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ABsTRACT. We consider in this article a nonlinear reaction-diffusion system with a
transport term (L, V)u, where L is a given vector field, in an unbounded domain €.
We prove that, under natural assumptions, this system possesses a locally compact
attractor A in the corresponding phase space. Since the dimension of this attractor
is usually infinite, we study its Kolmogorov’s e-entropy and obtain Upper and lower
bounds of this entropy.

Moreover, we give a more detailed study of the spatio-temporal chaos generated
by the spatially homogeneous RDS in Q@ = R”. In order to describe this chaos, we
introduce an extended (n + 1)-parametrical semigroup, generated on the attractor
by 1-parametrical temporal dynamics and by n-parametrical group of spatial shifts
(=spatial dynamics). We prove that this extended semigroup has finite topological
entropy, in contrast to the case of purely temporal or purely spatial dynamics, where
the topological entropy is infinite. We also modify the concept of topological entropy
in such a way that the modified one is finite and strictly positive, in particular for
purely temporal and for purely spatial dynamics on the attractor.

In order to clarify the nature of the spatial and temporal chaos on the attractor,
we introduce a new model dynamical system which is an adaptation of Bernoulli
shifts to the case of infinite entropy and construct homeomorphic embeddings of
it into the spatial and temporal dynamics on A. As a corollary of the obtained
embeddings, we finally prove that every finite dimensional dynamics can be realized
(up to a homeomorphism) by restricting the temporal dynamics to the appropriate
invariant subset of A.

CONTENTS

Introduction.

61 Functional spaces.

§2 A priori estimates, existence of solutions, uniqueness.

§3 The global attractor and upper bounds of its Kolmogo-
rov’s e-entropy.

64 Quantitative characteristics for the spatial and temporal
dynamics.

85 Lower bounds for the e-entropy and spatial chaos.

1991 Mathematics Subject Classification. 35B40, 35B45.
Key words and phrases. Reaction-diffusion systems, unbounded domains, entropy, spatial and
dynamical chaos.

Typeset by ApS-TEX



§6 The spatial dynamical system in the extended phase
space.

§7 The spatial dynamical system near the exponentially uns-
table equilibrium.

§8 Complexity of temporal dynamics in RDS in unbounded
domains and temporal chaos.

INTRODUCTION.

In this paper, the following quasi-linear parabolic boundary problem:

0.1) { Opu = algzu — (L, V)u — dou — f(u) +g, = €Q,

“‘asz =0, “‘t:o = Yo

in an unbounded domain Q (which is assumed to satisfy some natural regularity
conditions formulated in §1) is considered. Here, u = (u!,---,u¥) is an unknown
vector-valued function, (L, V) := 3" | L;d;,, f and g are given functions, Ao > 0

is a positive constant, a is a given k X k-matrix with a positive symmetric part:
(0.2) a+a* >0

and L = L(z) € CL(Q) is a given vector field which satisfies the assumption
(0.3) | div L|| oo (@) < Ao/2.

(We note that, in applications, the vector field L is often a solution of the stationary
Navier-Stokes equation and (0.3) is not a great restriction.)

The longtime behavior of solutions of (0.1) is of a great recent interest. It is
well known that, under appropriate assumptions on the nonlinear term f(u), this
behavior can be described in terms of attractors A of the corresponding dynamical
system generated by (0.1) (see, e.g. [4], [5], [30], [34]). One of the possible choices
of these assumptions is the following:

1. feC3RE,RF),
(0.4) 2. f(u)u>-C,
3. f/(u) 2 _K,

where u.v denotes a standard inner product in RF (see, e.g., [4], [19] and [23]
for other possibilities). We note that (0.4) is fulfilled for many interesting (from
the physical point of view equations) such as Chafee-Infante equation, FitzHugh-
Nagumo system, generalized Ginsburg-Landau equations and others.

In the case where the domain Q is bounded, the global attractors for (0.1) have
been constructed and studied under various assumptions on f, a and g (see [4],
[24], [3] and the references therein). In particular, the attractor’s existence for (0.1)
under assumptions (0.2) and (0.4) has been proved in [40]. It is also proved there
that, if the nonlinearity f satisfies the additional growth restriction

(0-5) [f(w)| < CA+[uf’), p<1+4/(n—4),
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(for n < 4 the exponent p may be arbitrarily large), then the corresponding se-
migroup is differentiable with respect to the initial value wug, possesses L°°-bounds
and the fractal dimension of the attractor is finite.

In the case where the domain Q is unbounded (e.g. © = R™), the situation
becomes more complicated. In this case, even the choice of the appropriate phase
space for (0.1) is a nontrivial problem. Indeed, the phase space L?(Q) (as in the
case of bounded domains) does not seem to be adequate since a number of natural
(from the physical point of view) structures (such as spatially periodic solutions,
travelling waves, etc.) do not belong to that space. As a result, the global attractor
in L2(Q) of (0.1) exists only for very particular cases (see e.g. [5], [7], [17], [29]).
That is the reason why, following [21], [33], [39], we will consider equation (0.1) in
the spaces

0.6)  Wi(@) = {ug € D'() : [luollyyzr = sup [[uollwrsgansy,) < oo},

o EQN

with an appropriate choice of exponents [ and p (here and below, Bfo denotes the
R-ball in R centered at xo and WP (V) is the Sobolev space of functions whose
derivatives up to the order [ belong to LP(V')). Roughly speaking, spaces (0.6)
consist of all sufficiently regular functions ug(z) which remain bounded as |z| — oo
and contain, therefore, all the structures mentioned above.

To the best of our knowledge, the existence of the global attractor of (0.1) in the
unbounded domain © = R™ has been firstly established in [1] and [5] (for a scalar
case k = 1 and under the very restrictive growth assumption p < min{4/n,2/(n —
2)}). These growth restrictions have been removed later in [20] and [29]. The case
of systems (k > 2) with a scalar diffusion matrix a has been considered in [7],
[16], [17], [18], [39]. The case of systems of type (0.1) (without the transport term
(L, V,u)) with general diffusion matrices (satisfying (0.2)) has been considered in
[43] under the assumptions on the nonlinear term which are close to (0.4) and (0.5).
We mention also that, for the particular cases of equations of the form (0.1), e.g.
for complex Ginsburg-Landau equations, more powerful results have been obtained
(see [30] and the references therein).

In the present paper (which can be considered as a continuation of our previous
paper [43]), we give a comprehensive study of spatio-temporal dynamics generated
by problem (0.1) on the corresponding attractor. To this end, we need to consider
more general problems of type (0.1) with the nonhomogeneous and nonautonomous
boundary condition

(0.7) =u =u’(t,z), teRy, x €O

“‘aﬂ
(instead of u‘ 5o = 0) which requires to impose the following additional regularity
assumption to the nonlinear term:

(0.8) '@/ @=D < C(If ()] + [ul + 1), YueR",

where p is the same as in (0.5). As usual, we first prove that problem (0.1) posseses a
unique solution in the appropriate functional class and derive a dissipative estimate
for that solution which allows to establish the existence of the global attractor for
the semigroup associated with this problem.
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Theorem 1. Let assumptions (0.2)~(0.8) hold, g € L{(Q), for some ¢ > n+1,
and the boundary data u® belong to the corresponding space Wy (R, x 0Q) (which is
defined in Section 2). Then, for every ug € ®,(Q) := W>(Q) N {UO‘BQ = u?(0)},
problem (0.1) possesses a unique solution u(t) € ®p(Q), for t > 0, which satisfies
the following estimate:

lut)lle, < Qluolls,)e™" + Qlgllzg) + QUIullw,),

where « is a positive constant and () is an appropriate monotonic function which
are independent of ug and, consequently, the solving operators

(0.9) Si: Pp(Q2) = Pp(Q2), t >0, Spug:=u(t)

are well defined for problem (0.1) and generate a semigroup in the phase space Py,
if the boundary data u® = u°(x) is independent of t.

