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Abstract. We prove that the spatio-temporal topological entropy (= the topological
entropy per unit volume) is equal to zero for formally gradient reaction-diffusion
systems in R™. This result generalizes the well-known fact that gradient ODEs have
zero topological entropy.

1. Introduction. We consider the following spatially homogeneous reaction-diffu-
sion system in R™:

A = alyu — (L, Vy)u — Au — f(u), = €R”, u|t:0 = uyp, (1)

where u = (ul,--- ,u¥) is an unknown vector-valued function, A, is the Laplacian

with respect to x, a is a given diffusion matrix which has positive symmetric part
(a+a* >0), L € R" is a given constant vector,

(E, Vi)u = Z L0y, u,
=1

Ao > 0 is a given constant and f(u) is a given nonlinear interaction function which
is assumed to satisfy the following conditions:

1. f € C2(RE,RF),
2. f(’U).’UZ—C, fl(v) Z_K’ VUGRk’ (2)
3. |f(’U)| < C(l + |,U|;D)’ P < Pmaz =1+ ﬁ (lfn > 4)7

where w.v stands for the standard inner product of the vectors v and w of R¥.

It is well-known (see [3], [4], [19] and the references therein) that, in many cases,
the behavior of the solutions of (1) can be described in terms of global attractors
of the corresponding semigroups. In particular, in case of equations (1) in bounded
domains @ C R™, the associated attractor A usually has finite Hausdorff and fractal
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dimensions and, consequently (since the semigroup {S;,¢ > 0} generated by equa-
tion (1) is Lipschitz continuous in the appropriate phase space), the topological
entropy of the action of the semigroup S; on the attractor A is also finite:

htop(Aa St) < 00, (3)

exactly as in case of classical ODEs (see [3, 4], [10] and [19] for the details). More-
over, if equation (1) has a gradient form:

L=0 a=a">0, f(v)=V,F(v), FeC*RR), (4)
then it possesses a global Liapunov function
1
L(u) := 3 / aVu.Vau + 2F (u) + Au.udz (5)
Q

and, consequently, topological entropy (3) is equal to zero.

The longtime behavior of solutions of (1) in unbounded domains was studied
(under various assumptions on the diffusion matrix a and the nonlinear interaction
function f) by many authors, see [1],[2], [5, 6, 7, 8, 9], [12, 13, 14], [17], [20, 21,
22, 23] and the references therein. In particular, it is proved in [22, 23] that, under
assumptions (2), equation (1) generates a dissipative semigroup {S;,¢ > 0} in the
phase space ® := L>®°(R"):

St :® — &, Siug:=u(t), where u(t) solves (1). (6)

Moroeover, this semigroup possesses a (locally compact) global attractor 4 in the
phase space ® (by definition, this attractor is bounded in L>°(R™), compact in the
local topology of ®;,. := LS. (R") and attracts the images of any bounded subset
of ® also in a local topology of ®;,., which is natural for the attractors theory in

unbounded domains, see [7, 8] and [13, 14]). Tt is also shown there that the attractor

A is bounded in C2(R") and is compact in C} (R"):
[ Alloz@n) < C < o0, ACC Cpe(R"). (7)

We however note that, in contrast to the case of bounded domains, the attractor
A of equation (1) usually has infinite Hausdorff and fractal dimensions, see [2],
[5, 6, 7, 8] and [20, 21, 22, 23, 15] (see also [1, 2], [7] and [12] for some particular
cases of equation (1) in unbounded domains where the dimension of the attractor
remains finite). Consequently, there are no reasons to expect that the topological
entropy of semigroup (6) on the attractor is always finite. Moreover, as shown in
[23], this value is indeed infinite for many interesting (from the applications point
of view) examples of equations (1).

In order to introduce the finite quantitative characteristics of the dynamics on
the attractor, we first note that, due to the spatial homogeneity of equation (1), a
group of spatial translations {7, h € R™} acts on the attractor A:

ThA=A, (Thuo)(z):=uo(z+h), VheR" and ug € A. (8)
Moreover, this group, obviously, commutes with temporal dynamics (6) and, con-

sequently, we may define an action of the extened (n + 1)-parametrical semigroup
{S¢,n)t € Ry, h € R*} as follows:

Setny:=S8toTh, SpnA=A, VteRy and heR". (9)

Following [23], it is natural to describe the spatio-temporal complexity of the at-
tractor A in terms of the dynamical properties of semigroup (9) (which is inter-
preted as a dynamical system with multidimensional *time’ (¢, h) € Ry x R™ acting
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on the attractor). In particular, it is natural to consider the topological entropy
htop(A,S(1,n)) of the action of semigroup (9) on the attractor (= spatio-temporal
topological entropy of the attractor A, see §2 for the rigorous definition). Moreover,
as proved in [23], this value is always finite for the attractors of equations (1) in R":

htop(AaS(t,h)) S C < 00 (10)

(in contrast to usual temporal topological entropy (5) which is usually infinite in
the case of unbounded domains, see also [15] for some examples of equations of the
form (1), for which this value is strictly positive). We also note that quantity (10)
coincides with the so-called topological entropy per unit volume which has been
earlier introduced in [6] for studying some particular cases of equations (1).

