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Abstract. Given a real-valued continuous function f defined on the phase
space of a dynamical system, an invariant measure is said to be maximizing if
it maximises the integral of f over the set of all invariant measures. Extending
results of Bousch, Jenkinson and Brémont, we show that the ergodic maxi-
mizing measures of a generic continuous function have the same properties as
generic ergodic measures.

1. Introduction

Let T : X → X be a continuous transformation of a compact metric space.
Let MT denote the set of T -invariant Borel probability measures on X , and let
ET ⊆ MT denote the set of ergodic measures. We equip both of these sets with the
weak-* topology. For each continuous f : X → R we define the maximum ergodic

average

β(f) = sup
µ∈MT

∫

f dµ = sup
x∈X

lim sup
n→∞

1

n

n−1
∑

k=0

f(T kx)

and the set of all maximizing measures of f ,

Mmax(f) :=

{

µ ∈ MT :

∫

f dµ = β(f)

}

The study of the functional β and sets Mmax(f) has been termed ergodic optimi-

sation, and has attracted some recent research interest [2, 3, 4, 6, 5, 7, 9, 13, 16].
In this note we examine the behaviour of the set Mmax(f) when f ranges over a
dense Gδ subset of C(X).

We briefly summarise some existing results. In [4], T. Bousch and O. Jenkinson
showed that in the case where T : X → X is an expanding map of the circle, there
is a dense Gδ subset of C(X) for which Mmax(f) is a singleton set containing a
fully supported measure. In [5] J. Brémont showed under a more general hypothesis
that, additionally, there is a dense Gδ subset of C(X) for which the unique element
of Mmax(f) has zero entropy. In the case of an expanding map of the circle, zero
entropy and full support are generic properties of elements of MT in the sense of
Baire category. In this note we extend and unite these results by showing that the
properties of the ergodic elements of Mmax(f) for generic f ∈ C(X) are the same
as the properties of generic elements of ET . We prove the following:

Theorem 1.1. Suppose that U is a dense open subset of ET . Then the set

U :=
{

f ∈ C(X) : ET ∩Mmax(f) ⊆ U
}
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is open and dense in C(X). Conversely, if U ⊆ C(X) is open and dense, then the

set

U := ET ∩
⋃

f∈U

Mmax(f)

is open and dense in ET .

Since ET is a dense Gδ subset of the compact metric space ET it is a Baire space,
and we may deduce

Corollary 1.2. Suppose that U is a dense Gδ subset of ET . Then the set

U := {f ∈ C(X) : ET ∩Mmax(f) ⊆ U}

a dense Gδ subset of C(X). Conversely, if U ⊆ C(X) is a dense Gδ, then

U := ET ∩
⋃

f∈U

Mmax(f)

is a dense Gδ subset of ET .

The following generalisation of results of Bousch-Jenkinson [4, Theorem C] and
Brémont [5, Theorem 1.2] follows directly.

Corollary 1.3. Suppose that T : X → X satisfies Bowen’s specification property.

Then there is a dense Gδ set Z ⊆ C(X) such that for every f ∈ Z, Mmax(f) is

a singleton set containing a measure of zero entropy which has support equal to X
and is not strongly mixing.

Proof. K. Sigmund proves in [15] that in this context ET = MT and a dense Gδ

subset of MT exists in which every measure has zero entropy and full support and
is not strongly mixing. Applying Theorem 1.2 yields the result. �

We suggest the following further application of Theorem 1.1. Let X = R/Z,
let T : X → X be the transformation Tx = 2x mod 1. T. Bousch, O. Jenkinson
and others have shown that elements of ET which are supported in a semi-circle
- termed Sturmian measures - arise as maximising measures for several classes of
continuous functions [1, 2, 11]. It is easily seen that the set of Sturmian measures
is a closed subset of ET = MT having empty interior, and so by Theorem 1.1 it
follows that the set of continuous functions having a Sturmian maximising measure
is nowhere dense in C(X).

2. Preliminaries

We begin with the following simple result:

Lemma 2.1. Let µ ∈ MT and ν ∈ ET , and suppose that there is κ < 2 such that

|
∫

ψ dµ −
∫

ψ dν| ≤ κ|ψ|∞ for every ψ ∈ C(X). Then there exist µ̂ ∈ MT and

λ ∈ (0, 1) such that µ = (1 − λ)µ̂+ λν.

Proof. We begin by showing that µ and ν are not mutually singular. Let δ < (2 −
κ)/4. If µ ⊥ ν, choose closed sets K1,K2 ⊆ X with min{µ(K1), ν(K2)} > 1−δ and
K1 ∩K2 = ∅, and let ψ ∈ C(X) with |ψ|∞ = 1, ψ−1{1} = K1 and ψ−1{−1} = K2.
We then have

∫

ψ dµ−

∫

ψ dν ≥ µ(K1) − µ(X \K1) + ν(K2) − ν(X \K2) > 2 − 4δ > κ

contradicting the hypothesis of the lemma.
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In view of this we deduce from the Lebesgue decomposition theorem that there
exist µ̂, ν̂ ∈ M and λ ∈ (0, 1) such that µ = (1−λ)µ̂+λν̂, where µ̂ ⊥ ν and ν̂ ≫ ν.
A standard argument such as in e.g. [17] shows that necessarily µ̂, ν̂ ∈ MT , and
since ν is ergodic it follows that ν̂ = ν. �

The following key result is due to J. Brémont. A weaker version is implicit in
[12, Proposition 1]; a similar result occurred in a preprint version of [14] but was
not included in the published version. T. Bousch has remarked that this result
resembles a theorem of I. Ekeland [8, Theorem 1.1].