Moreover, this semigroup possesses a locally compact global attractor A in the
phase space ®y,(2) (see Section 3 for the details).

We note that, under the assumptions of Theorem 1, the Hausdorff and frac-
tal dimensions of the attractor are usually infinite (see, e.g. [5], [38] and Th. 2
below). That is the reason why the concept of Kolmogorov’s e-entropy is usually
exploited in order to obtain some qualitive or/and quantitative information on such
attractors (e-entropy of infinite-dimensional uniform attractors associated with no-
nautonomous RDE in bounded domains is studied in [9]; the case of autonomous
reaction-diffusion equations in R™ is considered in [11] and [38]; the e-entropy in
the case of general unbounded domains are investigated in [18] and [39], for the
case of autonomous and nonautonomous RDE, and in [13], [41] and [42], for the
case of damped hyperbolic equations).

We recall that, if K is a precompact set in a metric space M, then it can be
covered (due to the Hausdorff criteria) by a finite number of e-balls, for every
e > 0. Let N.(K, M) be the minimal number of such balls. Then, by definition,
the Kolmogorov’s e-entropy of K in M is the following number:

(0.10) H. (K, M) := In N.(K, M).

It is worth to emphasize that, in contrast to the fractal dimension, quantity (0.10)
remains finite, for every € > 0 and every precompact set K in M.

Moreover, it is proved in [39], [42] and [43] that, for a large class of equa-
tions of mathematical physics in unbounded domains (including various types of
reaction-diffusion equations, hyperbolic problems, etc.), the e-entropy of restrictions
A‘Qﬂ BR of the corresponding attractors A to bounded domains 2 N Bfo possess

the following universal estimate:
1
R+KlInl/e -,
* R e ? e — 9
(0.11) He (Al gr » ®p) < Cvol(QN BE )In=; e<e <1
zQ &

where the constants C', K and £y depend on the concrete form of the equation, but
are independent of ¢, R, and xo. As shown in Section 3, this class of equations
include, in particular, equations of type (0.1), if the assumptions formulated above
are satisfied.

Moreover, following [39] and [43], we also obtain lower bounds for the entropy of
restrictions A‘ pr 10 the case where Q@ = R", g = const and L = const and under

the natural assumption that (0.1) possesses at least one spatially homogeneous
exponentially unstable equilibria point.
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Theorem 2. Let the assumptions of Theorem 1 hold and let Q@ = R", g = 0,
L = const and f(0) = 0. We also assume that

(0.12) o(aly — (L, V) — f(0) —=Xg)N{z€C :Rez >0} # g,

where o (L) denotes the spectrum of the linear operator L. Then, the entropy of the
attractor possesses the following estimates:

(0.13) H. (A

1
(I)b) ZCanln—, of} >0, e<egy<l1.
€

R
BEO

Moreover, for every p > 0, there exists a constant C, > 0 such that
1 n+l—up
(0.14) He (A| 5 @) > Cy (lng> :
0o
We note that, for the particular case = R™, (0.11) reads

(0.15) H. (A

1\". 1
gr s Pp) <Oy <R+Kln—> In —.
zQ € €

Therefore, Theorem 2 shows that estimate (0.11) is sharp, at least in the case
Q2 =R". On the other hand, in the case where the domain € is bounded, estimate
(0.11) yields

H (A, ) < C vol() In %
which reflects the well-known heuristic principle that the equations of mathemati-
cal physics in bounded domains have the finite fractal dimension (and, moreover,
indicates in a right way the dependence of this dimension on the ’size’ of ©2). Thus,
estimate (0.11) may be considered as a natural generalization of this principle to
the case of unbounded domains (see also [18] or [42]).

The main part of the paper is devoted to the more detailed study of the spatially
homogeneous case of equation (0.1) (2 = R"™, g = const, L = const). In this case,
the attractor A possesses an additional structure, namely, it is invariant under the
group {Tp, h € R™} of spatial shifts:

(0.16) Th: A— A ThA=A, heR", (Thuo)(x):=uo(z+h)

and, consequently, it is invariant under the extended (n+1)-parametrical semigroup
S(¢,) defined by the following expression:

(0.17) S(t,h)uo = ThStuo, S(t,h)A == A

In the present paper, we suggest to interpret this semigroup as a dynamical system
(with multidimensional ’time’) acting in the phase space A. Thus, in order to
study the spatio-temporal complexity (and spatio-temporal chaos) of A, we will
below investigate the dynamical properties of system (0.17).
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Theorem 3. Let the assumption of Theorem 1 hold and let, in addition, equation
(0.1) be spatially homogeneous. Then, the topological entropy (see e.g. [25]) of
semigroup (0.17) is finite

(018) htop(A7 S(t,h)) <00

and coincides with the topological entropy per unit volume introduced in [12].

Thus, Theorem 3 gives a simple geometrical interpretation for the topological
entropy per unit volume.

It is also reasonable to study the dynamical systems, generated by k-parametrical
subgroups of the extended semigroup (0.17), namely, let Vi be an arbitrary k-
dimensional hyper-plane V;; C Ry x R? and let

(0.19) Sg’“’h) = {S,nyt >0, (t,h) € Vi}

be the k-parametrical dynamical system which corresponds to the hyper-plane V.
The most natural choices of the plane V}, are the following: 1. £k =mn, V,, =R",
then Sg"h) := T}, which corresponds to the purely spatial dynamics on the attractor

and 2. k=1, V; =R, then Sglh) := S}, which corresponds to the purely temporal
evolution restricted to the attryactor; although intermediate choices of Vj, which
describe the interaction between the spatial and temporal modes are of independent
interest.

We note that, in contrast to the case of & = n + 1, the topological entropy for
dynamical systems (0.19) may be infinite (and is usually infinite as shown below)
if K < n + 1. Consequently, new quantitative characteristics of the complexity are
required for these cases. We suggest to use in this situation the modified topological
entropies which differ from the classical one by presence of the factor (In1/e)" "~
(for k-dimensional subgroups) in their definition (see Section 4). For instance, if
Vi = RZ, then

Trop(A) = BV (A) = lim sup <1n1>_1 lim ——HL (A, L°([0, B]"))

e—0 € R—oc R™

and, for Vi = R;, we have

e (A) := hY' (A) == limsup (m 1) lim ~H, (K, L2([0,T], L . (R™)))
e—0 IS T—oo T
where IC denotes the set of all the solutions u(t), t € R, of (0.1) which belong to
L>(R, @) (see Section 3) and L9, () is a weighted space (see Section 1).
The following theorem, which can be treated as a generalization of the well-
known relation between the fractal dimension and topological entropy (see e.g.

[25]) describes the relations between ﬁkv’“ (A) computed for different hyperplanes
Vi.

Theorem 4. Let the assumptions of Theorem 3 hold. Then, for every k, 0 < k <
n+ 1 and for every hyperplane Vi, the corresponding (modified) topological entropy
s finite:

(0.20) 1Yk (A) < oo.



Moreover, if Vi, CV; (k <), then
(0.21) B (A) < KRRV (A),

where the constant K > 0 depends only on the equation.

Thus, it folows from (0.21) that, if the topological entropy of extended semigroup
(0.17) is strictly positive, then the (modified) topological entropy of dynamical sys-
tem (0.19) is also strictly positive for every hyperplane Vj. Unfortunately, the
problem of obtaining the lower bounds for quantity (0.17) for more or less concrete
equations of mathematical physics is extremely difficult, even in the case n = 0
(which corresponds to the ODE of type (0.1), see [25] and the references therein),
although several examples of equations of type (0.1), for which the corresponding
spatio-temporal topological entropy is strictly positive, has been recently construc-
ted (see [44]).

