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Version frangaise abrégée :

Nous nous intéressons dans cette note a l'existence d’attracteurs exponentiels
(voir le définition ci-apres) pour des équations de réaction-diffusion dans R?® de la
forme (1). La difficulté essentielle est qu’ici nous ne pouvons pas utiliser les con-
structions classiques (voir [1] et [4]) ; la raison étant que les espaces dans lesquels
nous travaillons (définis dans la Section 1) n’ont pas de structure hilbertienne. En
effet, toutes les constructions connues font appel de maniere essentielle a des pro-
jecteurs orthogonaux de rang fini. Afin de contourner cette difficulté, nous donnons
dans cette note (voir la Proposition 1 ci-dessous) une construction d’attracteurs ex-
ponentiels, valable dans des espaces de Banach, qui généralise celle de [4] pour des
opérateurs s’écrivant comme somme d’une contraction et d’un opérateur compact.
On en déduit alors l’existence d’un attracteur exponentiel pour (1).

Introduction :

Our aim in this note is to prove the existence of exponential attractors for
reaction-diffusion equations in R® of the form (1) below. In [5], the authors ob-
tained the existence of the global attractor for such systems. They also proved that
under proper assumptions (see Section 1 below), the global attractor has finite frac-
tal and Hausdorff dimensions. Compared to an exponential attractor, the global
attractor presents two defaults for practical purposes. Indeed, it is very sensitive to
perturbations and the rate of attraction of the trajectories may be very small. An
exponential attractor however, as its name indicates, attracts exponentially the tra-
jectories and will thus be more stable. Furthermore, in some situations, the global
attractor can be very simple (say, reduced to one point) and thus fails to capture
interesting transcient behaviors. Again, in such situations, an exponential attrac-
tor seems to be a more suitable object. In [1], the authors proposed a construction
for exponential attractors for equations in unbounded domains. However, as it is
the case for the usual construction of [4], this construction is only valid in Hilbert
spaces ; indeed, it makes an essential use of orthogonal projectors with finite rank.
This construction will thus not apply to our problem (we shall see below that the
phase space for our problem is not a Hilbert space). We propose, for maps that can
be decomposed into the sum of a contraction and of a compact map, a construction
that is not based on projectors and that is therefore valid in Banach spaces. As an
application, we obtain the existence of an exponential attractor for (1).

1. Setting of the problem.

This note is devoted to the study of the longtime behavior of solutions of the
following problem :

) { 0w = Agu — f(u, Vau) — dou + g(t), v € R3,

u|t=‘r = Ur-
Here v = (u', - ,u*) is an unknown vector valued function, f = (fi,---, fx) and
g(t) = g(t,z) = (¢g'(t,x),--- ,g"*(t,x)) are given functions, A, is a Laplacian with
respect to the variables x = (z1,z2,x3) and Ag is a fixed positive number.
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It is assumed that the nonlinear term f satisfies the conditions

1. f € CY(R* x R3* R¥) ;
(2) 2. f(v,p)v >0;
3.1 f(w,p)| < v]Q(v)(X + [pl?), ¢ <25

for every v € R¥, p € R** and for some monotonous function (. (Here and below,
we denote by u.v the inner product in R¥.)

In order to introduce the phase space for our problem and to impose the assump-
tions on the right-hand side g, we need the following definition :

Definition 1. Let Bfo be an open R-ball in R® centered at zo and let as usual
WhP(BE ) denote the Sobolev space of functions on BE whose derivatives up to
the order I belong to LP(BE) (||lu, BE ||;, = lullwer(sr ). For every I > 0 and
1 < p < o0, we define the space

(3) WP () = {u€ D'(B) : llullyap = sup llu, B [lip < o0},

onR3

(roughly speaking, the space W,f P consists of functions whose derivatives up to the
order [ are bounded as |z| — 00) and the space

(4) Wy b(R®) = {u € Wy : limy, o0 |Ju, By [l = 0}

In other words, the functions in Wé’g decay as |z| — 0.

