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ope Cedex - Fran
eAbstra
t. We prove that the spatio-temporal topologi
al entropy (= the topologi
alentropy per unit volume) is equal to zero for formally gradient rea
tion-di�usionsystems in Rn. This result generalizes the well-known fa
t that gradient ODEs havezero topologi
al entropy.1. Introdu
tion. We 
onsider the following spatially homogeneous rea
tion-diffu-sion system in Rn :�tu = a�xu� (~L;rx)u� �0u� f(u); x 2 Rn ; u��t=0 = u0; (1)where u = (u1; � � � ; uk) is an unknown ve
tor-valued fun
tion, �x is the Lapla
ianwith respe
t to x, a is a given di�usion matrix whi
h has positive symmetri
 part(a+ a� > 0), ~L 2 Rn is a given 
onstant ve
tor,(~L;rx)u := nXl=1 Li�xiu;�0 > 0 is a given 
onstant and f(u) is a given nonlinear intera
tion fun
tion whi
his assumed to satisfy the following 
onditions:8><>:1: f 2 C2(Rk ;Rk );2: f(v):v � �C; f 0(v) � �K; 8v 2 Rk ;3: jf(v)j � C(1 + jvjp); p < pmax := 1 + 4n�4 (if n > 4); (2)where w:v stands for the standard inner produ
t of the ve
tors v and w of Rk .It is well-known (see [3℄, [4℄, [19℄ and the referen
es therein) that, in many 
ases,the behavior of the solutions of (1) 
an be des
ribed in terms of global attra
torsof the 
orresponding semigroups. In parti
ular, in 
ase of equations (1) in boundeddomains 
 � Rn , the asso
iated attra
tor A usually has �nite Hausdor� and fra
tal1991 Mathemati
s Subje
t Classi�
ation. 35B40, 35B45.Key words and phrases. Rea
tion-di�usion systems, unbounded domains, formally gradientsystems, topologi
al entropy. 1



2 ZELIK S.dimensions and, 
onsequently (sin
e the semigroup fSt; t � 0g generated by equa-tion (1) is Lips
hitz 
ontinuous in the appropriate phase spa
e), the topologi
alentropy of the a
tion of the semigroup St on the attra
tor A is also �nite:htop(A; St) <1; (3)exa
tly as in 
ase of 
lassi
al ODEs (see [3, 4℄, [10℄ and [19℄ for the details). More-over, if equation (1) has a gradient form:~L = 0; a = a� > 0; f(v) = rvF (v); F 2 C3(Rk ;R); (4)then it possesses a global Liapunov fun
tionL(u) := 12 Z
 arxu:rxu+ 2F (u) + �0u:u dx (5)and, 
onsequently, topologi
al entropy (3) is equal to zero.The longtime behavior of solutions of (1) in unbounded domains was studied(under various assumptions on the di�usion matrix a and the nonlinear intera
tionfun
tion f) by many authors, see [1℄,[2℄, [5, 6, 7, 8, 9℄, [12, 13, 14℄, [17℄, [20, 21,22, 23℄ and the referen
es therein. In parti
ular, it is proved in [22, 23℄ that, underassumptions (2), equation (1) generates a dissipative semigroup fSt; t � 0g in thephase spa
e � := L1(Rn ):St : �! �; Stu0 := u(t); where u(t) solves (1): (6)Moroeover, this semigroup possesses a (lo
ally 
ompa
t) global attra
tor A in thephase spa
e � (by de�nition, this attra
tor is bounded in L1(Rn ), 
ompa
t in thelo
al topology of �lo
 := L1lo
(Rn ) and attra
ts the images of any bounded subsetof � also in a lo
al topology of �lo
, whi
h is natural for the attra
tors theory inunbounded domains, see [7, 8℄ and [13, 14℄). It is also shown there that the attra
torA is bounded in C3b (Rn ) and is 
ompa
t in C3lo
(Rn ):kAkC3b (Rn) � C <1; A �� C3lo
(Rn ): (7)We however note that, in 
ontrast to the 
ase of bounded domains, the attra
torA of equation (1) usually has in�nite Hausdor� and fra
tal dimensions, see [2℄,[5, 6, 7, 8℄ and [20, 21, 22, 23, 15℄ (see also [1, 2℄, [7℄ and [12℄ for some parti
ular
ases of equation (1) in unbounded domains where the dimension of the attra
torremains �nite). Consequently, there are no reasons to expe
t that the topologi
alentropy of semigroup (6) on the attra
tor is always �nite. Moreover, as shown in[23℄, this value is indeed in�nite for many interesting (from the appli
ations pointof view) examples of equations (1).In order to introdu
e the �nite quantitative 
hara
teristi
s of the dynami
s onthe attra