In contrast to that, the case of the dynamics associated with n-dimensional hy-
perplanes V,, C R; x R? is simpler and we give below some natural (and effective)
sufficient conditions which allow to verify that the corresponding modified topolo-
gical entropies are strictly positive for a large class of equations of mathematical
physics.

We start with the case V,, = R?, which describes the purely spatial dynamics.
The phenomena of spatial complexity and spatial chaos has been studied, e.g. in
(2], [6], [14], [15], [43] (see also the references therein) for several particular cases
of equation (0.1). In our case, estimate (0.13), obviously, implies that the modified
topological entropy of spatial dynamical system (0.16) (V,, := R7) is strictly positive

hsp(A) > C >0

and, consequently, the classical (non modified) topological entropy of that semi-
group is infinite, if the assumptions of Theorem 2 are satisfied. Thus, the dynami-
cal behavior of (0.16) is extremely chaotic. We also note that, in contrast to the
case of dynamical chaos, generated by ODE or by PDE in bounded domains, the
symbolic dynamics (Bernoulli shifts with finite number of symbols, see e.g. [25]) is
not an adequate model example for understanding the nature of the spatial chaos
in (0.16), since the topological entropy of such symbolic dynamics is finite. That
is the reason why (following [43]), we use another model dynamical system which
generalizes the classical Bernoulli shifts and is adopted to the case of infinite topo-
logical entropy. Namely, let D be a unit disc in C and let M := D”" endowed by the
Tikhonov’s topology. Then, a discrete dynamical system 7; with multidimensional
‘time’ h € Z™ on M can be defined in the following natural way:

(0.22) Tho(l) :=v(h+1), hleZ™ veM.

(We recall that, as usual, M is interpreted as a space of functions v : Z™ — D).
Applying a general scheme of investigating the spatial complexity of the attrac-
tors of equations of mathematical physics developed in [39], [42] and [43] to equation
(0.1), we derive (in Section 5) the following result which clarifies the nature of the
spatial chaos in (0.16).
7



Theorem 5. Let the assumptions of Theorem 2 hold. Then, there exists a positive
number o > 0, a closed subset K C A and a homeomorphism 7 : M — K such that

(0.23) Ton K =K and Typt(v) =7(Thv), Yh €Z™, v e M.

Moreover, this homeomorphism is Lipschitz continuous under the appropriate choice
of metrics on A and M and preserves the modified topological entropy:

-~

0 < Bgp(M) = Tgp(K) < Tgp(A) < o0.

As an immediate corollary of this result, we obtain the fact that every finite
dimensional dynamics can be realized (up to a homeomorphism) by restricting
spatial dynamical system (0.16) to appropriate closed subsets of A.

Corollary 1. Let the assumptions of Theorem 5 hold, let K C RN be an arbitray
compact set in RN, N € N, and let Fy,--- ,F, : K — K be arbitrary pairwise
commutative homeomorphisms, i.e.

FioFj=FjolF;, i,j€{l,---,n}

Then, there exist a positive number v = v(N) < 0 and a homeomorphism

(0.24) 7K 5 7(K) C A,
such that
(0.25) T7(k) =7 (F{l o0 F,l;k) . keK, lezm

where Fil" denotes the l;-th iteration of the map F;.

This result confirms, from the alternative point of view, that spatial dynamics
(0.16) is indeed extremely chaotic.

The main task of the rest of the paper is to obtain the analogue of Theorem 5 in
the case where V,, contains a temporal direction and to include, thus, the temporal
dynamics into consideration. We note that the general scheme of investigating the
phenomena of spatial chaos mentioned above is based on the technique of infinite
dimensional unstable manifolds and gives no information on the temporal evolution
(at least in a direct way). Nevertheless, we suggest below a trick which allows to
obtain such an information based on this scheme. The main idea of this trick is
to construct a new auxiliary dynamical system the attractor of which coincides (in
a sense) with the attractor of the initial system (0.1) and such that the direction
t is occured to be ’spatial’ for this dynamical system. Applying the scheme of
studying the spatial complexity to this auxiliary system, we obtain simultaneously
the description of the temporal evolution for the initial problem (since the direction
t is 'spatial’ for that auxiliary system!).

In order to construct this auxiliary dynamical system, we assume that the vector
field L has the form L := L(1,0,---,0), where L > 0 (a general case can be easily
reduced to this one by an appropriate rotation) and consider the following boundary
value problem:

0.26
(0.26) =u’, teR, 71 €Ry, 2’ € R*L,

8
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where = (x1,2'). Boundary value problem (0.26) can be formally interpreted as
an evolution equation with respect to x1 and ’spatial’ directions ¢, z’. Moreover, it
is proved (in Section 6) that this boundary value problem defines indeed a differen-
tiable and dissipative dynamical system on the appropriate trace space ¥y, if L > 0
is large enough (see Theorem 6.1 for the rigorous statement). Then, on the one
hand, the sets of all complete bounded solutions of equations (0.1) and (0.26) which
are defined for all (t,z) € R*™! coincide and, on the other hand, the hyperplane
V,, :=span{t, xs,--- ,x,} corresponds now to the spatial dynamics for this system.
Applying the above general scheme to that auxiliary dynamical system, we obtain
(in Section 8) the following result.

Theorem 6. Let the assumptions of Theorem 2 hold and let, in addition, the
vector field L have the form L = L(1,0,---,0), where L > 0 is large enough (see
condition (6.6) ). Then, the modified topological entropy of dynamical system (0.19)
where Vy, = span{t, z'} is strictly positive

(0.27) BV (A)>C >0

n

and, consequently, thanks to Theorem 4, the modified temporal topological entropy
15 also strictly positive

(0.28) Ty (A) > Cy > 0

and the classical (nonmodified) one equals infinity.

Thus, the temporal dynamics is also exteremely chaotic under the assumptions

of Theorem 6. Moreover, analogously to Theorem 5, we obtain the following em-
bedding.

Theorem 7. Let the assumptions of Theorem 6 hold and let, in addition, the
diffusion matriz satisfy the technical assumption aa* = a*a. Then, there exist a
number a > 0 and a homeomorphic embedding

(0.29) FIM oA
such that
(030) Sal?(’l)o) = ?(77’;1’()0), Tawll?(’ljo) = 7’3(771?1,00) , 7 = 27 cee o,

for every |l € Z and every vg € M. Moreover,

where V,, = span{t, xa, -+, x,}.

As in the case of spatial dynamics, embedding (0.29) allows to prove that every
finite dimensional dynamics can be realized (up to a homeomorphism) by restricting
the temporal evolution semigroup S; to the appropriate invariant subset of the
attractor.



Corollary 2. Let the assumptions of Theorem 7 hold, K C RN be an arbitrary
compact set in RN, N €N, and F, - ,F,, : K = K be arbitrary pairwise commu-
tative homeomorphisms, i.e.

(0.31) FioF;=F;oF;, i,je{l,---,n}.

Then, there exist a positive number v = v(N) > 0 and a homeomorphism
(0.32) 7T: K > 7(K)CA,

such that

(0.33) Sy, 0T 0w 0T F(k) =7 (Flll o .F;Lnk-) . keK, lez”

where Fil" denotes the l;-th iteration of the map F;.

