NUMERICAL OPTIMIZATION OF LOUDSPEAKER CONFIGURATION FOR SOUND ZONE REPRODUCTION

15th July 2014

Philip Coleman, Philip J. B. Jackson, Marek Olik
p.d.coleman@surrey.ac.uk
Centre for Vision, Speech and Signal Processing,
University of Surrey, Guildford, Surrey, GU2 7XH, UK

Jan Abildgaard Pedersen
Bang & Olufsen A/S
(now with Dynaudio A/S, Sverigesvej 15, 8660 Skanderborg, DK)
Numerical optimization of loudspeaker configuration for sound zone reproduction

- Personal sound is an active research topic
• Personal sound is an active research topic

• A number of control strategies proposed [1]

• Loudspeaker arrays for personal audio:
 – Compact line array [e.g. 2,3]

Introduction

- **Loudspeaker arrays for personal audio:**
 - Compact line array
 - Circular array [e.g. 4,5]

Introduction

• Loudspeaker arrays for personal audio:
 – Compact line array
 – Circular array

• Both array types may have benefits
• Users may have some freedom to position loudspeakers
• We investigate optimal loudspeaker placement
Introduction

- Best positions for N loudspeakers?
- Can optimized arrays give...
 - Improved cancellation?
 - Better control of target sound field?
 - Reduced power consumption?
 - Increased robustness?
 - Improved compensation for room?
Introduction

• Previous work
 – Crosstalk cancellation [6,7]
 – Sound zones [8]

Approach

• Sound zone source weights calculated with acoustic contrast control [9,10]

Min. $J_{ACC} = p_B^H p_B + \mu (p_A^H p_A - A) + \lambda (q^H q - Q)$

Evaluation metrics

- Generalizable set of metrics

<table>
<thead>
<tr>
<th>Evaluation metric</th>
<th>Linked characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast</td>
<td>Minimal interference</td>
</tr>
<tr>
<td>Control effort</td>
<td>Robustness, low electrical power</td>
</tr>
</tbody>
</table>

Evaluation metrics

- Generalizable set of metrics

<table>
<thead>
<tr>
<th>Evaluation metric</th>
<th>Linked characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast</td>
<td>Minimal interference</td>
</tr>
<tr>
<td>Planarity</td>
<td>Spatial sound distribution</td>
</tr>
<tr>
<td>Control effort</td>
<td>Robustness, low electrical power</td>
</tr>
</tbody>
</table>

\[
C = 10 \log_{10} \left(\frac{M_B^H O_A O_A}{M_A^H O_B O_B} \right)
\]

number of observation microphones in zone B

observed sound pressures in zone A

number of observation microphones in zone A

observed sound pressures in zone B
Evaluation metrics

- **Generalizable set of metrics**

<table>
<thead>
<tr>
<th>Evaluation metric</th>
<th>Linked characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast (C)</td>
<td>Minimal interference</td>
</tr>
<tr>
<td>Planarity (\eta)</td>
<td>Spatial sound distribution</td>
</tr>
<tr>
<td>Control effort (E)</td>
<td>Robustness, low electrical power</td>
</tr>
</tbody>
</table>

Contrast equation:

\[
\eta = \frac{\sum_i w_i u_i \cdot u_\alpha}{\sum_i w_i}
\]

- Energy coincident with the principal plane wave direction
- Total energy in the zone

Numerical optimization of loudspeaker configuration for sound zone reproduction
Evaluation metrics

- Generalizable set of metrics

<table>
<thead>
<tr>
<th>Evaluation metric</th>
<th>Linked characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast</td>
<td>C</td>
</tr>
<tr>
<td>Planarity</td>
<td>η</td>
</tr>
<tr>
<td>Control effort</td>
<td>E</td>
</tr>
</tbody>
</table>

$E = 10 \log_{10} \left(\frac{q^H q}{|q_r|^2} \right)$

- Sum of squared loudspeaker weights
- Reference loudspeaker weight

- Generalizable set of metrics

- Contrast
 - Minimal interference
- Planarity
 - Spatial sound distribution
- Control effort
 - Robustness, low electrical power
• Defined optimization cost function based on physical metrics

\[Y = w_c C - w_e E + w_m M + w_\eta \eta \]

– Where

\[M = -10 \log_{10} \left(\| \mathbf{G}_B^H \mathbf{G}_B \|_1 \| \mathbf{G}_B^H \mathbf{G}_B^{-1} \|_1 \right) \]

• Choose or optimize weighting coefficients

• Could use perceptual model [12]

Approach

- **Sequential Forward-Backward Search** \cite{13}
 - +2, -1
- Applied each element in turn
- Focus here on contrast-only case
 - Other results included in paper
 - Selected between 6 and 30 optimal positions
 - Based on predicted performance
 (mean at 100, 200, ..., 4000 Hz for both zones)

Numerical optimization of loudspeaker configuration for sound zone reproduction
Numerical optimization of loudspeaker configuration for sound zone reproduction

- 60 channel circular candidate array
- Two 25×35 cm zones
- Independent performance measurement set
Results

- Array configurations
 - 10 loudspeaker example

Contrast-only

Arc

Circle
• Acoustic contrast (average over freq.)

- Circle worst over frequency
- Optimal set best for 6 loudspeakers
Results

• 10 loudspeakers over frequency

Numerical optimization of loudspeaker configuration for sound zone reproduction
Results

- Sound pressure level
 - 2650 Hz notch, simulated in free-field
Summary

• Loudspeaker array geometries not previously investigated for sound zones
• Proposed objective function based on physical metrics
• Improved min. contrast by 6 dB compared to reference arrays (10 loudspeaker example)
• Further work should investigate:
 – Weighting of cost function
 – Extended loudspeaker sets
 – Advanced numerical search methods
Did you see my last talk?

Paper #558

Stereophonic personal audio reproduction using planarity control optimization
Acknowledgements

Thanks to Alice Duque who made RIR measurements

p.d.coleman@surrey.ac.uk
www.linkedin.com/in/philipcolemanaudio
Results

• Optimal 10 channel arrays for other weights:

Contrast-only Effort-only Condition-only Planarity-only

Numerical optimization of loudspeaker configuration
for sound zone reproduction
Results

- **Optimal 10 channel arrays:**

<table>
<thead>
<tr>
<th>Weights</th>
<th>C (dB) Mean</th>
<th>C (dB) Min.</th>
<th>E (dB) Mean</th>
<th>E (dB) Min.</th>
<th>η (%) Mean</th>
<th>η (%) Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>νc νe νm νη</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>contrast-only</td>
<td>1 0 0 0</td>
<td>13.4</td>
<td>7.2</td>
<td>-4.1</td>
<td>60.3</td>
<td>4.0</td>
</tr>
<tr>
<td>effort-only</td>
<td>0 1 0 0</td>
<td>13.0</td>
<td>5.2</td>
<td>-4.9</td>
<td>74.1</td>
<td>23.9</td>
</tr>
<tr>
<td>condition-only</td>
<td>0 0 1 0</td>
<td>6.2</td>
<td>0.7</td>
<td>-9.3</td>
<td>36.4</td>
<td>-2.7</td>
</tr>
<tr>
<td>planarity-only</td>
<td>0 0 0 1</td>
<td>14.6</td>
<td>7.0</td>
<td>-4.4</td>
<td>83.5</td>
<td>23.7</td>
</tr>
</tbody>
</table>
• Measure room responses (60 × 768)
• Select optimal loudspeakers
• Calculate optimal source weights for each frequency
• Inverse FFT/shift to make FIR filters (×60)
• Independent performance measurement set