Planarity Panning for Listener-Centered Spatial Audio

Philip Coleman, Philip J. B. Jackson

Centre for Vision, Speech and Signal Processing,
University of Surrey, Guildford, UK

p.d.coleman@surrey.ac.uk

28th August 2014
AES 55th International Conference on Spatial Audio, Helsinki

Future Spatial Audio
for an Immersive Listener Experience
Introduction

- **Methods to generate directional sound [1]**
 - Panning (Amplitude panning, VBAP)
 - Sound field synthesis (WFS, HOA)
 - Multi-point optimization of sound pressures
 - *Wavenumber domain point focusing [2]*

Introduction

• Desired properties of a spatial audio method
 – Listener perceives sound at the intended location
 – Arbitrary loudspeaker arrangement
 – Efficient
 – Applications: home, car, mobile
 – Listener-centered
Introduction

• “Listener-centered” approach
 – Listener occupies a zone (and not elsewhere)
 – Target directions specified at listener position
 – Sound field measurements at control microphones in zone
 – Directional information obtained from the listening position
 – Precision of sound image placement is relaxed
 • Limited resolution of human localization
 • Reduce aliasing effect with fewer loudspeakers
Introduction

• Efficient sound focusing
 – Brightness control [3]
 – Offers no control over the spatial image

• Multi-point optimization
 – Requires strict sound field definition
 – All deviations treated as equal

• Planarity concept
 – Useful for personal audio [4]

Background

- Notation

\[
p(x, \omega) = - \int_{\partial V} G(x|x_0, \omega) q(x_0, \omega) dA(x_0)
\]
Background

- **Notation (discrete)**
 - Vector notation for a single frequency
 - Source weights
 \[q = [q(x^1_c), \ldots, q(x^L_c)]^T \]
 - Microphone pressures
 \[p = [p(x^1_s), \ldots, p(x^N_s)]^T \]
 - Transfer function matrix
 \[
 G = \begin{pmatrix}
 G(x^1_s|x^1_c) & \cdots & G(x^1_s|x^L_c) \\
 \vdots & \ddots & \vdots \\
 G(x^N_s|x^1_c) & \cdots & G(x^N_s|x^L_c)
 \end{pmatrix}
 \]
 - Sound pressures
 \[p = Gq \]
Planarity panning

- **Angular spectrum**
 - Observed energy in zone

\[
\Gamma = \text{diag}[\gamma_1, \gamma_2, \ldots, \gamma_I]
\]
Planarity panning

- Superdirective beamforming
 - Steering matrix relates sound pressures to azimuth

\[
Y = \begin{bmatrix}
\text{angles} \\
\text{microphones}
\end{bmatrix}
\]

- Cost Function

\[
J = p^H Y^H \Gamma Y p - \lambda (q^H q - Q)
\]

constraint on source weights

listening zone energy projected in to angular domain [5]

Method

• Simulation geometry
 – Up to 60 channel circular array (2-D reproduction)
 – Centre/Off-centre listening positions
 – Virtual 5.0 system

• Pass range
 – Single target angle with ±5° raised-cosine roll-off
Method

• **Evaluation metrics:**

 – RMSE of energy direction

 \[
 \epsilon = \sqrt{\frac{1}{F} \sum_{f=1}^{F} |\alpha(f) - \varphi|^2}
 \]

 – Planarity

 \[
 \eta = \frac{\sum_i w_i \mathbf{u}_i \cdot \mathbf{u}_\alpha}{\sum_i w_i}
 \]

 – Control effort

 \[
 E = 10 \log_{10} \left(\frac{q^H q}{|q_r|^2} \right)
 \]
Method

- **Methods for comparison**
 - Amplitude panning (AP)
 - Wave field synthesis (WFS)* [6]
 - Higher-order ambisonics (HOA)* [7]
 - Pressure matching (PM) [8]

Source weights generated using SFS toolbox [9]

Simulations

- Planarity panning performance
 - 60 loudspeakers, 1 kHz, 0 deg. virtual source

![Central position](image1.png) ![Side position](image2.png)
Simulations

• **Planarity panning performance**
 – 60 loudspeakers, 1 kHz, 0 deg. virtual source
 – Sound energy arrives from correct direction
 – Energy focused on zone
Simulations

- **Planarity panning performance**
 - 60 loudspeakers, central position, 0 deg. virtual source

- Planar sound field maintained over a range of frequencies

![Simulations](image)
Virtual 5.0 surround

- Virtual source placed at 5.0 locations
 - 60 loudspeakers, 1 kHz
 - Off-centre zone (approx. listener position!)

LS
Error: 1°

L
0°

C
0°

R
0°

RS
1°
Method comparison

- **Central position**
 - 20 loudspeakers, 1 kHz, 0 deg. virtual source
 - 325 Hz spatial aliasing limit
 - WFS worst spatial aliasing artifacts
 - PP most efficient
 - PM and HOA have similar sound fields

![Graphs comparing different methods](image-url)
Method comparison

- Decreasing loudspeakers
 - Averaged over direction and frequency
 - RMSE increases for all methods as loudspeakers are removed
 - WFS aliasing artifacts affect whole listening region
 - HOA planarity reduces more than other methods
 - PP always least-effort
Method comparison

- **Side position**
 - 20 loudspeakers, 1 kHz, 0 deg. virtual source
 - 325 Hz spatial aliasing limit
 - HOA, PP and PM have similarities
 - HOA slightly lower planarity
 - PP most efficient
Method comparison

• **Zone position**
 – Averaged over direction and frequency
 – RMSE increases for off-centre position (all methods)
 – Effort decreases for off-centre position (all methods)
Summary and future work

• Planarity panning (PP) proposed
• Efficient directional sound over a listener-sized zone
 – Best 1.7° RMSE (PM 1.2°); -5 dB effort (AP -0.8 dB)
• PP behaves similarly to HOA
 – Lower effort, higher HF planarity
• Future work
 – Integration with listener tracking
 – Use measured RIR for room compensation in filters
 – Equalization filters to improve sound quality
 – Formal listening test scores
News!

• New resources freely available via
 www.cvssp.org/soundzone/resource

• Surrey Studio 2 RIR Dataset (SOFA format)
 – 60 channel circular array in recording studio
 (used for AES 52nd conference demonstrations)
 – RIRs to each of 864 microphone positions (three sampled zones)

• Planarity metric
 – Matlab function to evaluate the planarity of a sound field
 – Useful for evaluation when there is no target field
Thanks for your attention!

✉️ p.d.coleman@surrey.ac.uk

🔗 www.linkedin.com/in/philipcolemanaudio
Listening test

• Compared PP, WFS in Surrey Sound Sphere
 – Up to 60 loudspeakers in circular array
Listening test

- Compared PP, WFS in Surrey Sound Sphere
 - Up to 60 loudspeakers in circular array
 - PP implemented in frequency domain based on free-field transfer functions
 - WFS reproduced using Soundscape Renderer
 http://spatialaudio.net/ssr/
 - Loudspeakers obscured from listening positions
• **Localization**
 - Subjects asked to mark the direction of three sound sources at 0, -29 and -63 degrees azimuth
 - Tested for centre and off-centre listening zones

Localization error

<table>
<thead>
<tr>
<th>Target region</th>
<th>RMSE (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone A</td>
<td></td>
</tr>
<tr>
<td>Zone B</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td></td>
</tr>
</tbody>
</table>

- WFS
- PP

Image: [Diagram of Localization Error](image-url)