We illustrate the obtained results on the simplest example of one dimensional
Chafee-Infante equation pertubed by the transport term

(0.34) O = 02u — LOyu 4+ u —u®, z € R

It can be easily verified that all the assumptions of Theorem 7 are satisfied for (0.34),
if L > 2. Consequently, in this case, (0.34) generates an extremely complicated
temporal dynamics. In particular, this equation possesses a noncountable number of
essentially different time periodic solutions (which are parametrized by the periodic
orbits of (generalized) Bernoulli shifts (M, 7;)). We also note that, for L = 0,
(0.34) generates the so-called extended gradient system and, consequently (see [22]),
this system does not possess any time periodic solution (any uniformly reccursive
solution and so on). Thus, simplest model (0.34) gives a good example illustrating
the influence of transport terms to the reaction-diffusion dynamics.

The paper is organized as follows. Definitions of functional spaces, which are of
fundamental significance for our study equation (0.1), and their simple properties
are given in Section 1. Various a priori estimates for the solutions of (0.1) are ob-
tained in Section 2. Moreover, based on these estimates, we verify the existence of
a solution, its uniqueness and derive some estimates for the differences of solutions
which will be essentially used later. The existence of a global attractor A for system
(0.1) is verified in Section 3. Moreover, the upper bounds of its Kolmogorov’s e-
entropy are obtained here. Quantitative characteristics for the (n+1)-parametrical
extended dynamical system and for its k-parametrical subgroups are investigated
in Section 4. In particular, the proof of Theorem 4 is given here. In Section 5,
we deduce the lower bounds of e-entropy for equation (0.1) and give a topological
description of the phenomena of spatial complexity and spatial chaotisity (in parti-
cular, Theorems 2 and 5 are proved here). General analytic properties of auxiliary
spatially dynamical system (0.26) (such as existence of solutions, their uniqueness,
smoothness and so on) are obtained in Section 6. The behaviour of the auxiliary
spatial dynamical system near the exponentially unstable equilibria point is inves-
tigated in Section 7. The main result of this Section is the existence of an infinite
dimensional unstable manifold of this dynamical system. The topological descrip-
tion of temporal complexity of the dynamics generated by (0.1) (Theorems 6 and
7) is obtained in Section 8 based on the results of Section 7.

Acknowledgements. The author has greatly benefited from helpful comments of
M.Efendiev, A.Mielke, D.Turaev and M.Vishik.
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§1 FUNCTIONAL SPACES.

In this Section, we introduce several classes of Sobolev spaces in unbounded
domains and recall shortly some of their properties which will be essentially used
below. For the detailed study of these spaces, see [17] and [39].

Definition 1.1. A function ¢ € Cj,.(R™) is a weight function with (exponential)
growth rate p > 0 if the condition

(1.1) d(x +y) < Cye’lp(y), d(x) >0

is satisfied, for every z,y € R™. Analogously, a function ¢ € Cj,.(R™) is a weight
function with polynomial growth rate y if the following inequality is valid, for every
z,y € R":

(1.2) (o +y) < Cp (1+ YA+ |1al?) -+ (1 + [yl p(2), () > 0.

Remark 1.1. Obviously, every weight function which satisfies (1.2), for some p >
0, satisfies automatically (1.1), for every p > 0. Moreover, it is not difficult to
deduce from (1.1) that

(1.3) plz+y) > Cyle Mol (y)

is also satisfied, for every z,y € R”. Estimates (1.1) and (1.3) imply, in particular,
that

(1.4) 0;16_NR¢($) < SUP|40 <R $(x — m0) < C¢6”R¢(~T)-

The following examples of weight functions are of fundamental significance for
our purposes:

(1.5) bewy () = 751277l e € R x4 € R".

Obviously, these weights have growth rate |¢| and satisfy (1.1) uniformly with res-
pect to o € R™ (i.e., the constant Cy, , in (1.1) is independent of o).

Analogously, the model example of a weight function with polynomial growth
rate is the following:

(16)  @uan(@) = (14 2" = b (L4 o — )", w0 €R*, pekR
Obviously, weights (1.6) have polynomial growth rate |u| and also satisfy (1.2)
uniformly with respect to zo € R.

Definition 1.2. Let 2 C R™ be some (unbounded) domain in R™ and let ¢ be a
weight function with growth rate u. We set

2@ = {ue D@« w0y, = [ s@lutards < oo}

Analogously, the weighted Sobolev space W;)’p (Q), 1 € N, is defined as the space of
distributions whose derivatives up to the order [ belong to LZ(Q).
In order to simplify the notations, we will write below W{SE’I}’ instead of W’ .

We also define another class of weighted Sobolev spaces as follows:
l — . —
Wb,g(Q) = {u cD'(Q) : ||u,Q||€,¢,l7p = Sue% é(xo)||u, 2N B;OHf,p < oo} :
Zo

Here and below, we denote by Bfo the ball in R” of radius R, centered at xy and
lu, V|z,p stands for [Jullyimy)-
We will write W instead of W,7.
11



Proposition 1.1.
1. Let u belong to L’;(Q), where ¢ is a weight function with growth rate . Then,
for any 1 < q < oo, the following estimate is valid:

wn ([ ot ([ e—'f'w-%wu(xﬂpdx)qdxo)l/qso [ s i

for every € > p, where the constant C' depends only on €, p and the constant Cy
from (1.1) (and is independent of 2).
2. Let u belong to L (Q2). Then, the following analogue of estimate (1.7) is valid:

) s foten) suple B o)) | < Csup(6(a) lu(o) )

o EN TEQ

The proof of this proposition can be found in [17] or [39].

In order to study nonlinear RDS (0.1), we need some regularity assumptions on
the domain 2 C R™, which are assumed to be valid throughout of the paper.

We assume that there exists a positive number Ry > 0 such that, for every point
xp € (2, there exists a smooth domain V,, C €2 such that

(1.9) BEonQc Vv, c Bt na.

Moreover, we also assume that there exists a diffeomorphism 6,, : B§ — BFo+2
such that 0, (z) = o + puy (), Oz (B) = Vi, and

(1.10) 1Pzo lo~ + [Ip7) [lonv < K,

where the constant K is independent of zo € 2 and N is large enough. For
simplicity, we assume from now on that (1.9) and (1.10) hold for Ry = 2.

We note that, in case © is bounded, conditions (1.9) and (1.10) are equivalent
to the following: the boundary 02 is a smooth manifold. Now, for unbounded
domains, the sole smoothness of the boundary is not sufficient to obtain the regular
structure of  as |z| — oo, since some uniform with respect to zy € € smoothness

conditions are required. It is however more convenient to formulate these conditions
in the form (1.9) and (1.10).

Proposition 1.2. Let the domain Q satisfy conditions (1.9) and (1.10), the weight
function ¢ satisfy condition (1.1) and R be some positive number. Then, the follo-

wing estimates are valid:
(1.11)

s /Q (@) [u(a)|P do < /Q b(z0) /Q Ly M@z <€ /Q () ()P d.

The proof of this proposition is given in [17] or [39].

Corollary 1.1. Let (1.9) and (1.10) hold. Then, the following norm is equivalent
to the usual norm in in W(;’p(Q):

1/p
(112) . @say = ( [ doollu @0 BEIE, doo)
12



In particular, norms (1.12) are equivalent, for R € Ry .

To study equation (0.1), we also need weighted Sobolev spaces of fractional order

s € Ry (and not for s € Z only). We first recall (see [35] for details) that, if V' is
a bounded domain, a classical norm in the space W*P(V), s = [s] + [, 0 < [ < 1,
[s] € Z, can be defined by

D*u(x) — D*u(y)|P
1.13 w, V| =|u, V|F, + g / / | dx dy.
( ) | | P | H[S]’p 5 z€V Jyev |z — y|n TP

=]

It is not difficult to prove, arguing as in Proposition 1.2 (see [17]) and using this
representation, that, for any bounded domain V with a sufficiently smooth boun-
dary

(1.14) Cullu, VIE, < / VA BE 2, dog < Callu. VI,
ToE

This justifies the following definition.