tor, we �rst note that, due to the spatial homogeneity of equation (1), agroup of spatial translations fTh; h 2 Rng a
ts on the attra
tor A:ThA = A; (Thu0)(x) := u0(x+ h); 8h 2 Rn and u0 2 A: (8)Moreover, this group, obviously, 
ommutes with temporal dynami
s (6) and, 
on-sequently, we may de�ne an a
tion of the extened (n + 1)-parametri
al semigroupfS(t;h); t 2 R+ ; h 2 Rng as follows:S(t;h) := St Æ Th; S(t;h)A = A; 8t 2 R+ and h 2 Rn : (9)Following [23℄, it is natural to des
ribe the spatio-temporal 
omplexity of the at-tra
tor A in terms of the dynami
al properties of semigroup (9) (whi
h is inter-preted as a dynami
al system with multidimensional 'time' (t; h) 2 R+ �Rn a
ting



SPATIO-TEMPORAL ENTROPY 3on the attra
tor). In parti
ular, it is natural to 
onsider the topologi
al entropyhtop(A;S(t;h)) of the a
tion of semigroup (9) on the attra
tor (= spatio-temporaltopologi
al entropy of the attra
tor A, see x2 for the rigorous de�nition). Moreover,as proved in [23℄, this value is always �nite for the attra
tors of equations (1) in Rn :htop(A;S(t;h)) � C <1 (10)(in 
ontrast to usual temporal topologi
al entropy (5) whi
h is usually in�nite inthe 
ase of unbounded domains, see also [15℄ for some examples of equations of theform (1), for whi
h this value is stri
tly positive). We also note that quantity (10)
oin
ides with the so-
alled topologi
al entropy per unit volume whi
h has beenearlier introdu
ed in [6℄ for studying some parti
ular 
ases of equations (1).The aim of the present arti
le is to prove that quantity (10) equals zero identi
allyfor the 
ase of formally gradient systems of the form (1). To be more pre
ise, themain result of the paper is the following theorem.Theorem 1. Let the nonlinear intera
tion fun
tion f satisfy 
onditons (2) and, inaddition, the following assumptions hold:a = a� > 0; �0 > 0; f(u) = ruF (u); F 2 C3(Rk ;R): (11)Then, the spatio-temporal topologi
al entropy of the attra
tor A asso
iated withequation (1) equals zero identi
ally:htop(A;S(t;h)) = 0: (12)We note that, in 
ontrast to the 
ase of bounded domains, fun
tional (5) isequal to in�nity, for generi
 u0 2 A, and, 
onsequently, we do not have the globalLiapunov fun
tion on the attra
tor. Instead, our proof of identity (12) is basedon the fa
t that (under the assumptions of the theorem) equation (1) generates adynami
al system (DS) on the spa
e of all spatially invariant probabilisti
 Borelmeasures and this DS possesses a global Liapunov fun
tion (whi
h was establishedin a slightly di�erent form in [9℄ and [17℄). This fa
t allows to prove that themeasure-theoreti
al analogue of entropy (10) equals zero for any invariant Borelmeasure � and verify (12) using the multidimensional analogue of the variationalprin
iple, see [16℄ and [18℄.To 
on
lude, we note that the usual temporal topologi
al entropy htop(A; St) isnot ne
essarily equal to zero under the assumptions of Theorem 1. Indeed, let us
onsider the following one dimensional s
alar Chafee-Infante equation perturbed bysuÆ
iently large 
onve
tive term:�tu = �2xu� L�xu+ u� u3; x 2 R1 ; (13)whereL > 2. Then, it is known that the temporal dynami
s generated by (13) on theattra
tor 
an be desribed in terms of the embeddings of Bernoulli shifts dynami
swith the 
ontinuous set of symbols ! 2 [0; 1℄, see [23℄ for the details. Consequently,quantity (3) equals in�nity for this 
ase. On the other hand, equation (13) satis�esthe assumptions of Theorem 1 and, therefore, the spatio-temporal entropy of theattra
tor is equal to zero:htop(A; St) =1; but htop(A;S(t;h)) = 0: (14)We also note that the 
on
rete form of assumptions (2) is used only in order toverify that equation (1) generates a dissipative semigroup (6) in the phase spa
e� := L1(Rn ). If this fa
t is a priori known, for some equation of the form (1),then we obtain identity (12) without assumptions (2) on the nonlinear term f .
