
Exponential attrators for a nonlinear reation-di�usion system in R3 .M.Efendiev, A.Miranville and S.ZelikVersion fran�aise abr�eg�ee :Nous nous int�eressons dans ette note �a l'existene d'attrateurs exponentiels(voir le d�e�nition i-apr�es) pour des �equations de r�eation-di�usion dans R3 de laforme (1). La diÆult�e essentielle est qu'ii nous ne pouvons pas utiliser les on-strutions lassiques (voir [1℄ et [4℄) ; la raison �etant que les espaes dans lesquelsnous travaillons (d�e�nis dans la Setion 1) n'ont pas de struture hilbertienne. Ene�et, toutes les onstrutions onnues font appel de mani�ere essentielle �a des pro-jeteurs orthogonaux de rang �ni. A�n de ontourner ette diÆult�e, nous donnonsdans ette note (voir la Proposition 1 i-dessous) une onstrution d'attrateurs ex-ponentiels, valable dans des espaes de Banah, qui g�en�eralise elle de [4℄ pour desop�erateurs s'�erivant omme somme d'une ontration et d'un op�erateur ompat.On en d�eduit alors l'existene d'un attrateur exponentiel pour (1).Introdution :Our aim in this note is to prove the existene of exponential attrators forreation-di�usion equations in R3 of the form (1) below. In [5℄, the authors ob-tained the existene of the global attrator for suh systems. They also proved thatunder proper assumptions (see Setion 1 below), the global attrator has �nite fra-tal and Hausdor� dimensions. Compared to an exponential attrator, the globalattrator presents two defaults for pratial purposes. Indeed, it is very sensitive toperturbations and the rate of attration of the trajetories may be very small. Anexponential attrator however, as its name indiates, attrats exponentially the tra-jetories and will thus be more stable. Furthermore, in some situations, the globalattrator an be very simple (say, redued to one point) and thus fails to aptureinteresting transient behaviors. Again, in suh situations, an exponential attra-tor seems to be a more suitable objet. In [1℄, the authors proposed a onstrutionfor exponential attrators for equations in unbounded domains. However, as it isthe ase for the usual onstrution of [4℄, this onstrution is only valid in Hilbertspaes ; indeed, it makes an essential use of orthogonal projetors with �nite rank.This onstrution will thus not apply to our problem (we shall see below that thephase spae for our problem is not a Hilbert spae). We propose, for maps that anbe deomposed into the sum of a ontration and of a ompat map, a onstrutionthat is not based on projetors and that is therefore valid in Banah spaes. As anappliation, we obtain the existene of an exponential attrator for (1).1. Setting of the problem.This note is devoted to the study of the longtime behavior of solutions of thefollowing problem :(1) � �tu = �xu� f(u;rxu)� �0u+ g(t); x 2 R3 ;u��t=� = u� :Here u = (u1; � � � ; uk) is an unknown vetor valued funtion, f = (f1; � � � ; fk) andg(t) = g(t; x) = (g1(t; x); � � � ; gk(t; x)) are given funtions, �x is a Laplaian withrespet to the variables x = (x1; x2; x3) and �0 is a �xed positive number.1



2 It is assumed that the nonlinear term f satis�es the onditions(2) 8><>: 1: f 2 C1(Rk � R3k ;Rk ) ;2: f(v; p):v � 0 ;3: jf(v; p)j � jvjQ(jvj)(1 + jpjq); q < 2 ;for every v 2 Rk , p 2 R3k and for some monotonous funtion Q. (Here and below,we denote by u:v the inner produt in Rk .)In order to introdue the phase spae for our problem and to impose the assump-tions on the right-hand side g, we need the following de�nition :De�nition 1. Let BRx0 be an open R-ball in R3 entered at x0 and let as usualW l;p(BRx0) denote the Sobolev spae of funtions on BRx0 whose derivatives up tothe order l belong to Lp(BRx0) (ku;BRx0kl;p � kukW l;p(BRx0 )). For every l � 0 and1 � p � 1, we de�ne the spae(3) W l;pb (R3 ) � fu 2 D0(R3 ) : kukb;l;p = supx02R3 ku;B1x0kl;p <1g;(roughly speaking, the spae W l;pb onsists of funtions whose derivatives up to theorder l are bounded as jxj ! 1) and the spae(4) W l;pb;0(R3 ) � fu 2W l;pb : limjx0j!1 ku;B1x0kl;p = 0g:In other words, the funtions in W l;pb;0 deay as jxj ! 1.We assume that the right-hand side g 2 C1b (R; L2b;0(R3 )) and is quasiperiodiwith respet to t with l independent frequenies, i.e. there exist a funtion(5) G 2 C1(Tl; L2b;0(R3 ));Tl being the l-dimensional torus, rationally independent frequenies � = (�1; � � � ; �l)and the initial phase �0 = (�10; � � � ; �l0) 2 Tl suh that(6) g(t; x) = G(�0 + �t; x):The phase spae for problem (1) will be the spae(7) � =W 2�Æ;2b (R3 );where Æ > 0 is hosen suh that Æ < minf 12 ; 1q � 12g and the exponent q is the sameas in (2). Consequently, the solution u(t) of (1) belongs to the spae �, for every�xed t � � and initial value u� 2 �. Thus, we shall onsider below only boundedas jxj ! 1 solutions of problem (1).Remark 1. Sine the exponent Æ in the de�nition of the phase spae is smallenough, then one an easily verify, using the third assumption of (2) and Sobolevembedding theorems, that f(v;rxv) 2 L2b(R3 ) if v 2 � and onsequently equation(1) an be understood in the sense of distributions.