Definition 1.3. We define the space W;’p(Q), for s € Ry, as the space of distri-
butions whose norm (1.12) is finite.
It is not difficult to check that these norms are also equivalent for different R > 0.
In order to consider problem (0.1) with nonhomogeneous boundary conditions,
we need the following proposition.

Proposition 1.3. Let the domain Q satisfy assumptions (1.9) and (1.10).Then,
for every € > 0 and zo € R, the following estimate is valid:

(1.15) / e~clz—mlgs < .,
o0

where the constant C. is independent of xg.

Proof. Let 7i(z) € W,"(Q) be an arbitrary extention of the normal vector field

from 0% inside of the domain Q (the existence of such an extention is guaranteed
by conditions (1.9) and (1.10)). Then, due to the Gauss’ formula

beray dS = / Aiv(Be () d < s, 100 [ ez 2
o0 Q

|11 <C:

and Proposition 1.3 is proved

Corollary 1.2. Let the assumptions of Proposition 1.3 hold. Then,
(1.16) / e—s|$—wo| ds < 066—6/2 dist(mo,aﬁ)’
a9

where dist(xg, 0Q) denotes the distanse from the point zq to the boundary 0S2.
Indeed,

/ e—a|m—m0| ds < sup {e—a/2|m—m0|}/ e—a/2|m—m0| ds < CEG_E/ZdiSt(mO’aQ).
290  2€0Q o0 B
13



Definition 1.4. Analogously to Definition 1.2, we define the weighted Sobolev
spaces of functions defined on the boundary 0€2. For instance, the weighted space
Wdl)’p (092) is determined by the following norm:

o, DR, = / o(5) [0, 0920 BY[?,

The spaces W,f’p (092) are defined analogously.

We now note that the weight functions (1.5) satisfy the conditions (1.1) uniformly
with respect to z¢g € R"™, consequently, all the estimates obtained above for the
arbitrary weights will be valid for family (1.5) uniformly with respect to o € R™.
Since these estimates are of fundamental significance for what follows, we write
them explicitly in the following propositions.

Proposition 1.4. Let u belong to L{&}( ), for 0 < § < e. Then, the following
estimate holds uniformly with respect to y € R™:

wan ([ ([ ermuopa) )"

<, / e 01Ty ()P du.

Moreover, if u € L?f;}(Q), ) < e, then

(1.18) sup {e—5|m0—y| sup{e_€|m_”°||u($)|}} < C. ssup{e 0Vl |u(x)|}.
o €N zeS e

Proposition 1.5. Let u belong to Wé’g(Q) and ¢ be a weight function with growth
rate i < €. Then

(1.19)  Cillu, Qf} bl

7p_

< sup {¢(a:0)/ e~ clm=mol|lu, QN B|IP dx} < Collus Uy 41
:EOEQ meQ 5 I S L8

For the proof of this corollary, see [39].
The following analogue of Proposition 1.5 is valid for polinomial weights (1.6).

Proposition 1.6. Let ¢ be a weight function with polynomial growth rate p < N.
Then, the following estimate is valid:

(1.20) Cy sup ¢(xp)u(xg) <

o €N
< sup{qﬁ(x) sup ((1 +lzr—pl?) - (L |, — yn|2))_N/2 U(?J)} <
SIS yeN

< Oy sup ¢(zo)u(wo)-
w()EQ

The proof of this proposition is completely analogous to that of Proposition 1.5
(see e.g. [43]).
14



In conclusion of this Section, we inroduce the anysotropic Sobolev spaces of
functions defined on Ry x Q or Ry x 0.

Definition 1.5. We denote by W) ([T, T + 1] x Q) the classical Sobolev-
Slobodetskij space of functions which have t-derivatives up to the order [; and
x-derivatives up to the order [y belonging to LY (see e.g. [28]). We recall that, for
integer [; > 0, the norm in this space is defined by

_ial
= [0 |74 9T, T+1)x2) T

+ (1D ullfs

1l i tor.a iz r s 1yx) °
a7, T+1]xQ) T H““Lq (IT,T+1]x Q)

where D! denotes a collection of all z-derivatives of the order I, and, for the
noninteger /;, can be defined by the interpolation, analogously to (1.13) (see [28] or
[35]).

We now define, analogously to Definition 1.2, the spaces Wb(ll’b)’q(]&, x Q),
Wl)(h’h)’q(& x 0R2), and the corresponding spaces of functions on R x €. For

instance, the norm in the space W,)(ll’h)’q(& x 0R) is defined by the following
expression:

||u||Wb(l1’l2)’q(R+><8§2) = TSE‘;{IL ||u||W(l1=l2)=q([T,T+1]><(aQr‘|B}:O)'

zp EOQ

Moreover, let ¢ = ¢(t,2) be a weight function of variables (¢, ) with exponential
growth rate p (see Definition 1.1). Then, we define the spaces Wa(sll’b)’q(]&, x )

and deh’h)’q(]lh x 0R) in a standard way. For instance,

= q
i o= o T e o 45T
»8 +

§2 A PRIORI ESTIMATES, EXISTENCE OF SOLUTIONS, UNIQUENESS.

In this Section, we derive several a priori estimates for the solutions of reaction-
diffusion system (0.1) with nonhomogeneous boundary conditions

{ Owu = al\, u—( (), Vi)u—Aou— f(u) +g(z), z€Q,
ulyo = u(t,7), ul,_, = uo(z)

in the unbounded domain 2 C R" satisfying the assumptions of the previous Sec-
tion. Moreover, based on these estimates, we derive the existence of a solution u(t)
for (2.1), its uniqueness and obtain several estimates for differences of solutions of
(2.1) which will be used below for studying the attractor of this system.

We recall, that u(t) = (ul(t,z),- -+ ,u*(t,z)) is the vector-valued function, a is
the constant k x k-matrix satisfying the condition a + a* > 0, A\g > 0, the vector
field L € C}(R™,R"™) satisfies the inequality

(2.2) | div L|jo.00 < Ao/2

(2.1)

and the nonlinear term f(u) satisfies the assumptions

1. f e C3(RF,RF),
(2.3) 2. f(u)u>-C,

3. f'(u) > —K.
15



Moreover, we impose the additional growth restrictions for the nonlinearity f(u):
L |f(u)] < CO(1+ [uf),

{ 2. |f'(w)[P/®P=D < C(1+ |f(u)| + |u]),

where the exponent p > 1 is arbitrary, for n <4, and p < 1+ ﬁ, for n > 5.
We also assume that the external force g belongs to the space L{(f2), for some

q > n+ 1, the initial data ug belongs to the space W;’q(Q) and the boundary data
u? belongs to the following trace space:

(2.5) Wy(Ry x 9Q) = Tr|, {u,@tu e WPDI(R, x Q)} =

(2.4)

= {u", 9 € w{ITVCO2VDUR, 90}

(see Definition 1.5 and [28]). Moreover, we assume that the first compatibility
condition

(2.6) o[ 5o = "],
is satisfied.
By definition, a solution of (2.1) is a function
(27) u € LRy, W,"(2)) N C([0,00), L{(2))
which satisfies equation (2.1) in the sense of distributions.
Remark 2.1. It follows from the Sobolev’s embedding theorem and from our
choice of the exponent ¢ (¢ > n/2) that the solution u belongs to L*(R; x ),

consequently, the nonlinear term in (2.1) is well-defined and belongs to L>°. The-
refore, it follows from (2.7) and from equation (2.1) that

o € L™(Ry, LY().
Moreover, it can be shown by standard arguments (see e.g. [39]) that

(2.8) we C([0,T],w>? _(Q)nC([0,T],LI_.. (),

e—clel e—clel
for every T' > 0 and every € > 0. We, however, note that, in contrast to the case
of bounded domains, for generic ug € ®, the corresponding solution u(t) is not
continuous at t = 0 as a function with values in W2 %(Q) (see e.g. [33] for the
conditions on ug which guarantee this continuity).
The main result of this Section is the following theorem.

