
PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ONDYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONSMay 24 { 27, 2002, Wilmington, NC, USA pp. 1{10FORMALLY GRADIENT REACTION-DIFFUSION SYSTEMS INRn HAVE ZERO SPATIO-TEMPORAL TOPOLOGICALENTROPY.ZELIK S.Universit�e de PoitiersLaboratoire d'Appliations des Math�ematiques - SP2MIBoulevard Marie et Pierre Curie - T�el�eport 286962 Chasseneuil Futurosope Cedex - FraneAbstrat. We prove that the spatio-temporal topologial entropy (= the topologialentropy per unit volume) is equal to zero for formally gradient reation-di�usionsystems in Rn. This result generalizes the well-known fat that gradient ODEs havezero topologial entropy.1. Introdution. We onsider the following spatially homogeneous reation-diffu-sion system in Rn :�tu = a�xu� (~L;rx)u� �0u� f(u); x 2 Rn ; u��t=0 = u0; (1)where u = (u1; � � � ; uk) is an unknown vetor-valued funtion, �x is the Laplaianwith respet to x, a is a given di�usion matrix whih has positive symmetri part(a+ a� > 0), ~L 2 Rn is a given onstant vetor,(~L;rx)u := nXl=1 Li�xiu;�0 > 0 is a given onstant and f(u) is a given nonlinear interation funtion whihis assumed to satisfy the following onditions:8><>:1: f 2 C2(Rk ;Rk );2: f(v):v � �C; f 0(v) � �K; 8v 2 Rk ;3: jf(v)j � C(1 + jvjp); p < pmax := 1 + 4n�4 (if n > 4); (2)where w:v stands for the standard inner produt of the vetors v and w of Rk .It is well-known (see [3℄, [4℄, [19℄ and the referenes therein) that, in many ases,the behavior of the solutions of (1) an be desribed in terms of global attratorsof the orresponding semigroups. In partiular, in ase of equations (1) in boundeddomains 
 � Rn , the assoiated attrator A usually has �nite Hausdor� and fratal1991 Mathematis Subjet Classi�ation. 35B40, 35B45.Key words and phrases. Reation-di�usion systems, unbounded domains, formally gradientsystems, topologial entropy. 1



2 ZELIK S.dimensions and, onsequently (sine the semigroup fSt; t � 0g generated by equa-tion (1) is Lipshitz ontinuous in the appropriate phase spae), the topologialentropy of the ation of the semigroup St on the attrator A is also �nite:htop(A; St) <1; (3)exatly as in ase of lassial ODEs (see [3, 4℄, [10℄ and [19℄ for the details). More-over, if equation (1) has a gradient form:~L = 0; a = a� > 0; f(v) = rvF (v); F 2 C3(Rk ;R); (4)then it possesses a global Liapunov funtionL(u) := 12 Z
 arxu:rxu+ 2F (u) + �0u:u dx (5)and, onsequently, topologial entropy (3) is equal to zero.The longtime behavior of solutions of (1) in unbounded domains was studied(under various assumptions on the di�usion matrix a and the nonlinear interationfuntion f) by many authors, see [1℄,[2℄, [5, 6, 7, 8, 9℄, [12, 13, 14℄, [17℄, [20, 21,22, 23℄ and the referenes therein. In partiular, it is proved in [22, 23℄ that, underassumptions (2), equation (1) generates a dissipative semigroup fSt; t � 0g in thephase spae � := L1(Rn ):St : �! �; Stu0 := u(t); where u(t) solves (1): (6)Moroeover, this semigroup possesses a (loally ompat) global attrator A in thephase spae � (by de�nition, this attrator is bounded in L1(Rn ), ompat in theloal topology of �lo := L1lo(Rn ) and attrats the images of any bounded subsetof � also in a loal topology of �lo, whih is natural for the attrators theory inunbounded domains, see [7, 8℄ and [13, 14℄). It is also shown there that the attratorA is bounded in C3b (Rn ) and is ompat in C3lo(Rn ):kAkC3b (Rn) � C <1; A �� C3lo(Rn ): (7)We however note that, in ontrast to the ase of bounded domains, the attratorA of equation (1) usually has in�nite Hausdor� and fratal dimensions, see [2℄,[5, 6, 7, 8℄ and [20, 21, 22, 23, 15℄ (see also [1, 2℄, [7℄ and [12℄ for some partiularases of equation (1) in unbounded domains where the dimension of the attratorremains �nite). Consequently, there are no reasons to expet that the topologialentropy of semigroup (6) on the attrator is always �nite. Moreover, as shown in[23℄, this value is indeed in�nite for