The aim of the present article is to prove that quantity (10) equals zero identically
for the case of formally gradient systems of the form (1). To be more precise, the
main result of the paper is the following theorem.

Theorem 1. Let the nonlinear interaction function f satisfy conditons (2) and, in
addition, the following assumptions hold:

a=a*>0, N\ >0, f(u)=V,F(u), FeC*R"R). (11)

Then, the spatio-temporal topological entropy of the attractor A associated with
equation (1) equals zero identically:

htop(A, S(t,n)) = 0. (12)

We note that, in contrast to the case of bounded domains, functional (5) is
equal to infinity, for generic ug € A, and, consequently, we do not have the global
Liapunov function on the attractor. Instead, our proof of identity (12) is based
on the fact that (under the assumptions of the theorem) equation (1) generates a
dynamical system (DS) on the space of all spatially invariant probabilistic Borel
measures and this DS possesses a global Liapunov function (which was established
in a slightly different form in [9] and [17]). This fact allows to prove that the
measure-theoretical analogue of entropy (10) equals zero for any invariant Borel
measure y and verify (12) using the multidimensional analogue of the variational
principle, see [16] and [18].

To conclude, we note that the usual temporal topological entropy htop(A, St) is
not necessarily equal to zero under the assumptions of Theorem 1. Indeed, let us
consider the following one dimensional scalar Chafee-Infante equation perturbed by
sufficiently large convective term:

Opu = 02u — Loyu +u —u®, = € R, (13)

where L > 2. Then, it is known that the temporal dynamics generated by (13) on the
attractor can be desribed in terms of the embeddings of Bernoulli shifts dynamics
with the continuous set of symbols w € [0, 1], see [23] for the details. Consequently,
quantity (3) equals infinity for this case. On the other hand, equation (13) satisfies
the assumptions of Theorem 1 and, therefore, the spatio-temporal entropy of the
attractor is equal to zero:

htop(A, St) = 00, but htop(A, S(Lh)) =0. (].4:)

We also note that the concrete form of assumptions (2) is used only in order to
verify that equation (1) generates a dissipative semigroup (6) in the phase space
® := L>°(R™). If this fact is a priori known, for some equation of the form (1),
then we obtain identity (12) without assumptions (2) on the nonlinear term f.
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2. Definitions and the proof of the main theorem. In this section, we re-
call the definition of the spatio-temporal topological entropy and give the proof
of Theorem 1 which was formulated in the introduction. We first introduce the
Kolmogorovs entropy of a compact set in a metric space.

Definition 1. Let K be a compact set in a metric space (M, dys). Then, due to
the Hausdorff criterium, for every positive ¢ > 0, the set K can be covered by a
finite number of e-balls in M. Let N.(K, M) be the minimal number of such balls.
Then, by definition, the Kolmogorov’s e-entropy of K in M is the following number:

H. (K, M) = H. (K, dy) := log, N (K, M) (15)
(see [11] for the details).
Now we are ready to give the definition of hsop(A, S (4,4))-

Definition 2. Let d(u,v) be an arbitrary metric which generates the local topology
of LS, (R™) on the attractor. For instance, let

d0) = Ju = vl oy = sup {7 u(@) — v(a)]). (16)

Then, by definition, (A,d) is a compact metric space. Let us define, for every
R € R, , a new metric dr on A as follows:

dr(u,v) := sup(; nyefo,r)n+1 (S (t,nyts S(t,n))- (17)

Then, obviously, (A, dg) is also a compact metric space and, consequently, the
Kolmohgorov’s e-entropy H. (A, dr) is well defined, for every € > 0 and R € Ry.
By definition, the spatio-temporal topological entropy of the attractor A is the
following number:

Rtop(A, S(t,1)) := limg_0 lim sup

R—o0 R+l

(see [10] for the details).

It is well-known that quantity (18) is independent of the choice of the metric d
on the attractor. Moreover, the following proposition (which is proved in [22, 23])
gives more convenient formula for its computation in terms of the Kolmogorov’s
g-entropy.

Proposition 1. Quantity (18) can be computed as follows:
1
BT . [e%) n+1
htop(Aa S(t,h)) - 5151(1) ngréo WHf (’Ca L ([07 R] )7 (19)

where KK C L (R™*1) is the set of all solutions of (1) which are defined for allt € R
and z € R”.

We are now ready to give the proof of Theorem 1.

Proof of Theorem 1. We first note that the vector L in equation (1) can be trans-
formed into the following form: L= (L,0,---,0) by the appropriate rotation of
the z-coordinate. Futhermore, using the following travelling wave change of the in-
dependent variables: (¢,z) — (¢',2') (t :=t — Lz1, z = z'), we transform equation
(1) into an analogous equation, for L = 0. Since the spatio-temporal topological
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entropy is obviously preserved under this change of variables then, it is sufficient to
prove the theorem for the case L=0 only.