Theorem 2.1. Let the above assumptions hold and let u(t) be a solution of (2.1).
Then, the following estimate is valid:

(29) [[u(®), 20 By, llag < Q (lu(0)llwza(q)) e+

+Q (lu] o lwy (=, xo0)) e~ HsHEID 4 @ (||9||Lg(9)) :

where « is a positive constant which depends only on the equation and @) is a
monotonic function which also depends only on the equation (and is independent of
u, ug and u®).

Proof. Estimate (2.9) has been proved in [43], for the particular case of u® = 0 and
L = 0. In general case, although the presence of nonzero drift term (L, V)u is not
essential for that proof (due to assumption (2.2)), but the nonhomogeneous boun-
dary conditions require the additional accuracy and the additional technicalities
which will be indicated below.

16



Lemma 2.1. Let the above assumptions hold. Then, the following estimate is
valid, for every xo € Q, > 0 and for ¢ > 0 small enough:

T+1
(210)  (|u(T) 2 feay) + /T (Va0 bemg) dt <

< Ce—oT (|u(0)|2, ¢e,mo) +C (|g|27 ¢€,m0) + C+
T
+ /1//(; e—a(T—t) (¢6,m07 |v$u(t)|2)ag dt + C,ue_e dlst(aco,t‘?Q)HuOH?yb,

where the positive constants C,a,e are independent of xo, C,, depends only on
p >0, and (u,v) and (u,v)sq stand for the inner product in L?(Q) and in L?(9)
respectively.

Proof. Multiplying equation (2.1) by u(t)e=¢l*=%0l (with ¢ > 0 small enough), in-
tegrating by parts and using the dissipativity assumption f(u).u > —C, the positi-
veness of a, assumption (2.2) and the obvious estimate

(2.11) Vs (e—EIHOI) | < ee~clo=mol,

we derive that

(2.12) 0% ([u(t)?, e,ze) + a (Ju(t)?, Pemy) + @ (IVar(t)]?, beay) <
< C(1+ (191 demo) + (WO, Peny) oo, + (16 (O] - [Vau()], desa) 5 »

where o > 0 is an appropriate positive constant which is independent of xy (see
e.g. [17] or [43] for details). Applying the Holder inequality to the last term in the
right-hand side of (2.12) and using inequality (1.16), together with the Gronwall
inequality, we obtain the assertion of the lemma.

Lemma 2.2. Let the above assumptions hold. Then, the following estimate is
valid, for sufficiently small ¢ > 0:

T+1
(2.13) (|“(T)|2 + |VEU(T)|27 ¢6,mo) +/ (|Amu(t)|2, ¢6,mo) dt < C+
T
O (WO + [Va0) s o) +C (19 o) +Cem M0G0, ),

where the positive constants C,a and the monotonic function ) are independent
of zg.

Proof. Multiplying equation (2.1) by the expression

(2.14) Zawi (Pe,w0 ()0, u(l)) 1= Pe,zo Agti(t) + Ve zo-Vault)
=1

and setting € > 0 small enough, we obtain, after the standard integration by parts
and using the monotonicity assumption f/'(u) > —K and the inequality (2.11), that
(2.15) 0% (IVou(t)?, $ene) + @ (IVau(t) |, dewo) + o (|A0u(t)?, e ) <

< (2K + CILIIG o) (IVoul®)?, $e,00) + C (1917 bean) +

+C (10w’ (@O)] + [F @ (E)]) - [Var(t)], dewo) g -
17



We now recall that, due to our choice of the exponent ¢, u® € Cp(Ry x Q) and,
consequently, the last term in the right-hand side of (2.15) can be estimated as
follows:

(2.16)  C ((|0su’ ()] + | f (@’ ()]) - [Vau()], $eu0) po <
< C«Me—s/2dist(w0,89)Q( OH‘I’b) tu (|VnU(t)|2,¢s,mo)aQ,

where the constant g > 0 can be chosen arbitrarily small.

Applying the Gronwall inequality to relation (2.15) and estimating the last two
terms in the right-hand side of it by (2.10) and (2.16), we have, after simple com-
putations

T+1
(2.17)  (Ju(D)]? + [Vou(T)?, de,z, ) +/T (JAZu(t)[?, femy) dt <
< C (e (Ju(0)]* + |Vou(0)|?, berwo) + 1+ (|g1% berme)) +

. t+1
+Cue I INQ([ulla,) + s T [ (T,0(6) P ) g
t€[0,T1] t

where @) is an appropriate monotonic function, o > 0 is a certain positive constant
and p > 0 is arbitrary.

Due to the regularity theorem for the Laplace operator in weighted Sobolev
spases (see, e.g. [35]), we have

(218) u(®)lwzz o) < COAwuOlzs, @ +lu) s, @@y on)

and, consequently, the last term in (2.17) can be estimated as follows:

(2.19) (|Vnu(3)|2a ¢6,mo)ag <C (|Am“(3)|27 ¢6,mo) +C (|u(s)|2, ¢€,mo) +

+ 06—5/2 dist(z0,00) ||U0||€1 )
b

Inserting this estimate to the right-hant of (2.17) and using (2.10), we derive

T+1
(2.20)  (|u(T)]* + |Vou(T) |, ¢em) +/T (JAZzu(t)]?, e mo) dt <
< C1 (e (|u(0)]? + [Vou(0)]?, erzo) + L+ (1917 b)) +

t+1
+ Gl I ANQ(0 ) + Cp sup =T [ (1A u(5)?, ben) s
t€[0,T7] t

There remains to note that estimate (2.20) implies (2.13) in a standard way, if
Cp < 1/2 (see [17] or [42]) and Lemma 2.2 is proved.

Our next task is to obtain the analogous to (2.13) estimate for the W b O—norm
To this end, we introduce the following 'norm’, which depends on € > 0 and z(y € €:

(2.21) lollp. ., = Mol o) +IF@IZs (-

€,xq

18



Lemma 2.3. Let the above assumptions hold and let € > 0 be small enough. Then,
the following estimate is valid for the solutions of equation (2.1):
2 <

(2.22) [lu®)p. ,, <

S@W”WQMW

—adi (019
b L+l o+ DG, )

where the constant K is the same as in (2.3), a > 0 and the constant C' and the
function ) are independent of xy and €.

Proof. We give below only the formal deducing of estimate (2.22) which can be
justified in a the standard way (using, e.g. the uniqueness of a solution of (2.1) in
the class (2.7) which is verified in Theorem 2.2).

We differentiate equation (2.1) with respect to ¢ and denote 0(t) := dyu(t). Then,
this function satisfies the following equation:

(2.23) { 010 = a0 — (L, V)0 — Aot — f'(u)b,

0(0) = aAgzug — (L, Vi)ug — Aouog — f(uo) + g, 9‘89 = 0ul.

Let us now fix the extention w(t) (w(t), dyw(t) € Wb(l’2)’q(]RJr x ) of the boundary
condition u® € Uy inside of the domain € such that

0
(2.24) L ||w||Wffl’2)’q(R+Xﬂ) + HathWlfl*”*‘J(Rﬂm) < Clu’llw,,
2. w(t,x) =0, if dist(xo,Q) > 1.