many interesting (from the appliations pointof view) examples of equations (1).In order to introdue the �nite quantitative harateristis of the dynamis onthe attrator, we �rst note that, due to the spatial homogeneity of equation (1), agroup of spatial translations fTh; h 2 Rng ats on the attrator A:ThA = A; (Thu0)(x) := u0(x+ h); 8h 2 Rn and u0 2 A: (8)Moreover, this group, obviously, ommutes with temporal dynamis (6) and, on-sequently, we may de�ne an ation of the extened (n + 1)-parametrial semigroupfS(t;h); t 2 R+ ; h 2 Rng as follows:S(t;h) := St Æ Th; S(t;h)A = A; 8t 2 R+ and h 2 Rn : (9)Following [23℄, it is natural to desribe the spatio-temporal omplexity of the at-trator A in terms of the dynamial properties of semigroup (9) (whih is inter-preted as a dynamial system with multidimensional 'time' (t; h) 2 R+ �Rn ating



SPATIO-TEMPORAL ENTROPY 3on the attrator). In partiular, it is natural to onsider the topologial entropyhtop(A;S(t;h)) of the ation of semigroup (9) on the attrator (= spatio-temporaltopologial entropy of the attrator A, see x2 for the rigorous de�nition). Moreover,as proved in [23℄, this value is always �nite for the attrators of equations (1) in Rn :htop(A;S(t;h)) � C <1 (10)(in ontrast to usual temporal topologial entropy (5) whih is usually in�nite inthe ase of unbounded domains, see also [15℄ for some examples of equations of theform (1), for whih this value is stritly positive). We also note that quantity (10)oinides with the so-alled topologial entropy per unit volume whih has beenearlier introdued in [6℄ for studying some partiular ases of equations (1).The aim of the present artile is to prove that quantity (10) equals zero identiallyfor the ase of formally gradient systems of the form (1). To be more preise, themain result of the paper is the following theorem.Theorem 1. Let the nonlinear interation funtion f satisfy onditons (2) and, inaddition, the following assumptions hold:a = a� > 0; �0 > 0; f(u) = ruF (u); F 2 C3(Rk ;R): (11)Then, the spatio-temporal topologial entropy of the attrator A assoiated withequation (1) equals zero identially:htop(A;S(t;h)) = 0: (12)We note that, in ontrast to the ase of bounded domains, funtional (5) isequal to in�nity, for generi u0 2 A, and, onsequently, we do not have the globalLiapunov funtion on the attrator. Instead, our proof of identity (12) is basedon the fat that (under the assumptions of the theorem) equation (1) generates adynamial system (DS) on the spae of all spatially invariant probabilisti Borelmeasures and this DS possesses a global Liapunov funtion (whih was establishedin a slightly di�erent form in [9℄ and [17℄). This fat allows to prove that themeasure-theoretial analogue of entropy (10) equals zero for any invariant Borelmeasure � and verify (12) using the multidimensional analogue of the variationalpriniple, see [16℄ and [18℄.To onlude, we note that the usual temporal topologial entropy htop(A; St) isnot neessarily equal to zero under the assumptions of Theorem 1. Indeed, let usonsider the following one dimensional salar Chafee-Infante equation perturbed bysuÆiently large onvetive term:�tu = �2xu� L�xu+ u� u3; x 2 R1 ; (13)whereL > 2. Then, it is known that the temporal dynamis generated by (13) on theattrator an be desribed in terms of the embeddings of Bernoulli shifts dynamiswith the ontinuous set of symbols ! 2 [0; 1℄, see [23℄ for the details. Consequently,quantity (3) equals in�nity for this ase. On the other hand, equation (13) satis�esthe assumptions of Theorem 1 and, therefore, the spatio-temporal entropy of theattrator is equal to zero:htop(A; St) =1; but htop(A;S(t;h)) = 0: (14)We also note that the onrete form of assumptions (2) is used only in order toverify that equation (1) generates a dissipative semigroup (6) in the phase spae� := L1(Rn ). If this fat is a priori known, for some equation of the form (1),then we obtain identity (12) without assumptions (2) on the nonlinear term f .