Let us consider the space M(.4) of all Borel probability measures on .4 which are
invariant with respect to the spatial translations {T,h € R™}. This space is not
empty since the attractor A4 is compact in the local topology of ®;,.. Equation (1)
generates a semigroup on the space M(A) by the following standard expression:

Sy M —M, (S;u)(B):=pu(S;'B). (20)
The proof of identity (12) is based on the following lemma.

Lemma 1. Let the assumptions of Theorem 1 hold and L=o0. Then, DS (20)
possesses the following global Liapunov function:

L(p) = / EA[aVzuo(ﬂio)-Vzuo(l’o) + Aouo(xo)-uo(zo) + 2F (up(zo))]u(du). (21)

In particular L(u) is independent of zo € R™.

Proof. Since the diffusion matrix a is selfadjoint then (as proved in [22, 23]) the
operator S; : A — A is a homeomorphism (in the L;? (R")-topology), for every
t > 0. Using now the smoothing property S; : L, (R") — 083,‘1‘ (R™), we may
verify in a standard way (see [23] for the details) that the local topologies induced
on the attractor A by the embeddings A C L (R") and A C C} _(R™) coincide.
Therefore, expression (21) has a sense and finite (we recall that the measure y is
assumed to be Borel). Moreover, since p € M(A) is invariant with respect to the
spatial translations, then expression (21) is independent of z, € R™. Let us now
prove that (21) is a Liapunov function. Indeed, let u € M(.A). Then

L(t) == L(S;p) = / [aVzu(t, z0).Viu(t, zo) +

up€A
+ dou(t, zo).u(t, zo) + 2F (u(t, zo))]u(duo), (22)

where u(t, o) := (Stuo)(zo). Differentiating expression (22) with respect to ¢ and
using equation (1), we have

%E(t) =-2 /UOGA[Btu(t,acg).Btu(t,acg)]p(duo) +

i ; /uoeA 0z [a0z,u(t, z0)-Osu(t, o) pu(duo). (23)

Let us verify that the second term in the right-hand side of (23) equals zero iden-
tically. Indeed, since the measure y is invariant with respect to the spatial transla-
tions, then

/ B Oz, [a0z, u(t, o) .0pu(t, zo)|pu(dug) =
uo €

1
lim — [a0y,u(t, zo + he;).0wu(t, zo + he;) — ady, u(t, o).0u(t, zo)|p(duo)
h—0 h wo €A
1
= lim —{/ a0y, u(t, xo).Opu(t, o) u(dug) —
h—0 h wp €A

/ a(?ziu(t,a:o).atu(t,azo)u(duo)} =0. (24)
up €A
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Integrating (23) with respect to ¢, we have

123
L(Si,p) — L(Sf ) = —2/ / |0su(t, zo)|* w(duo) < 0. (25)
o€A

Thus, (21) is a nonincreasing function along the trajectories of (20). We now assume
that

L(Sg, 1) = LS, 1), (26)

for some u € M(.A) and t2 > t1. Let us prove that (26) implies that that the support
of p is a subset of the set R C A which consists of all equilibria of equation (1):

supp 4 C R. (27)

Indeed, it follows from the spatial invariance of the measure u and expression (25)
that

ta
f f 1Oyu(t, 2)[2u(du) dt = 0, (28)
0EA

for every z € R™. Thus, for pu-almost every ug € A, we have

to
/ |Owu(t,z)|> dt = 0, for every € Q". (29)

t1

Since the function ¢ — &:u(t,z) is continuous (we recall that A C C7(Q) and,
consequently, dyu € Cy(R, C} (R™)), for every trajectory u(t) belonging to the at-
tractor), then (29) implies that, for y-almost every ug € A, we have d;u(t,z) = 0,
for t € [t1,t2] and every z € Q™. Since z — Jyu(t,z) is also continuous, then
we finally derive that d;u(t,z) = 0, for all (¢,z) € [t1,t2] X R" and, consequently,
ug € R. Thus, we have proved that

pw(R) =1 (30)
which implies embedding (27). There only remains to note that every measure which

satisfies (30) is, obviously, an equilibrium of DS (20) and Lemma 1 is proved. [

We are now ready to finish the proof of Theorem 1. Indeed, let i be an arbitrary
Borel probability measure on A4 which is invariant with respect to the extended
semigroup S ;). Then, it is obviously an equilibrium of DS (20) and, consequently
(due to Lemma 1), this measure satisfies condition (27). Therefore, the measure-
theoretical entropy h,(A,S ) (see e.g. [10] and [16] for the rigorous definition)
of the action of S, ;) on the attractor A with respect to this measure equals zero:

hu(A, S (i) = 0. (31)

Since identity (31) is valid for every S ,)-invariant measure u, then, according to
the variational principle

htop(A, S(t,h)) = sup hu(A, S(t,h)) =0 (32)
n

(see e.g. [10], [16] and [18]) and Theorem 1 is proved. O
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