3Remark 2. Reall that we require that g(t) 2 L2b;0(R3 ) for every t � 0. It isworth emphasizing here that L2(R3 ) � L2b0(R3 ). Consequently, right-hand sidesg belonging to L2(R3 ) are also admissible. Note also that the spae L2b;0(R3 ) isessentially larger than L2(Rn ), sine arbitrary deay rates as jxj ! 0 are allowed.For example, the funtion g(x) = 1ln(jxj2 + 2) ;belongs to the spae L2b;0(R3 ), but evidently g =2 L2(R3 ).Remark 3. It is worth emphasizing also that suh deay rates of the right-handside g as jxj ! 1 (g(t) 2 L2b;0(R3 )) is essential to prove the �nite dimensionality ofthe global attrator. Indeed, it is known (see for instane [5℄ or [7℄) that even in theautonomous ase g(t) = g, the global attrator may have in�nite fratal dimensionif g 2 L2b(R3 ) but g =2 L2b;0(R3 ).Theorem 1. Let the above assumptions hold. Then, problem (1) has a uniquesolution u(t) 2 � for every u� 2 �. Moreover, the following estimate holds :(8) ku(t)k� � Q1(ku�k�)e�"(t��) +Q1(kGkC1(Tl;L2b));where " > 0 and Q1 is some monotonous funtion depending only on the equation.Corollary 1. Theorem 1 implies that the family of operators (alled the proessassoiated with the equation)(9) Ug(t; �) : �! �; u(t) = Ug(t; �)u� ;are well de�ned and are bounded as t� � !1.2. Existene of an exponential attrator.In order to study the longtime behavior of the nonautonomous equation (1), weonsider, following [3℄, the family of equations of type (1) obtained from the initialone by shifting along the t axis and by taking the losure in the orrespondingtopology. To be more preise, instead of studying the sole equation (1), we shallatually study the family of equations(10) � �tu = �xu� f(u;rxu)� �0u+ �(t); 8� 2 H(g);u��t=� = u� ;where the hull H(g) an be de�ned in the following way :(11) H(g) = fG(�+ �t; x) : � 2 Tlg:Sine the funtions � 2 H(g) an be parametrized by points � of the l-dimensionaltorus, we shall denote by U�(t; �) the family of proesses assoiated with (10)(instead of U�(t; �) with �(t) = G(�+ �t)).It is known (see for instane [3℄) that the family of proesses fU�(t; �); � 2 Tlgan be extended to a semigroup St ating on the spae �� Tl by formula(12) St(v; �) � (U�(t; 0); Tt�); Tt� � �+ �t:



4Thus, instead of studying the longtime behavior of the single equation (1), weshall atually study the long time behavior of the trajetories of the semigroupSt : �� Tl ! �� Tl.Reall that the set A is alled the global attrator of the semigroup St if1. The set A is a ompat set of �� Tl.2. The set A is invariant by St, i.e(13) StA = A; for t � 0:3. The set A attrats the bounded subsets of � � Tl as t ! 1, i.e. for everybounded B � �� Tl(14) limt!1 dist��TlfStB;Ag = 0;where distV fX;Y g � infx2X supy2Y kx� ykV , is the nonsymmetri Hausdor� dis-tane between the sets X and Y in the spae V . (See [2℄ and [6℄ for details).Theorem 2. Let the above assumptions hold. Then, the semigroup St de�ned by(12) possesses the global attrator A in the spae �� Tl. Moreover, this attratorhas �nite fratal dimension(15) dimF (A;�� Tl) <1:Note that although we have onstruted the global attrator A whih attratsthe bounded subsets of ��Tl, we have no information on the rate of attration in(14). Furthermore, examples show that this rate of attration may be arbitrarilyslow. So, in order to ontrol this rate of attration, we shall use the onept of anexponential attrator, introdued in [4℄.Reall that a set M is alled an exponential attrator for the semigroup St on�� Tl if the following onditions hold :1. The set M is a ompat set of �� Tl.2. The set M is semi-invariant by St, i.e.(16) StM�M for t � 0:3. The set M attrats exponentially all bounded subsets of � � Tl, i.e. thereexists a positive onstant � > 0 suh that for every bounded B � �� Tl(17) distfStB;Mg � C (kBk��Tl) e��t:4. The set M has �nite fratal dimension in �� Tl :(18) dimF (M;�� Tl) <1:Remark 4. Note that sine we lose the invariane (assumption (16) instead of(13)), then, ontrarily to the global attrator, an exponential attrator is not ne-essarily unique. However, we always have(19) A �M:



