large, then there will be many solutions, but we are
interested in the largest one.

2
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Lemma 12 For 
 = 0 and d = 1 + " with " small, the linearisation L pin (x; L; 0; 1 + ") about the
monotone pinned 
uxon � pin (x; L; 0; 1 + ") has a largest eigenvalue of the form"� 1 + O("2) with

� 1 =
sech2L

�
� L 2sech4L(1 + tanh 2 L) + 2 L tanh L(sech4L + 2(1 + sech2L)) + tanh 2 L(6 + sech2L)

�

16(Lsech2L + tanh L)
:

See Figure 27 for a sketch of � 1. Furthermore, if there are any other eigenvalues, then theymust
be near � 1. Thus for 
 = 0 and d close to 1, the monotone pinned 
uxons withd > 1 are linearly
unstable. The nonlinear stability of Theorem9 is con�rmed by the sign of � 1 for d < 1.
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Figure 27: The eigenvalue factor �1 as function of L .

Proof The monotone pinned 
uxon for 
 = 0 and d = 1 + " with " � 1 can be written as

� pin (x; L; 0; 1 + ") =

8
>>>><

>>>>:

� 0(x + "x �
1(L; " )) ; x < � L;

� 0(x) + "� 1(x; L; " ); jxj < L;

� 0(x � "x �
1(L; " )) ; x > L:

Here � 1(x; L; " ) is an odd function satisfying

"D xx � 1 � (1 + ") sin(� 0 + "� 1) + sin � 0 = 0 ; jxj < L; (25)

and x �
1(L; " ) is such that � 0(� L + "x �

1) = � in = � 0(� L ) + "� 1(� L ). To �nd an approximation for � 1

and x �
1, we introduce the notation � �

0 = � 0(� L ), and � �
1 = � 1(� L ), thus "� �

1 = � in � � �
0. The half

length L is

L =
� �

� in

d�
p

2(h + (1 + ")(1 � cos� )
=

� �

� in

d�
p

2(1 � cos� in + (1 + ")(cos� in � cos� ))
;

where we used thath = "(cos� in � 1). With � in = � �
0 + "� �

1, this becomes

L =
� �

� �
0

d�
p

2(1 � cos� )
�

"
2

� �

� �
0

cos� �
0 � cos�

(2(1 � cos� ))3=2
d� �

� � �
0 + "� �

1

� �
0

d�
p

2(1 � cos� )
+ O("2)

= L �
"
2

� �

� �
0

cos� �
0 � cos�

(2(1 � cos� ))3=2
d� � "

� � �
1

0

d�
p

2(1 � cos� �
0)

+ O("2):
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Rearranging this expression and using that cos� �
0 = 1 � 2sech2(L ), we get an approximation for � �

1

� �
1 = �

sechL
8

�
2L(1 + tanh 2 L) � 2 tanh L

�
+ O("):

Furthermore, x �
1 is given by � 0(� L + "x �

1) = � �
0 + "� �

1. An expansion of � 0(� L + "x �
1) shows that

� �
0 + "x �

1� 0
0(� L ) = � �

0 �
"sechL

8

�
2L(1 + tanh 2 L) � 2 tanh L

�
+ O("2):

With � 0
0(� L ) = 2sech(L ), this shows that

x �
1 = �

1
16

�
2L(1 + tanh 2 L) � 2 tanh L

�
+ O("):

Next, we derive an approximation for the function � 1, using the di�erential equation ( 25). Expand-
ing (25) in " gives

Dxx � 1 � � 1 cos� 0 � sin � 0 = O(") or L 0� 1 = sin � 0 + O("); (26)

with L 0 = Dxx � cos� 0. The homogeneous problemL 0 = 0 has two independent solutions:  b(x) =
sechx and  u(x) = x sechx + sinh x. In this,  b(x) = 1

2
d

dx � 0(x) is bounded and  u(x) unbounded as
x ! �1 . By the variation-of-constants method, we �nd the general solution to ( 26),

� 1(x) = x sechx + A sechx + B [x sechx + sinh x] + O(");

with A; B 2 R. As � 1 must be odd, it follows that A = 0. Furthermore, the boundary condition at
x = � L gives � �

1 = � B (L sechL + sinh L) � L sechL + O("), hence

B =
sechL(L tanh2 L � tanh L � 3L)

4(L sechL + sinh L)
:

Altogether we can conclude that � 1(x) = � 11(x) + O(") with

� 11(x) = x sechx + sechL (L tanh 2 L � tanh L � 3L )
4(L sechL +sinh L ) [x sechx + sinh x] :

To �nd the largest eigenvalue of L pin (x; h; 0; 1+ "), we will use perturbation theory. First we observe
that for any L � 0, the linearisation L 0 := L pin (x; L; 0; 1) about the 
uxon � 0 has largest eigenvalue
� = 0 with eigenfunction is � 0

0. We have for jxj < L

L pin (x; h; 0; 1 + ") = Dxx � (1 + ") cos(� 0 + "� 1) = L 0(x) � " (cos� 0 � � 1 sin � 0) + O("2)

and for x < � L

L pin (x; h; 0; 1 + ") = L 0(x + "x �
1) = L 0(x) + "x �

1� 0
0(x) sin � 0 + O("2):

Thus the largest eigenvalue forL pin (x; h; 0; 1 + ") is � = 0 + " � 1 + O("2) and the eigenfunction is
 = � 0

0 + " 1 + O("2). The equation for � 1 and  1 is

L 0 1 = � 1� 0
0 + f 0(x); where f 0(x) =

8
>>>><

>>>>:

� x �
1 sin � 0(� 0

0)2; x < � L

(cos� 0 � � 11 sin � 0) � 0
0; jxj < L

x �
1 sin � 0( 0

0)2; x > L

(27)

From (26) and the fact that L 0� 0
0 = 0, it follows that

L 0� 11 = sin � 0; hence L 0� 0
11 = 2 (cos � 0 � � 11 sin � 0) � 0

0

L 0� 0
0 = 0 ; hence L 0� 00

0 = � sin � 0(� 0
0)2:
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Thus,

f 0(x) = L 0

8
>>>><

>>>>:

x �
1� 00

0(x); x < � L;

1
2 � 0

11(x); jxj < L;

� x �
1� 00

0(x); x > L:

To �nd � 1, we multiply the eigenvalue equation (27) with � 0
0, integrate it, use integration by parts and

L 0� 0
0 = 0 and get

� 1

� 1

�1
(� 0

0)2 dx = 2x �
1

�
(� 00

0(L ))2 � � 000
0 (L )� 0

0(L )
�

� � 00
11(L )� 0

0(L ) + � 0
11(L )� 00

0(L ):

with the explicit expressions for � 0 and � 1, we get the expression in the Lemma.
As the linearisation L 0 about the sine-Gordon 
uxon has exactly one eigenvalue (theone at zero),

it follows immediately that if the perturbed linear operato r has more eigenvalues, they have come out
of the continuous spectrum, hence they are near� 1. 2
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