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tno. 00-899 and CRDF grant no. 10545.2. De�nitions and the proof of the main theorem. In this se
tion, we re-
all the de�nition of the spatio-temporal topologi
al entropy and give the proofof Theorem 1 whi
h was formulated in the introdu
tion. We �rst introdu
e theKolmogorovs entropy of a 
ompa
t set in a metri
 spa
e.De�nition 1. Let K be a 
ompa
t set in a metri
 spa
e (M;dM ). Then, due tothe Hausdor� 
riterium, for every positive " > 0, the set K 
an be 
overed by a�nite number of "-balls in M . Let N"(K;M) be the minimal number of su
h balls.Then, by de�nition, the Kolmogorov's "-entropy of K inM is the following number:H " (K;M) = H " (K; dM ) := log2N"(K;M) (15)(see [11℄ for the details).Now we are ready to give the de�nition of htop(A;S(t;h)).De�nition 2. Let d(u; v) be an arbitrary metri
 whi
h generates the lo
al topologyof L1lo
(Rn ) on the attra
tor. For instan
e, letd(u; v) := ku� vkL1e�jxj (Rn) := supx2Rnfe�jxjju(x)� v(x)jg: (16)Then, by de�nition, (A; d) is a 
ompa
t metri
 spa
e. Let us de�ne, for everyR 2 R+ , a new metri
 dR on A as follows:dR(u; v) := sup(t;h)2[0;R℄n+1 d(S(t;h)u;S(t;h)v): (17)Then, obviously, (A; dR) is also a 
ompa
t metri
 spa
e and, 
onsequently, theKolmohgorov's "-entropy H " (A; dR) is well de�ned, for every " > 0 and R 2 R+ .By de�nition, the spatio-temporal topologi
al entropy of the attra
tor A is thefollowing number:htop(A;S(t;h)) := lim"!0 lim supR!1 1Rn+1 H " (A; dR) (18)(see [10℄ for the details).It is well-known that quantity (18) is independent of the 
hoi
e of the metri
 don the attra
tor. Moreover, the following proposition (whi
h is proved in [22, 23℄)gives more 
onvenient formula for its 
omputation in terms of the Kolmogorov's"-entropy.Proposition 1. Quantity (18) 
an be 
omputed as follows:htop(A;S(t;h)) = lim"!0 limR!1 1Rn+1 H " (K; L1([0; R℄n+1); (19)where K � L1(Rn+1 ) is the set of all solutions of (1) whi
h are de�ned for all t 2 Rand x 2 Rn .We are now ready to give the proof of Theorem 1.Proof of Theorem 1. We �rst note that the ve
tor ~L in equation (1) 
an be trans-formed into the following form: ~L := (L; 0; � � � ; 0) by the appropriate rotation ofthe x-
oordinate. Futhermore, using the following travelling wave 
hange of the in-dependent variables: (t; x)! (t0; x0) (t := t0 �Lx1, x = x0), we transform equation(1) into an analogous equation, for ~L � 0. Sin
e the spatio-temporal topologi
al



SPATIO-TEMPORAL ENTROPY 5entropy is obviously preserved under this 
hange of variables then, it is suÆ
ient toprove the theorem for the 
ase ~L = 0 only.Let us 
onsider the spa
e M (A) of all Borel probability measures on A whi
h areinvariant with respe
t to the spatial translations fTh; h 2 Rng. This spa
e is notempty sin
e the attra
tor A is 
ompa
t in the lo
al topology of �lo
. Equation (1)generates a semigroup on the spa
e M (A) by the following standard expression:S�t : M ! M ; (S�t �)(B) := � �S�1t B� : (20)The proof of identity (12) is based on the following lemma.Lemma 1. Let the assumptions of Theorem 1 hold and ~L = 0. Then, DS (20)possesses the following global Liapunov fun
tion:L(�) = Zu02A[arxu0(x0):rxu0(x0) + �0u0(x0):u0(x0) + 2F (u0(x0))℄�(du): (21)In parti
ular L(�) is independent of x0 2 Rn .Proof. Sin
e the di�usion matrix a is selfadjoint then (as proved in [22, 23℄) theoperator St : A ! A is a homeomorphism (in the L1lo