5Theorem 3. Let the above assumptions hold. Then, the semigroup St de�ned by(12) possesses an exponential attrator M in the spae �� Tl.The proof of this Theorem is based on the following suÆient onditions for theexistene of an exponential attrator for maps in Banah spaes whih generalizethose given in [1℄ and [2℄ that are valid in Hilbert spaes only :Proposition 1. Let H and H1 be two Banah spaes suh that H1 is ompatlyembedded in H. Let also X be a bounded subset of H. We onsider a nonlinearmap L : X ! X;suh that L an be deomposed into a sum of two maps(20) L = L0 +K; L0 : X ! H; K : X ! H;in suh a way that L0 is a ontration, i.e.(21) kL0x1 � L0x2kH � �kx1 � x2kH with � < 1=2;and K satis�es the ondition(22) kKx1 �Kx2kH1 � Ckx1 � x2kH :Then, the map L : X ! X possesses a �nite dimensional exponential attrator.Sketh of the proof. Let us �x positive � > 0 in suh a way then 2(�+�) < 1. SineX is bounded then there exists a ball B(R; x0; H) of radius R entered in x0 2 Xin the spae H whih ontains X . Let E0 = V0 = fx0g. It follows from (22) thatthe H1-ball B(CR;Kx0; H1) overs the image K(X). Let us over now this ballby the �nite number of �R balls in H (it is possible to do sine the embeddingH1 � H is ompat). Moreover the minimal number of balls in this overing anbe estimated in the following way(23) N�R(B(CR;K(x0); H1); H) = N�R(B(CR; 0; H1); H) == N�=C(B(1;K(x0); H1); H) � N(�)(It is very essential for us that this number is independent of R.) Thus we haveonstruted the �R-overing for the set K(X) It follows now from the assumption(21) that the system of balls with the same enters but with radiuses (� + �)Rovers L(X). But the enters of balls of this overing may be out of L(X) and evenout of X . To avoid this diÆulty we inrease twiely the radiuses and onstrutthe new 2(� + �)-overing fB(2(� + �)R; xi1; H)g, i = 1; � � �N(�), of L(X) in suha way that xi1 2 L(X). De�ne now V1 = fxi1; i = 1; � � �N(�)g.Applying now the above proedure to every ball of this new overing we obtainthe (2(� + �))2R-overing of L2(X) with the number of balls N(�)2. Denote theset of their enters by V2. Repeating this proedure we onstrut �nally a sequeneof sets Vk � Lk(X) suh that(24) dist(Lk(X); Vk) � R(2(�+ �))k and #Vk � N(�)k



6To obtain the invariantness we de�ne now another sequene of sets Ek = L(Ek�1)[Vk and(25) E1 = [1k=1Ek; M = [E1℄Hwhere [�℄H means the losure in H . Let us verify thatM is an exponential attratorfor L on X . Indeed, the invarianness follows immediately from our onstrution.Sine Vk � M and 2(� + �) < 1 then the exponential attrating property is aorollary of (24). Thus, it remains to estimate the dimension of M or whih is thesame the dimension of E1.Note that LX � X then[k�nEk � LnX � [v2VnB(v;R(2(� + �))n; H)Let us �x now " > 0 and hoose the minimal integer n suh R(2(�+�))n � ". ThenN"(E1; H) � N"([k�nEk) +N"([k>nEk) �Xk�n#Ek +#Vn+1 � C2N(�)nhere we have used the fat that #Ek � C1N(�)n whih an be easily dedued fromthe reurrent formula #En � #En�1 +N(�)nThus, dimF (X;H) � log2N(�)log2 12(�+�)Proposition 1 is proved.Remark 5. Analogous suÆient onditions are given in [7℄ for the existene of theglobal attrator.Referenes : [1℄ A. Babin and B. Niolaenko, Exponential attrators of reation-di�usion systems in an unbounded domain, J. Dyn. Di�. Equ. 7 (4) (1995),567-590. [2℄ A. V. Babin and M. I. Vishik, Attrators of evolution equations, North-Holland, Amsterdam, 1991. [3℄ V. V. Chepyzhov and M. I. Vishik, Attrators ofnonautonomous dynamial systems and their dimension, J. Math. Pures Appl. 73(1994), 279-333. [4℄ A. Eden, C. Foias, B. Niolaenko and R. Temam, Exponentialattrators for dissipative evolution equations, Researh in Applied Mathematis,Vol. 37, John-Wiley, New-York, 1994. [5℄ M. Efendiev and S. Zelik, The attratorfor a nonlinear reation-di�usion system in an unbounded domain, Preprint. [6℄ R.Temam, In�nite dimensional dynamial systems in mehanis and physis, 2d ed.,Springer-Verlag, 1997. [7℄ S. Zelik. [8℄ In preparation.


