
Exponential attra
tors for a nonlinear rea
tion-di�usion system in R3 .M.Efendiev, A.Miranville and S.ZelikVersion fran�
aise abr�eg�ee :Nous nous int�eressons dans 
ette note �a l'existen
e d'attra
teurs exponentiels(voir le d�e�nition 
i-apr�es) pour des �equations de r�ea
tion-di�usion dans R3 de laforme (1). La diÆ
ult�e essentielle est qu'i
i nous ne pouvons pas utiliser les 
on-stru
tions 
lassiques (voir [1℄ et [4℄) ; la raison �etant que les espa
es dans lesquelsnous travaillons (d�e�nis dans la Se
tion 1) n'ont pas de stru
ture hilbertienne. Ene�et, toutes les 
onstru
tions 
onnues font appel de mani�ere essentielle �a des pro-je
teurs orthogonaux de rang �ni. A�n de 
ontourner 
ette diÆ
ult�e, nous donnonsdans 
ette note (voir la Proposition 1 
i-dessous) une 
onstru
tion d'attra
teurs ex-ponentiels, valable dans des espa
es de Bana
h, qui g�en�eralise 
elle de [4℄ pour desop�erateurs s'�e
rivant 
omme somme d'une 
ontra
tion et d'un op�erateur 
ompa
t.On en d�eduit alors l'existen
e d'un attra
teur exponentiel pour (1).Introdu
tion :Our aim in this note is to prove the existen
e of exponential attra
tors forrea
tion-di�usion equations in R3 of the form (1) below. In [5℄, the authors ob-tained the existen
e of the global attra
tor for su
h systems. They also proved thatunder proper assumptions (see Se
tion 1 below), the global attra
tor has �nite fra
-tal and Hausdor� dimensions. Compared to an exponential attra
tor, the globalattra
tor presents two defaults for pra
ti
al purposes. Indeed, it is very sensitive toperturbations and the rate of attra
tion of the traje
tories may be very small. Anexponential attra
tor however, as its name indi
ates, attra
ts exponentially the tra-je
tories and will thus be more stable. Furthermore, in some situations, the globalattra
tor 
an be very simple (say, redu
ed to one point) and thus fails to 
aptureinteresting trans
ient behaviors. Again, in su
h situations, an exponential attra
-tor seems to be a more suitable obje
t. In [1℄, the authors proposed a 
onstru
tionfor exponential attra
tors for equations in unbounded domains. However, as it isthe 
ase for the usual 
onstru
tion of [4℄, this 
onstru
tion is only valid in Hilbertspa
es ; indeed, it makes an essential use of orthogonal proje
tors with �nite rank.This 
onstru
tion will thus not apply to our problem (we shall see below that thephase spa
e for our problem is not a Hilbert spa
e). We propose, for maps that 
anbe de
omposed into the sum of a 
ontra
tion and of a 
ompa
t map, a 
onstru
tionthat is not based on proje
tors and that is therefore valid in Bana
h spa
es. As anappli
ation, we obtain the existen
e of an exponential attra
tor for (1).1. Setting of the problem.This note is devoted to the study of the longtime behavior of solutions of thefollowing problem :(1) � �tu = �xu� f(u;rxu)� �0u+ g(t); x 2 R3 ;u��t=� = u� :Here u = (u1; � � � ; uk) is an unknown ve
tor valued fun
tion, f = (f1; � � � ; fk) andg(t) = g(t; x) = (g1(t; x); � � � ; gk(t; x)) are given fun
tions, �x is a Lapla
ian withrespe
t to the variables x = (x1; x2; x3) and �0 is a �xed positive number.1



2 It is assumed that the nonlinear term f satis�es the 
onditions(2) 8><>: 1: f 2 C1(Rk � R3k ;Rk ) ;2: f(v; p):v � 0 ;3: jf(v; p)j � jvjQ(jvj)(1 + jpjq); q < 2 ;for every v 2 Rk , p 2 R3k and for some monotonous fun
tion Q. (Here and below,we denote by u:v the inner produ
t in Rk .)In order to introdu
e the phase spa
e for our problem and to impose the assump-tions on the right-hand side g, we need the following de�nition :De�nition 1. Let BRx0 be an open R-ball in R3 
entered at x0 and let as usualW l;p(BRx0) denote the Sobolev spa
e of fun
tions on BRx0 whose derivatives up tothe order l belong to Lp(BRx0) (ku;BRx0kl;p � kukW l;p(BRx0 )). For every l � 0 and1 � p � 1, we de�ne the spa
e(3) W l;pb (R3 ) � fu 2 D0(R3 ) : kukb;l;p = supx02R3 ku;B1x0kl;p <1g;(roughly speaking, the spa
e W l;pb 
onsists of fun
tions whose derivatives up to theorder l are bounded as jxj ! 1) and the spa
e(4) W l;pb;0(R3 ) � fu 2W l;pb : limjx0j!1 ku;B1x0kl;p = 0g:In other words, the fun
tions in W l;pb;0 de
ay as jxj ! 1.We assume that the right-hand side g 2 C1b (R; L2b;0(R3 )) and is quasiperiodi
with respe
t to t with l independent frequen
ies, i.e. there exist a fun
tion(5) G 2 C1(Tl; L2b;0(R3 ));Tl being the l-dimensional torus, rationally independent frequen
ies � = (�1; � � � ; �l)and the initial phase �0 = (�10; � � � ; �l0) 2 Tl su
h that(6) g(t; x) = G(�0 + �t; x):The phase spa
e for problem (1) will be the spa
e(7) � =W 2�Æ;2b (R3 );where Æ > 0 is 
hosen su
h that Æ < minf 12 ; 1q � 12g and the exponent q is the sameas in (2). Consequently, the solution u(t) of (1) belongs to the spa
e �, for every�xed t � � and initial value u� 2 �. Thus, we shall 
onsider below only boundedas jxj ! 1 solutions of problem (1).Remark 1. Sin
e the exponent Æ in the de�nition of the phase spa
e is smallenough, then one 
an easily verify, using the third assumption of (2) and Sobolevembedding theorems, that f(v;rxv) 2 L2b(R3 ) if v 2 � and 
onsequently equation(1) 
an be understood in the sense of distributions.