Lemma 2.2 ([5]). Let f ∈ C(X) and µ ∈ MT , and let β(f) =
∫

f dµ + εδ with

ε, δ ≥ 0. Then there exists g ∈ C(X) and ν ∈ Mmax(g) such that |f − g|∞ ≤ δ and

such that
∣

∣

∫

ψ dµ−
∫

ψ dν
∣

∣ ≤ ε|ψ|∞ for every ψ ∈ C(X).

We deduce the following

Proposition 2.3. Let f ∈ C(X) and ε > 0. If ν ∈ ET has β(f) −
∫

f dν < ε then

there exists g ∈ C(X) such that |f − g|∞ < ε and ν ∈ Mmax(g).

Proof. By the preceding lemma there exist g ∈ C(X) and µ ∈ Mmax(g) such that
|f − g|∞ < ε and |

∫

ψ dµ −
∫

ψ dν| ≤ |ψ|∞ for every ψ ∈ C(X). It follows from
Lemma 2.1 that µ = (1 − λ)µ̂ + λν for some λ ∈ (0, 1) and µ̂ ∈ MT , whence
∫

g dν = β(f) and ν ∈ Mmax(g) as required. �

Finally we recall the following result due to O. Jenkinson [10].

Proposition 2.4. Let µ ∈ ET . Then there exists h ∈ C(X) such that Mmax(h) =
{µ}.

3. Proof of Theorem 1.1

Theorem 1.1 may be deduced from the following four lemmas, some of which
may be of individual interest.

Remarks. Lemma 3.1 is of a standard type, being similar to parts of the proofs
of [7, Proposition 10], [9, Theorem 3.2] and [13, Theorem 1]. Lemma 3.3 generalises
a result of J. Brémont [5, Proposition 2.1].

Lemma 3.1. Let U be an open subset of ET , and define

U =
{

f ∈ C(X) : Mmax(f) ∩ ET ⊆ U
}

.

Then U is open in C(X).

Proof. Let (fn)n≥1 be a convergent sequence in C(X) \ U with limit f ∈ C(X),

and take µn ∈ Mmax(fn) ∩
(

ET \ U
)

for each n. Since ET \ U is weak-* compact

we may take a subsequence nr so that µnr
→ µ ∈ ET \ U . For every ν ∈ MT and

r ≥ 1 we have
∫

f dν − |f − fnr
|∞ ≤

∫

fnr
dν ≤

∫

fnr
dµnr

≤

∫

f dµnr
+ |f − fnr

|∞

yielding
∫

f dν ≤
∫

f dµ. Since ν is arbitrary we deduce that µ ∈
(

Mmax(f) ∩ ET

)

\
U and therefore f ∈ C(X)\U . We conclude that C(X)\U is closed and consequently
U is open. �
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Lemma 3.2. Let U ⊆ C(X) be open, and define

U := ET ∩
⋃

f∈U

Mmax(f).

Then U is open in ET .

Proof. Let µ ∈ U , and let f ∈ U such that µ ∈ Mmax(f). Choose ε > 0 such
that |f − g|∞ < ε implies g ∈ U , and let V ⊆ ET be an open neighbourhood of
µ small enough that β(f) −

∫

f dν < ε for every ν ∈ V . If ν ∈ V , then it follows
by Proposition 2.3 there exists g ∈ U such that ν ∈ Mmax(g). We conclude that
V ⊆ U and U is an open subset of ET . �

Lemma 3.3. Let U be a dense subset of ET , and let U ⊆ C(X) be the set of all f
such that Mmax(f) is a singleton set containing an element of U . Then U is dense

in C(X).

Proof. We must show that U intersects every nonempty open V ⊆ C(X). Consider
such a V , and define V := ET ∩

⋃

f∈V Mmax(f). By Lemma 3.2, V is open in ET ,

and it is clearly nonempty. Since U is dense in ET we have U ∩V 6= ∅. Let µ ∈ U ∩V
and choose f ∈ V with µ ∈ Mmax(f). Since µ ∈ ET we may apply Proposition 2.4
to deduce that there exists h ∈ C(X) with Mmax(h) = {µ}. For each δ > 0 we
clearly have Mmax(f + δh) = {µ} so that f + δh ∈ U . Since V is open we conclude
that f + δh ∈ U ∩ V for small enough δ > 0. �

Lemma 3.4. Let U ⊆ C(X) and define U = ET ∩
⋃

f∈U Mmax(f). If U is dense

in C(X), then U is dense in ET .

Proof. Clearly it suffices to show that U intersects every nonempty open subset of
ET . Let V ⊆ ET be a such an open set. By Lemma 3.1 the set

V := {f ∈ C(X) : Mmax(f) ∩ ET ⊆ V}

is open in C(X). Since V is nonempty and open in ET it contains an ergodic element
µ. By Proposition 2.4 there exists g ∈ C(X) such that Mmax(g) = {µ} ⊆ V and
thus V is nonempty. Since U is dense in C(X) it follows that U ∩ V 6= ∅ and
consequently U ∩ V 6= ∅. �
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