The existence of such an extention is and immediate corollary of the definition of
Uy (see (2.5)). Then, the function 0,(t) := 0(t) — dyw(t) satisfies the following
equation:

(2.25) { 001 = aly b — (L, V)0 — f/(w)b1 + hy () — f'(u)Orw,

- 8tw‘t:07 01 = 0,

1‘t:0 - 9‘15:0 ‘BQ

where hy, (t) := 02w(t) —alA 0yw(t) — (L, V) 0sw(t) — Agdyw(t). Multiplying (2.25)
by 01(t)¢e z,, integrating over © and using that e > 0 is small enough and assump-
tion f'(u) > K, we derive, after the standard estimates, that

(2.26) 5 (B0 o) + 2 (OOF o) <
<K (102000, Be) + O (a0 bess) — () (1) 1), 62)

where the constant C' > 0 is independent of zy. Estimating the last term in (2.26) by

Hoélder inequality and using assumption (2.4)(2), the embedding VVb(l’Z)’q(]RJr x ) C
C(R4 x ) and estimates (2.24), we have

(2.27)  (f' (w)Opw.01, be g ) u( (u) P/ P~ 4, mo) + Xo/4 (10112 bemo) +

+ C (|atw|2p d)&‘ iBO) S (|f( )|27¢6,$0) + C (1 + (|U|27¢5,m0)) +

+ )\0/4 (|01|27 ¢6,m0) + Cue_a diSt(mO,aQ)HUOH?ypb,
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where the constant g > 0 can be chosen arbitrarily small.

Inserting estimate (2.27) to the right-hand side of (2.26), applying the Gronwall
inequality to the obtained relation and using (2.13) and (2.24) (in order to estimate
the function d;h,,(t)), we derive that

(228)  (10u(T)P, bey) < CKT (Ju(O)lB, . +1+ (19 demo) ) +
T
+ Cue KT 004 y,) + g [T (F(uE) )

where the constant p can be chosen arbitrarily small.

After obtaining estimate (2.28) for the L?-norm of the t-derivative, we may
consider parabolic equation (2.1) as an elliptic boundary value problem at a fixed
point T':

(2.29) aA,u(T) — (L, V)u(T) — f(u(T)) = hy := 0u(T) — g, u(T)‘89 = u(T),

with the right-hand side h, belonging to the space Li v (©). Arguing as in the
proof of Lemma 2.2 (multiplying the equation by expression (2.14) and using esti-
mate (2.18)), we derive the following estimate:

(230) ||U(T)||€V§2 (Q) < C (1 + ||hu||i%¢s o Q) +e @ diSt(mO’aQ)Q(HUOH\IJb)) )

£,zQ

Estimates (2.28) and (2.30) and equation (2.1) imply now that
(231) (I @UT)P demn) < Cre® T ([u(O) B, +1+ (I91% den) ) +

T
+ O 2T dist(@0 0D 0 (|40 g, ) + Cap / KT (| F(u(t))|?, dermy) di.
0

Setting ;1 = 1/C5 and applying the Gronwall inequality to relation (2.31), we finally
have

(1F @), fem) < Coe® AT ()3, + 1+ (19, deno) ) +

+ 046(2K+1)T6—a dist(mo,aﬂ)Q(Huo ||\Ilb)-

Combining this estimate with (2.28) and (2.30), we obtain estimate (2.22) which
proves Lemma 2.3.

We now note that the obtained estimate of the Wj 2 _norm diverges exponen-
e,zQ

tially with respect to t — oo which is not good from the attractors point of view.
In order to remove this divergence, we need the following smoothing property.

Lemma 2.4. Let the above assumptions hold. Then, the following estimate is
valid, for any solution u(t) of problem (2.1):

2
(232 a2 o <

pe,zq

gc<1+||u<o>||551,2 @ +llglz (m+e‘“dist(”o’f’“>@<||u0||m),
£,

£,zQ
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for a certain monotonic function @, positive constant o > 0 and for a sufficiently
small positive € > 0.

Proof. Let us fix an arbitrary xy € 2 and a sufficiently small € > 0. Then, it follows
from estimates (2.13) and (2.18) that

2 33 / ||U ||W22 dt S

<O (14 U0z o)+ lallZs @+ e 520 u"a,)).
€,2p
It follows from (2.33) that there exists a point T' = T'(z() € [0, 1] such that
(239) [u(T) e g <
de,zq

€,xQ

ol o+ e 000, ).

Moroeover, it is proved in [43] that the first growth restriction of (2.4), together
with Sobolev embedding theorem, imply the following estimate:

2 2p
(2.35) PN, o <O L+ )
Estimates (2.34) and (2.35) imply that

(2.36) |luw(T)|D,. ..

gcl(1+||u< Wipre g+ ol m)+e‘“dist(w0’8“>c2<||u0||%>)-
£,

s

Applying now estimate (2.22) (where ¢ is replaced by pe) at the initial moment
t = T instead of ¢ = 0 and using (2.36), we derive estimate (2.32). Lemma 2.4 is
proved.

Thus, we have proved the analogue of estimate (2.9) for ¢ = 2.

Lemma 2.5. Let the above assumptions hold. Then

(2.37) ||u(t),QﬂB;0
< Q(||uo||Wb2,2(Q))e_at+Q(||9||L§(Q))+e_adISt(mO,Q)Q(HuO”\I’b)v

for some positive a and certain monotonic function ().

Indeed, this lemma is a simple corollary of estimates (2.13), (2.22) and (2.32).

Estimate (2.9) of the W29-norm of the solution u can be now deduced from
(2.37) in a standard way, using the regularity theorems for the linear parabolic
equation and the first growth condition of (2.4) for improving steps by steps the
regularity of solution u(t) (see [43]). Theorem 2.1 is proved.
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Corollary 2.1. Let the assumptions of Theorem 2.1 hold. Then, the following
estimate is valid:

(2:38)  u®llwzo(e) < QU0 lwpaiy)e™ + QU llw,) + Qllgllzg (@)

for the appropriate monotonic function QQ and positive constant o > 0.

Indeed, estimate (2.38) is an immediate corollary of estimate (2.9).
As usual, after obtaining a priori estimate (2.9), one can easily verify the exis-
tence of a solution for problem (2.1).

Theorem 2.2. Let the above assumptions hold. Then, for every ug € W2 9(Q)
which satisfies the compatibility condition (2.6), equation (2.1) possesses a unique
solution u(t). Moreover, the following estimate holds, for every two solutions u (t)
and us(t) of equation (2.1):

T+1

(2.39)  ||luy(T) — Uz(T)H%;E,EO () +/

2
0 = wa®)llge g di <

€,xq

< Ce*ET|uy (0) — U2(0)||%3> Q)
e,z

where the constant K is the same as in (2.3), ¢ > 0 is a small parameter, and the
constant C' depends only on the equation.

Proof. The existence of a solution of (2.1), in case Q is bounded, can be deduced
from a priori estimate (2.38) using the Leray-Schauder fixed point principle (see
e.g. [37]). The existence of a solution in the unbounded domain 2 can be proved
after that, approximating the unbounded domain €2 by the bounded ones 2y and
passing to the limit N — oo (see e.g. [17] or [43] for the details).

Let us now prove estimate (2.39) which immediately implies the uniqueness. Let
u1(t) and uq(t) be two solutions of (2.1) and let v(t) = wui(t) — uz(t). Then, this
function satisfies the equation

(2.40) 0w = alAzv — (L, V)v — Agv — I(t)v, v‘aQ =0, U‘t:O = u1(0) — u2(0),

where [(t) := fol fl(sui(t) + (1 — s)uz(t)) ds. We note that, according to our as-
sumptions on f, we have [(t) > —K, consequently, multiplying equation (2.40) by
V(t) ez, integrating over the z € 2 and arguing as in the proof of Lemma 2.1, we
derive estimate (2.39) and finishes the proof of Theorem 2.2.