3Remark 2. Re
all that we require that g(t) 2 L2b;0(R3 ) for every t � 0. It isworth emphasizing here that L2(R3 ) � L2b0(R3 ). Consequently, right-hand sidesg belonging to L2(R3 ) are also admissible. Note also that the spa
e L2b;0(R3 ) isessentially larger than L2(Rn ), sin
e arbitrary de
ay rates as jxj ! 0 are allowed.For example, the fun
tion g(x) = 1ln(jxj2 + 2) ;belongs to the spa
e L2b;0(R3 ), but evidently g =2 L2(R3 ).Remark 3. It is worth emphasizing also that su
h de
ay rates of the right-handside g as jxj ! 1 (g(t) 2 L2b;0(R3 )) is essential to prove the �nite dimensionality ofthe global attra
tor. Indeed, it is known (see for instan
e [5℄ or [7℄) that even in theautonomous 
ase g(t) = g, the global attra
tor may have in�nite fra
tal dimensionif g 2 L2b(R3 ) but g =2 L2b;0(R3 ).Theorem 1. Let the above assumptions hold. Then, problem (1) has a uniquesolution u(t) 2 � for every u� 2 �. Moreover, the following estimate holds :(8) ku(t)k� � Q1(ku�k�)e�"(t��) +Q1(kGkC1(Tl;L2b));where " > 0 and Q1 is some monotonous fun
tion depending only on the equation.Corollary 1. Theorem 1 implies that the family of operators (
alled the pro
essasso
iated with the equation)(9) Ug(t; �) : �! �; u(t) = Ug(t; �)u� ;are well de�ned and are bounded as t� � !1.2. Existen
e of an exponential attra
tor.In order to study the longtime behavior of the nonautonomous equation (1), we
onsider, following [3℄, the family of equations of type (1) obtained from the initialone by shifting along the t axis and by taking the 
losure in the 
orrespondingtopology. To be more pre
ise, instead of studying the sole equation (1), we shalla
tually study the family of equations(10) � �tu = �xu� f(u;rxu)� �0u+ �(t); 8� 2 H(g);u��t=� = u� ;where the hull H(g) 
an be de�ned in the following way :(11) H(g) = fG(�+ �t; x) : � 2 Tlg:Sin
e the fun
tions � 2 H(g) 
an be parametrized by points � of the l-dimensionaltorus, we shall denote by U�(t; �) the family of pro
esses asso
iated with (10)(instead of U�(t; �) with �(t) = G(�+ �t)).It is known (see for instan
e [3℄) that the family of pro
esses fU�(t; �); � 2 Tlg
an be extended to a semigroup St a
ting on the spa
e �� Tl by formula(12) St(v; �) � (U�(t; 0); Tt�); Tt� � �+ �t:



4Thus, instead of studying the longtime behavior of the single equation (1), weshall a
tually study the long time behavior of the traje
tories of the semigroupSt : �� Tl ! �� Tl.Re
all that the set A is 
alled the global attra
tor of the semigroup St if1. The set A is a 
ompa
t set of �� Tl.2. The set A is invariant by St, i.e(13) StA = A; for t � 0:3. The set A attra
ts the bounded subsets of � � Tl as t ! 1, i.e. for everybounded B � �� Tl(14) limt!1 dist��TlfStB;Ag = 0;where distV fX;Y g � infx2X supy2Y kx� ykV , is the nonsymmetri
 Hausdor� dis-tan
e between the sets X and Y in the spa
e V . (See [2℄ and [6℄ for details).Theorem 2. Let the above assumptions hold. Then, the semigroup St de�ned by(12) possesses the global attra
tor A in the spa
e �� Tl. Moreover, this attra
torhas �nite fra
tal dimension(15) dimF (A;�� Tl) <1:Note that although we have 
onstru
ted the global attra
tor A whi
h attra
tsthe bounded subsets of ��Tl, we have no information on the rate of attra
tion in(14). Furthermore, examples show that this rate of attra
tion may be arbitrarilyslow. So, in order to 
ontrol this rate of attra
tion, we shall use the 
on
ept of anexponential attra
tor, introdu
ed in [4℄.Re
all that a set M is 
alled an exponential attra
tor for the semigroup St on�� Tl if the following 
onditions hold :1. The set M is a 
ompa
t set of �� Tl.2. The set M is semi-invariant by St, i.e.(16) StM�M for t � 0:3. The set M attra
ts exponentially all bounded subsets of � � Tl, i.e. thereexists a positive 
onstant � > 0 su
h that for every bounded B � �� Tl(17) distfStB;Mg � C (kBk��Tl) e��t:4. The set M has �nite fra
tal dimension in �� Tl :(18) dimF (M;�� Tl) <1:Remark 4. Note that sin
e we lose the invarian
e (assumption (16) instead of(13)), then, 
ontrarily to the global attra
tor, an exponential attra
tor is not ne
-essarily unique. However, we always have(19) A �M:



5Theorem 3. Let the above assumptions hold. Then, the semigroup St de�ned by(12) possesses an exponential attra
tor M in the spa
e �� Tl.The proof of this Theorem is based on the following suÆ
ient 
onditions for theexisten
e of an exponential attra
tor for maps in Bana
h spa
es whi
h generalizethose given in [1℄ and [2℄ that are valid in Hilbert spa
es only :Proposition 1. Let H and H1 be two Bana
h spa
es su
h that H1 is 
ompa
tlyembedded in H. Let also X be a bounded subset of H. We 
onsider a nonlinearmap L : X ! X;su
h that L 
an be de
omposed into a sum of two maps(20) L = L0 +K; L0 : X ! H; K : X ! H;in su
h a way that L0 is a 
ontra
tion, i.e.(21) kL0x1 � L0x2kH � �kx1 � x2kH with � < 1=2;and K satis�es the 
ondition(22) kKx1 �Kx2kH1 � Ckx1 � x2kH :Then, the map L : X ! X possesses a �nite dimensional exponential attra
tor.Sket
h of the proof. Let us �x positive � > 0 in su
h a way then 2(�+�) < 1. Sin
eX is bounded then there exists a ball B(R; x0; H) of radius R 
entered in x0 2 Xin the spa
e H whi
h 
ontains X . Let E0 = V0 = fx0g. It follows from (22) thatthe H1-ball B(CR;Kx0; H1) 
overs the image K(X). Let us 
over now this ballby the �nite number of �R balls in H (it is possible to do sin
e the embeddingH1 � H is 
ompa
t). Moreover the minimal number of balls in this 
overing 
anbe estimated in the following way(23) N�R(B(CR;K(x0); H1); H) = N�R(B(CR; 0; H1); H) == N�=C(B(1;K(x0); H1); H) � N(�)(It is very essential for us that this number is independent of R.) Thus we have
onstru
ted the �R-
overing for the set K(X) It follows now from the assumption(21) that the system of balls with the same 
enters but with radiuses (� + �)R
overs L(X). But the 
enters of balls of this 
overing may be out of L(X) and evenout of X . To avoid this diÆ
ulty we in
rease twi
ely the radiuses and 
onstru
tthe new 2(� + �)-
overing fB(2(� + �)R; xi1; H)g, i = 1; � � �N(�), of L(X) in su
ha way that xi1 2 L(X). De�ne now V1 = fxi1; i = 1; � � �N(�)g.Applying now the above pro
edure to every ball of this new 
overing we obtainthe (2(� + �))2R-
overing of L2(X) with the number of balls N(�)2. Denote theset of their 
enters by V2. Repeating this pro
edure we 
onstru
t �nally a sequen
eof sets Vk � Lk(X) su
h that(24) dist(Lk(X); Vk) � R(2(�+ �))k and #Vk � N(�)k



6To obtain the invariantness we de�ne now another sequen
e of sets Ek = L(Ek�1)[Vk and(25) E1 = [1k=1Ek; M = [E1℄Hwhere [�℄H means the 
losure in H . Let us verify thatM is an exponential attra
torfor L on X . Indeed, the invarianness follows immediately from our 
onstru
tion.Sin
e Vk � M and 2(� + �) < 1 then the exponential attra
ting property is a
orollary of (24). Thus, it remains to estimate the dimension of M or whi
h is thesame the dimension of E1.Note that LX � X then[k�nEk � LnX � [v2VnB(v;R(2(� + �))n; H)Let us �x now " > 0 and 
hoose the minimal integer n su
h R(2(�+�))n � ". ThenN"(E1; H) � N"([k�nEk) +N"([k>nEk) �Xk�n#Ek +#Vn+1 � C2N(�)nhere we have used the fa
t that #Ek � C1N(�)n whi
h 
an be easily dedu
ed fromthe re
urrent formula #En � #En�1 +N(�)nThus, dimF (X;H) � log2N(�)log2 12(�+�)Proposition 1 is proved.Remark 5. Analogous suÆ
ient 
onditions are given in [7℄ for the existen
e of theglobal attra
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