We assume that the right-hand side g € C}(R, Lj ((R*)) and is quasiperiodic
with respect to ¢ with [ independent frequencies, i.e. there exist a function

(5) Ge Cl (Tla LE,O(RS))a

T' being the [-dimensional torus, rationally independent frequencies o = (a?,--- , o)
and the initial phase ¢g = (¢}, - - ,#h) € T' such that

(6) g(t,z) = G(¢o + at, ).
The phase space for problem (1) will be the space
(7 b =W, (R,

where § > 0 is chosen such that § < min{%, % — %} and the exponent ¢ is the same
as in (2). Consequently, the solution u(t) of (1) belongs to the space @, for every
fixed t > 7 and initial value u, € ®. Thus, we shall consider below only bounded
as |z| — oo solutions of problem (1).

Remark 1. Since the exponent § in the definition of the phase space is small
enough, then one can easily verify, using the third assumption of (2) and Sobolev
embedding theorems, that f(v,V,v) € L2(R?) if v € ® and consequently equation
(1) can be understood in the sense of distributions.
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Remark 2. Recall that we require that g(t) € L (R?) for every t > 0. It is
worth emphasizing here that L?(R*) C L (R*). Consequently, right-hand sides
g belonging to L*(R?) are also admissible. Note also that the space L ,(R?®) is

essentially larger than L?(R"), since arbitrary decay rates as |z| — 0 are allowed.

For example, the function
1

belongs to the space L ,(R*), but evidently g ¢ L*(R?).

Remark 3. It is worth emphasizing also that such decay rates of the right-hand
side g as |z| — oo (g(t) € Lz,o (R?)) is essential to prove the finite dimensionality of
the global attractor. Indeed, it is known (see for instance [5] or [7]) that even in the

autonomous case g(t) = g, the global attractor may have infinite fractal dimension
if g € L{(R?) but g ¢ Lj ,(R?).

Theorem 1. Let the above assumptions hold. Then, problem (1) has a unique
solution u(t) € ® for every u, € ®. Moreover, the following estimate holds :

(8) lu)lle < Qi(llurlle)e™ """ + Qu(|Gllcr(rr L)),

where € > 0 and Q1 is some monotonous function depending only on the equation.

Corollary 1. Theorem 1 implies that the family of operators (called the process
associated with the equation)

(9) Ug(t,7): @ > @, wu(t) =U,(t,7)ur,

are well defined and are bounded as t — 7 — oo.

2. Existence of an exponential attractor.

In order to study the longtime behavior of the nonautonomous equation (1), we
consider, following [3], the family of equations of type (1) obtained from the initial
one by shifting along the ¢ axis and by taking the closure in the corresponding
topology. To be more precise, instead of studying the sole equation (1), we shall
actually study the family of equations

(10) { Ou = Agu — f(u, Veu) — Mou + £(t), VE € H(g),

u|t:7‘ =Ur,
where the hull H(g) can be defined in the following way :
(11) Hg) = {G(6 +at,z) : 6 €T},

Since the functions £ € H(g) can be parametrized by points ¢ of the I-dimensional
torus, we shall denote by Ug(t,7) the family of processes associated with (10)
(instead of Ug (¢, T) with £(t) = G(¢ + at)).

It is known (see for instance [3]) that the family of processes {Uy(t,7),¢ € T}
can be extended to a semigroup S; acting on the space ® x T! by formula

(12) St(va ¢)) = (Ud)(ta 0)7 Tt‘b)a Tt‘b = (b + at.
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Thus, instead of studying the longtime behavior of the single equation (1), we
shall actually study the long time behavior of the trajectories of the semigroup
S¢:® x T — & x T

Recall that the set A is called the global attractor of the semigroup S; if

1. The set A is a compact set of & x T.

2. The set A is invariant by Sy, i.e

(13) S¢A=A, fort>0.

3. The set A attracts the bounded subsets of ® x T! as t — oo, i.e. for every
bounded B C ® x T!

(14) hmt_mo d'L.Stq)XTl{StB, A} = 0,

where disty{X,Y} = infzex sup,cy ||z — y||v, is the nonsymmetric Hausdorff dis-
tance between the sets X and Y in the space V. (See [2] and [6] for details).

Theorem 2. Let the above assumptions hold. Then, the semigroup S; defined by
(12) possesses the global attractor A in the space ® x T'. Moreover, this attractor
has finite fractal dimension

(15) dimp(A, & x T!) < 0.

Note that although we have constructed the global attractor 4 which attracts
the bounded subsets of & x T!, we have no information on the rate of attraction in
(14). Furthermore, examples show that this rate of attraction may be arbitrarily
slow. So, in order to control this rate of attraction, we shall use the concept of an
exponential attractor, introduced in [4].

