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Many models for physical phenomena in oceanography, atmospheric dy-
namics, optical fibre transmission, nerve conduction, acoustical and gas dy-
namic flows are conservative translation-invariant evolution equations with a
Hamiltonian structure. Solitary waves and fronts form an important class of
solutions of such equations and the calculus of variations, critical point the-
ory and symplectic structure have played a major role in the analysis of their
stability and instability. For example, the characterisation of solitary waves
as critical points of the Hamiltonian (energy) constrained to level sets of the
momentum (or momentum and other constants of motion) leads to a pow-
erful framework for proving nonlinear Lyapunov stability — when the second
variation, evaluated at the constrained critical point, has a finite number of
negative eigenvalues (e.g. BENJAMIN?, BoNA®, HOLM ET AL'%, GRILLAKIS
ET AL'%13 MADDOCKS & SACHS!® and references therein).

However, for many Hamiltonian evolution equations, particularly coupled
systems of PDEs, even though the characterisation of a solitary wave or front
solution as a constrained critical point is well-defined, the second variation is
strongly indefinite and the relation between critical point type and stability
is lost. In this case, an important first step is to study the linear stabil-
ity and instability, that is, analyse the spectral problem associated with the
linearisation about the solitary wave or front solution.

A dynamical systems approach for the analysis of spectral problems asso-
ciated with the linearisation about a solitary wave or front was first introduced
by EvaNs!? in the context of the stability analysis of nerve impulses in mathe-
matical biology. The Evans function framework was substantially generalised
by ALEXANDER, GARDNER & JONES! to apply to a large class of parabolic
PDEs. For more recent results and generalisations see e.g. GARDNER & ZUM-
BRUN!!, KAPITULA & SANDSTEDE!® and references therein.

Central to the Evans theory is the Evans function, D()), a complex an-
alytic function of the spectral parameter A € C. Under suitable hypotheses,
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the Evans function has the property that, if Ag € C has positive real part and
D(X\) = 0, then Ag is an unstable eigenvalue associated with the linearisa-
tion about a solitary wave. One way to prove the existence of such unstable
eigenvalues is to study the sign of D()) for A real when A is near zero and
when A is large. When the initial-value problem for the PDE is well-posed
one can expect that when X is real and large, D(\) will be of one sign; that is,
there would not exist unstable eigenvalues with arbitrarily large growth rate.
Assume D(A) > 0 for X large; then a negative sign of the slope of the Evans
function for A near zero can be used to predict the existence of unstable eigen-
values along the real A axis. The Hamiltonian setting provides a geometrical
framework and therefore one can expect to get explicit information about the
derivatives of D()) near A\ = 0 in this setting.

The connection between the Evans function framework and the stability
analysis of solitary wave solutions of Hamiltonian evolution equations was first
studied by PEGO & WEINSTEIN'?. For three particular Hamiltonian PDEs
they obtained the result that D()) satisfies D(0) = D'(0) = 0, sign D" (0) =
sign %, and D(A\) — 1 as A = +oo along the real axis. In here, I is the
value of the momentum level set and c is the speed of the solitary wave. The
system of ODEs associated with the spectral problem had no special structure,
requiring explicit calculations in parts of the proof and limiting application
to the particular PDEs studied where the solitary wave was known explicitly.

The primary difficulty with an abstract Evans function framework for
Hamiltonian evolution equations is that the classical Hamiltonian formulation
provides a symplectic structure for time evolution, but much of the analysis
of the Evans function is associated with a dynamical system in the z-variable.
In BRIDGES & DERKS™® an abstract formulation of the Evans function for
Hamiltonian PDEs was proposed based on a multi-symplectic formulation of
the PDE, where distinct symplectic operators are assigned for time and space.
To be precise, a Hamiltonian system on a multi-symplectic structure will be
written in the canonical form

MZ,+KZ,=VS(Z), ZeR™", ze€R, t>0, (1)

where M and K are skew-symmetric constant matrices, S : R?” — R is
some smooth function and V is a gradient with respect to the standard inner
product on R?".

To demonstrate the multi-symplectification of a Hamiltonian PDE, we
consider the (good) Boussinesq equation*:

Ut = (f(u) - Uzz)zz; zeR, t>0, (2)

where u(z,t) is a real-valued function of z and ¢ and f(-) is some smooth
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real-valued function. This system can be written as a classical Hamiltonian
system on an infinite-dimensional phase space. For example, let ¢ = (w,u)”
with wg, = ug, then (2) can be reformulated as
0H . -1 1

qi ZJE7 with J = ((1) 0 ) and H(w,u) = 5/(11)2 +uZ + f(u)) dz. (3)
However, the phase space is infinite-dimensional and the spatial symplectic-
ity is not explicit in this formulation, but it is implicit in the Hamiltonian
function. To formulate this PDE as a multi-symplectic system on a finite-
dimensional phase space, one can take the Legendre transform of the Hamil-
tonian function (3). With v = u, and z = w, the form (1) is recovered by
taking

00-10 0100
o000 | -1000
M=11000]| 2 K= (g001]"
000 0 0 0-10

where Z = (u,v,w,2)" and S(Z) = F(u? — v? - 2%) — 3u.