4 ZELIK S.Aknoledgements. This researh was partially supported by INTAS projetno. 00-899 and CRDF grant no. 10545.2. De�nitions and the proof of the main theorem. In this setion, we re-all the de�nition of the spatio-temporal topologial entropy and give the proofof Theorem 1 whih was formulated in the introdution. We �rst introdue theKolmogorovs entropy of a ompat set in a metri spae.De�nition 1. Let K be a ompat set in a metri spae (M;dM ). Then, due tothe Hausdor� riterium, for every positive " > 0, the set K an be overed by a�nite number of "-balls in M . Let N"(K;M) be the minimal number of suh balls.Then, by de�nition, the Kolmogorov's "-entropy of K inM is the following number:H " (K;M) = H " (K; dM ) := log2N"(K;M) (15)(see [11℄ for the details).Now we are ready to give the de�nition of htop(A;S(t;h)).De�nition 2. Let d(u; v) be an arbitrary metri whih generates the loal topologyof L1lo(Rn ) on the attrator. For instane, letd(u; v) := ku� vkL1e�jxj (Rn) := supx2Rnfe�jxjju(x)� v(x)jg: (16)Then, by de�nition, (A; d) is a ompat metri spae. Let us de�ne, for everyR 2 R+ , a new metri dR on A as follows:dR(u; v) := sup(t;h)2[0;R℄n+1 d(S(t;h)u;S(t;h)v): (17)Then, obviously, (A; dR) is also a ompat metri spae and, onsequently, theKolmohgorov's "-entropy H " (A; dR) is well de�ned, for every " > 0 and R 2 R+ .By de�nition, the spatio-temporal topologial entropy of the attrator A is thefollowing number:htop(A;S(t;h)) := lim"!0 lim supR!1 1Rn+1 H " (A; dR) (18)(see [10℄ for the details).It is well-known that quantity (18) is independent of the hoie of the metri don the attrator. Moreover, the following proposition (whih is proved in [22, 23℄)gives more onvenient formula for its omputation in terms of the Kolmogorov's"-entropy.Proposition 1. Quantity (18) an be omputed as follows:htop(A;S(t;h)) = lim"!0 limR!1 1Rn+1 H " (K; L1([0; R℄n+1); (19)where K � L1(Rn+1 ) is the set of all solutions of (1) whih are de�ned for all t 2 Rand x 2 Rn .We are now ready to give the proof of Theorem 1.Proof of Theorem 1. We �rst note that the vetor ~L in equation (1) an be trans-formed into the following form: ~L := (L; 0; � � � ; 0) by the appropriate rotation ofthe x-oordinate. Futhermore, using the following travelling wave hange of the in-dependent variables: (t; x)! (t0; x0) (t := t0 �Lx1, x = x0), we transform equation(1) into an analogous equation, for ~L � 0. Sine the spatio-temporal topologial



SPATIO-TEMPORAL ENTROPY 5entropy is obviously preserved under this hange of variables then, it is suÆient toprove the theorem for the ase ~L = 0 only.Let us onsider the spae M (A) of all Borel probability measures on A whih areinvariant with respet to the spatial translations fTh; h 2 Rng. This spae is notempty sine the attrator A is ompat in the loal topology of �lo. Equation (1)generates a semigroup on the spae M (A) by the following standard expression:S�t : M ! M ; (S�t �)(B) := � �S�1t B� : (20)The proof of identity (12) is based on the following lemma.Lemma 1. Let the assumptions of Theorem 1 hold and ~L = 0. Then, DS (20)possesses the following global Liapunov funtion:L(�) = Zu02A[arxu0(x0):rxu0(x0) + �0u0(x0):u0(x0) + 2F (u0(x0))℄�(du): (21)In partiular L(�) is independent of x0 2 Rn .Proof. Sine the di�usion matrix a is selfadjoint then (as proved in [22, 23℄) theoperator St : A ! A is a homeomorphism (in the L1lo(Rn )-topology), for everyt � 0. Using now the smoothing property St : L1e�jxj(Rn ) ! C3e�jxj(Rn ), we mayverify in a standard way (see [23℄ for the details) that the loal topologies induedon the attrator A by the embeddings A � L1lo(Rn) and A � C3lo(Rn ) oinide.Therefore, expression (21) has a sense and �nite (we reall that the measure � isassumed to be Borel). Moreover, sine � 2 M (A) is invariant with respet to thespatial translations, then expression (21) is independent of x0 2 Rn . Let us nowprove that (21) is a Liapunov funtion. Indeed, let � 2 M (A). ThenL(t) := L(S�t �) = Zu02A[arxu(t; x0):rxu(t; x0) ++ �0u(t; x0):u(t; x0) + 2F (u(t; x0))℄�(du0); (22)where u(t; x0) := (Stu0)(x0). Di�erentiating expression (22) with respet to t andusing equation (1), we haveddtL(t) = �2 Zu02A[�tu(t; x0):�tu(t; x0)℄�(du0) ++ 2 nXi=1 Zu02A �xi [a�xiu(t; x0):�tu(t; x0)℄�(du0): (23)Let us verify that the seond term in the right-hand side of (23) equals zero iden-tially. Indeed, sine the measure � is invariant with respet to the spatial transla-tions, thenZu02A �xi [a�xiu(t; x0):�tu(t; x0)℄�(du0) =limh!0 1h Zu02A[a�xiu(t; x0 + hei):�tu(t; x0 + hei)� a�xiu(t; x0):�tu(t; x0)℄�(du0)= limh!0 1h�Zu02A a�xiu(t; x0):�tu(t; x0)�(du0)�Zu02A a�xiu(t; x0):�tu(t; x0)�(du0)� = 0: (24)



6 ZELIK S.Integrating (23) with respet to t, we haveL(S�t2�)�L(S�t1�) = �2 Z t2t1 Zu02A j�tu(t; x0)j2�(du0) � 0: (25)Thus, (21) is a noninreasing funtion along the trajetories of (20). We now assumethat L(S�t1�) = L(S�t2�); (26)for some � 2 M (A) and t2 > t1. Let us prove that (26) implies that that the supportof � is a subset of the set R � A whih onsists of all equilibria of equation (1):supp� � R: (27)Indeed, it follows from the spatial invariane of the measure � and expression (25)that Z t2t1 Zu02A j�tu(t; x)j2�(du0) dt = 0; (28)for every x 2 Rn . Thus, for �-almost every u0 2 A, we haveZ t2t1 j�tu(t; x)j2 dt = 0; for every x 2 Qn : (29)Sine the funtion t ! �tu(t; x) is ontinuous (we reall that A � C3b (
) and,onsequently, �tu 2 Cb(R; C1b (Rn )), for every trajetory u(t) belonging to the at-trator), then (29) implies that, for �-almost every u0 2 A, we have �tu(t; x) � 0,for t 2 [t1; t2℄ and every x 2 Qn . Sine x ! �tu(t; x) is also ontinuous, thenwe �nally derive that �tu(t; x) � 0, for all (t; x) 2 [t1; t2℄ � Rn and, onsequently,u0 2 R. Thus, we have proved that �(R) = 1 (30)whih implies embedding (27). There only remains to note that every measure whihsatis�es (30) is, obviously, an equilibrium of DS (20) and Lemma 1 is proved.We are now ready to �nish the proof of Theorem 1. Indeed, let � be an arbitraryBorel probability measure on A whih is invariant with respet to the extendedsemigroup S(t;h). Then, it is obviously an equilibrium of DS (20) and, onsequently(due to Lemma 1), this measure satis�es ondition (27). Therefore, the measure-theoretial entropy h�(A;S(t;h)) (see e.g. [10℄ and [16℄ for the rigorous de�nition)of the ation of S(t;h) on the attrator A with respet to this measure equals zero:h�(A;S(t;h)) = 0: (31)Sine identity (31) is valid for every S(t;h)-invariant measure �, then, aording tothe variational priniplehtop(A;S(t;h)) = sup� h�(A;S(t;h)) = 0 (32)(see e.g. [10℄, [16℄ and [18℄) and Theorem 1 is proved.
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