Recall that a set M is called an exponential attractor for the semigroup S; on
® x T' if the following conditions hold :

1. The set M is a compact set of & x T.

2. The set M is semi-invariant by Sy, i.e.

(16) SiMC M fort>0.

3. The set M attracts exponentially all bounded subsets of ® x T', i.e. there
exists a positive constant 1 > 0 such that for every bounded B C & x T

(17) ist{ B, M} < C (||Bllgzr) e .
4. The set M has finite fractal dimension in ® x T’ :
(18) dimp(M, ® x T') < oo.
Remark 4. Note that since we lose the invariance (assumption (16) instead of

(13)), then, contrarily to the global attractor, an exponential attractor is not nec-
essarily unique. However, we always have

(19) Ac M.
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Theorem 3. Let the above assumptions hold. Then, the semigroup S; defined by
(12) possesses an exponential attractor M in the space ® x T'.

The proof of this Theorem is based on the following sufficient conditions for the
existence of an exponential attractor for maps in Banach spaces which generalize
those given in [1] and [2] that are valid in Hilbert spaces only :

Proposition 1. Let H and H, be two Banach spaces such that Hy is compactly
embedded in H. Let also X be a bounded subset of H. We consider a nonlinear
map

L:X—X,

such that L can be decomposed into a sum of two maps

(20) L=ILy+K, Ly:X —>H, K:X — H,
in such a way that Lo is a contraction, i.e.

(21) [|Loz1s — Loxa||lg < aflzy — x2||g with a < 1/2,
and K satisfies the condition

(22) 1Kz — Kas||lm, < Clley — 2|6

Then, the map L : X — X possesses a finite dimensional exponential attractor.

Sketch of the proof. Let us fix positive # > 0 in such a way then 2(a+6) < 1. Since
X is bounded then there exists a ball B(R, zo, H) of radius R centered in 2o € X
in the space H which contains X. Let Ey = Vp = {xo}. It follows from (22) that
the H;-ball B(CR, Kz, H;) covers the image K(X). Let us cover now this ball
by the finite number of aR balls in H (it is possible to do since the embedding
H, C H is compact). Moreover the minimal number of balls in this covering can
be estimated in the following way

(23) Nor(B(CR,K(x0),H1),H) = Nor(B(CR,0,H,),H) =
= NG/C(B(17K($0)5H1)7H) = N(e)

(It is very essential for us that this number is independent of R.) Thus we have
constructed the aR-covering for the set K (X) It follows now from the assumption
(21) that the system of balls with the same centers but with radiuses (o + §)R
covers L(X). But the centers of balls of this covering may be out of L(X) and even
out of X. To avoid this difficulty we increase twicely the radiuses and construct
the new 2(a + 6)-covering {B(2(a + 0)R,xi, H)}, i = 1,--- N(8), of L(X) in such
a way that zi € L(X). Define now V; = {z,i=1,---N(9)}.

Applying now the above procedure to every ball of this new covering we obtain
the (2(a + 6))%R-covering of L?>(X) with the number of balls N(#)2. Denote the
set, of their centers by V2. Repeating this procedure we construct finally a sequence
of sets Vi C L¥(X) such that

(24) dist(L*(X), Vi) < R2(a + 0))* and #V; < N()*
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To obtain the invariantness we define now another sequence of sets Ey, = L(Ej_1)U
Vk and

(25) Ew =Ul Ey; M = [Exly

where [-] g means the closure in H. Let us verify that M is an exponential attractor
for L on X. Indeed, the invarianness follows immediately from our construction.
Since Vi, € M and 2(a + ) < 1 then the exponential attracting property is a
corollary of (24). Thus, it remains to estimate the dimension of M or which is the
same the dimension of E.,.

Note that LX C X then

UanEk CcCL"X C UvEVnB('U, R(2(0 + Oé))n,H)
Let us fix now £ > 0 and choose the minimal integer n such R(2(a+6))" < e. Then

N.(Boo, H) < N.(Uk<nBr) + No(UksnBr) < > #E, + #Vora < CN(9)"
k<n

here we have used the fact that #E; < C1N(0)" which can be easily deduced from
the recurrent formula
#En < #En—l + N(e)n

Thus,

dimp (X, H) < 1282 VO).

= 1
log, 200+a)
Proposition 1 is proved.

Remark 5. Analogous sufficient conditions are given in [7] for the existence of the
global attractor.
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