(Rn )-topology), for everyt � 0. Using now the smoothing property St : L1e�jxj(Rn ) ! C3e�jxj(Rn ), we mayverify in a standard way (see [23℄ for the details) that the lo
al topologies indu
edon the attra
tor A by the embeddings A � L1lo
(Rn) and A � C3lo
(Rn ) 
oin
ide.Therefore, expression (21) has a sense and �nite (we re
all that the measure � isassumed to be Borel). Moreover, sin
e � 2 M (A) is invariant with respe
t to thespatial translations, then expression (21) is independent of x0 2 Rn . Let us nowprove that (21) is a Liapunov fun
tion. Indeed, let � 2 M (A). ThenL(t) := L(S�t �) = Zu02A[arxu(t; x0):rxu(t; x0) ++ �0u(t; x0):u(t; x0) + 2F (u(t; x0))℄�(du0); (22)where u(t; x0) := (Stu0)(x0). Di�erentiating expression (22) with respe
t to t andusing equation (1), we haveddtL(t) = �2 Zu02A[�tu(t; x0):�tu(t; x0)℄�(du0) ++ 2 nXi=1 Zu02A �xi [a�xiu(t; x0):�tu(t; x0)℄�(du0): (23)Let us verify that the se
ond term in the right-hand side of (23) equals zero iden-ti
ally. Indeed, sin
e the measure � is invariant with respe
t to the spatial transla-tions, thenZu02A �xi [a�xiu(t; x0):�tu(t; x0)℄�(du0) =limh!0 1h Zu02A[a�xiu(t; x0 + hei):�tu(t; x0 + hei)� a�xiu(t; x0):�tu(t; x0)℄�(du0)= limh!0 1h�Zu02A a�xiu(t; x0):�tu(t; x0)�(du0)�Zu02A a�xiu(t; x0):�tu(t; x0)�(du0)� = 0: (24)



6 ZELIK S.Integrating (23) with respe
t to t, we haveL(S�t2�)�L(S�t1�) = �2 Z t2t1 Zu02A j�tu(t; x0)j2�(du0) � 0: (25)Thus, (21) is a nonin
reasing fun
tion along the traje
tories of (20). We now assumethat L(S�t1�) = L(S�t2�); (26)for some � 2 M (A) and t2 > t1. Let us prove that (26) implies that that the supportof � is a subset of the set R � A whi
h 
onsists of all equilibria of equation (1):supp� � R: (27)Indeed, it follows from the spatial invarian
e of the measure � and expression (25)that Z t2t1 Zu02A j�tu(t; x)j2�(du0) dt = 0; (28)for every x 2 Rn . Thus, for �-almost every u0 2 A, we haveZ t2t1 j�tu(t; x)j2 dt = 0; for every x 2 Qn : (29)Sin
e the fun
tion t ! �tu(t; x) is 
ontinuous (we re
all that A � C3b (
) and,
onsequently, �tu 2 Cb(R; C1b (Rn )), for every traje
tory u(t) belonging to the at-tra
tor), then (29) implies that, for �-almost every u0 2 A, we have �tu(t; x) � 0,for t 2 [t1; t2℄ and every x 2 Qn . Sin
e x ! �tu(t; x) is also 
ontinuous, thenwe �nally derive that �tu(t; x) � 0, for all (t; x) 2 [t1; t2℄ � Rn and, 
onsequently,u0 2 R. Thus, we have proved that �(R) = 1 (30)whi
h implies embedding (27). There only remains to note that every measure whi
hsatis�es (30) is, obviously, an equilibrium of DS (20) and Lemma 1 is proved.We are now ready to �nish the proof of Theorem 1. Indeed, let � be an arbitraryBorel probability measure on A whi
h is invariant with respe
t to the extendedsemigroup S(t;h). Then, it is obviously an equilibrium of DS (20) and, 
onsequently(due to Lemma 1), this measure satis�es 
ondition (27). Therefore, the measure-theoreti
al entropy h�(A;S(t;h)) (see e.g. [10℄ and [16℄ for the rigorous de�nition)of the a
tion of S(t;h) on the attra
tor A with respe
t to this measure equals zero:h�(A;S(t;h)) = 0: (31)Sin
e identity (31) is valid for every S(t;h)-invariant measure �, then, a

ording tothe variational prin
iplehtop(A;S(t;h)) = sup� h�(A;S(t;h)) = 0 (32)(see e.g. [10℄, [16℄ and [18℄) and Theorem 1 is proved.
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