Many models of physical phenomena, particularly in atmospheric dynam-
ics and optics, are equivariant with respect to a Lie group symmetry. So it
is assumed that the system (1) is equivariant with respect to a g-dimensional
Abelian subgroup of the Euclidean group acting on R?", denoted by G, as
well as with respect to spatial translations. The generators of the group G
are spanned by &i,...,&;. According to classical Noether theory for symplec-
tic systems, the symplectic flow of a group generates an invariant function.
However, in the multisymplectic setting, there is a flow associated with each
symplectic structure which generates a family of functions (cf. BRIDGES®).
Hence for each generator &;,i =1,...,q, there are functionals P; and @); such
that M&;(Z) = VP;(Z) and K&;(Z) = VQ4(2).

It is natural to include the symmetries in the definition of the solitary
waves or fronts, i.e., a solitary wave/front is a solution of (1) of the form

Z(.flf,t) = GG(z,t)Z(x - Ct)v
where Gy is the action G on R?" and 6(z,t) = (a1t + hiz,..., a4t + byz).

Substitution in the multi-symplectic framework (1) shows that the shape Z
is a homoclinic or heteroclinic orbit of the Hamiltonian ODE
(K —cM)Z, = VV(Z), (4)

where V(Z) = [S — 3L, (aiP; + b;Q;)](Z). The shape of the wave Z is
biasymptotic to an invariant manifold at infinity which is the G-group orbit
of a fixed point of (4).
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The linearisation of (1) about this solitary wave reduces to a linear ODE
of the form

U,=A(z,;p)U, UeC™, XeC, (5)

where A € C is the spectral parameter, p represents parameters a;, b; and ¢
and A(z,\;p) := (K — cM)~1[D?V(Z(z;p)) — AM]. Central to the Evans
function theory are the systems at infinity, defined by

+ry. — 1 .
A=(\p) = zllgcloo A(z,\;p) .
Associated with this parameter dependent matrix are the subspaces
Bi(\p)={£€C" ¢ lm AOPre=0},  AeC  (9)
Ei(\p)={¢eC" : lim ATAPTEZ 0, AeC,  (7)

and ES (A;p), which is defined to be a complement of E% (A\;p) @ EL(A; p)
in C2". For definiteness, the following properties on the dimension of the
systems at infinity are taken: for fixed values of the parameters p,

dim E%(0;p) = dim E4(0;p) =1,

(hence dim ES (0; p) = 2n —2) and, when X # 0, there is some 1 < p < n such
that

min{ dim £ (\; p),dim EX(\;p) } = p,

for all A € A, where A is subset of C,., the complex half-plane with positive real
part and 0 € A. The symplectic structure forces the dimensions of E%(0;p)
and EY (0; p) to be equal. The property dim E*(0; p) = 1 is not essential and
many of the results, such as the construction and definition of the symplectic
Evans matrix, are independent of this property.

With these hypotheses on the systems at infinity the Evans function takes
the geometric form D(\;p) = det(E(A;p)), where E(\;p) is the p X p sym-
plectic Evans matriz. Each entry of E(X; p) is an 2-symplectic form restricted
to a pair of solutions of the linearised stability problem and its adjoint, where
Q) is the symplectic form associated with (K — cM). Hodge duality® is the
key to transforming the exterior-algebra definition of the Evans function!
to the Evans matrix. It is follows that D(0;p) = %L\:OD()\;p) = 0 and

2 .
s o D(); p) satisfies

sign D"(0) = [T sign (% - B(c)) , (8)
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where IT = +1 is a geometric sign associated with the shape of the wave,
L(Z) = [* (MZ,,Z)dz and B(c) is associated with the properties of the
nonconstant manifold of states at infinity (for example, B(c) = 0 for classical
solitary waves). All these results combine to give a general instability criterion
for a large class of solitary waves and fronts as stated in Theorem 1.

Theorem 1 For fired p, let A\oo € ANR be a positive value of X and let

doo(P) = D(Aex; ). Define Zy'(p) = lim Z(x,p) and

Xoo(P) = lim [P(Z, (~a:p), DG, (Zy (p))" Zo(s )] .
If

4o (P) X00 (P) [ & Z(Z(w:p)) — 3 (25 (9),0.2F (8))] <O,
then the solitary wave or front Gg(wyt)’Zv (x—ct; p) is linearly spectrally unstable.
Tlustrations of the theory can be found for many examples: a generalised
Korteweg-de Vries model from fluid mechanics”, a Boussinesq model from
oceanography®, a class of nonlinear Schrédinger equations (both coupled and
uncoupled) from optics®, a complex nonlinear Klein-Gordon equation from
atmospheric dynamics® and a generalised Kawahara equation from plasma

waves®.
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