Corollary 2.2. Let the above assumptions hold and let the boundary condition
u® € Uy(Ry x Q) be independent of t (i.e. u®(t,z) = u’(z) € sz_l/q’q((?Q)).
Then, problem (2.1) generates a semigroup {Sy,t > 0} in the phase space ®p(Q2) :=
W () N {uo) 5 = u'}:

(241) St : (pb(Q) — (pb(Q), U(t) = StU(),

where u(t) is the solution of (2.1) with u(0) = uyg.
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Theorem 2.3. Let the assumptions of Theorem 2.1 hold. Then, for every two
solutions uy(t),us(t) € @y, and for every e > 0, the following estimate is valid:

(2.42) s (t) = ua(®)llz0 () < Ce™lua(0) = ua(0)lly20 (s
e,xQ e,z

where the constants C, K depend on ||u,-||Wb2,q, |u®||w, and e, but are independent
of xg € .
Moreover, the following version of smoothing property is valid for solutions w;(t):

(2.43) |lug(1) — uQ(l)HW(iz’;qm0 @) < Cy|u1(0) — U2(0)||L?¢E,ZO (Q)>

where C1 s also independent of xy € €.

Proof. The proof of these estimates is based on a standard analysis of linear equa-
tion (2.40) and can be obtained in the spirit of the proof of Theorem 2.1, but
essentially simpler, since equation (2.40) is linear and the coefficient {(¢) is smooth
enough:

(2.44) 2@ I aney @) < QUI:(0) 2.0 [u”llw,)

thanks to (2.9) and due to the facts that f € an " C O, see e.g. or
hank 2.9) and d he f hat f € C? and W2 C C 17
[43] for the details).

§3 THE GLOBAL ATTRACTOR AND UPPER
BOUNDS OF ITS KOLMOGOROV’S e-ENTROPY.

In this Section, we will only consider the autonomous case of equation (2.1), i.e.
we assume that

(3.1) uO(t,z) = u®(z) € W2 99(09).

Then, according to Corollary 2.2, this equation generates a semigroup {S;, ¢ > 0} in
the phase space ®;(€2) by expression (2.41). Moreover, according to estimate (2.38),
this semigroup possesses a bounded absorbing set B in the phase space ®,(€2), i.e.,
for any other bounded subset B C ®4(€2), there exists T' = T'(B) such that

S,BCBift>T,

but, nevertheless, in contrast of the case of bounded domains, the compact attractor
in @5(2) for equation (2.1) may not exist in the case of unbounded domains, e.g.
the Chafee-Infante equation in R (k =1, f(u) = u® —Au, A > Xg) does not possess
a compact attractor in the topology of W.>4(R"™) (see, e.g. [39]).

That is the reason why (following [20], [21], [31], [32], [33]), we consider below
the attractor A of semigroup (2.41) which attracts bounded subsets of ®(€2) only
in a local topology of the space ®;,. = Wfog(Q) (i.e., A is the (®p, Dy, )-attractor
of (2.41) in notations of [4]).

We recall that the space @;,.(2) is reflexive metrizable F-space which is genera-
ted by semi-norms || -, QN B}, ||2,4, Zo € Q.
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Definition 3.1. A set A C ®,(Q2) is the attractor of the semigroup Sy if the follo-
wing assumptions hold:

1. The set A is compact in @,.(Q).

2. The set A is strictly invariant with respect to S, i.e.

SiA=A, fort>0.

3. The set A is an attracting set for Sy in local topology, i.e., for every neigh-
borhood O(A) of A in the topology of the space @,.(2) and for every bounded in
uniform topology subset B C ®y(2), there exists T = T'(O, B) such that

SiBC O(A) if t>T.

We also recall that the first condition means that the restriction A‘Ql is compact

in the space W24(,), for every bounded Q; C €.
Analogously, the third condition means that, for every bounded 2, C €, every
bounded B in ®,(2) and every W2:4(€;)-neighborhood O(A‘Ql) of the restriction

A‘Ql, there exists T' = T'(21, O, B) such that
(S¢B)|g, C O(Alg,) ift > T.

Theorem 3.1. Let the assumptions of Theorem 2.1 hold and let, in addition, (3.1)
be satisfied. Then, the semigroup Sy, defined by (2.41), possesses an attractor A,
in the sense of Definition 3.1, which has the following structure:

(3.2) A=K|,_,

where we denote by KC the set of all solutions u of (2.1), defined and bounded for all
t€R (Bupyeg [lut)a,@) < 0).

The proof of this theorem is more or less standard and given, e.g. in [43] for the
particular case L(z) = 0 and u°(z) = 0. The proof in general case is completely
analogous, so we omit it here.

We recall that the attractor A, constructed in Theorem 3.1, is not compact in the
phase space ®,(2), but only its restrictions A‘QHBR are compact in Wz’q(QﬂBﬁ)),

0o

for every R > 0 and xy € 2. Moreover, in contrast to the case of bounded domains,
the fractal dimension of these restrictions may be infinite in many physically re-
levant examples (it will be the case, e.g. for the Chafee-Infante equation in R”
mentioned above (see e.g. [39])). That is the reason why, following [38], [39] and
[41], we study the Kolmogorov’s e-entropy of these restrictions and its dependence
on three parameters €, R and z.

For the convenience of the reader, we recall below the definition of Kolmogorov’s
e-entropy. For the detailed study of this concept, see [27] and [35].

Definition 3.1. Let M be a metric space and let K be a precompact subset in it.
For a given € > 0, let N.(K) = N.(K,M) be the minimal number of e-balls in M
which cover the set K (this number is, obviously, finite by Hausdorff criteria). By
definition, Kolmogorov’s e-entropy of K in M is the following number:

(3.3) H. (K) = H. (K, M) := In N.(K).
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The fractal dimension dimg (K, M) can be defined as follows:

(3.4) dimp(K) = dimp (K, M) := lim sup H. (K)

1
e—0 In =

Remark 3.1. We note that the fractal dimension dimg(K) may be infinite for
sufficiently large compacts K, but the Kolmogorov’s e-entropy is finite, for every
e > 0 (due to the Hausdorff criteria). In particular, it is finite for the restrictions
A‘QHBR of the attractor A constructed in Theorem 3.1.

zQ

The following theorem gives the universal upper bounds of the e-entropy for
these restrictions.

Theorem 3.2. Let the assumptions Theorem 3.1 be valid and let
(3.5) volg 4, (R) = vol(2N BY ).

Then, for every R € Ry, xp € 2, ande <¢gp < 1

1 1
2, R
(3.6) H, (A‘QHB;}O’Wb 1an Bm0)> < Cvolg 4o (R+ K In g) lng,

where the constants C, K and gy are independent of R and xy € €2.

Estimate (3.6) is, in fact, a corollary of the smoothing property (2.43) for diffe-
reces of solutions belonging to the attractor A (see e.g. [39] or [42] for the detailed
proof).

Let us formulate now several corollaries of estimate (3.6) (see also [39] or [42]).

Corollary 3.1. Since Cy(Q) C W,%(52), then

1.1
(3.7) H. (A, C(2NBE)) < Cvolg,wo(RJrKlng)lng.

Corollary 3.2. Let Q = R". Then, volg 4, (r) = cr™ and, consequently

- 1\" 1
(3.8) H. (A, sz’q(BfO)> <C <R+K1ng> In—.
Setting R := M In %, M > 0, we have
L1 1 n+1
(3.9) H. (A, W29(Bay ' i)) < Cu <lng> .

We note that estimate (3.8) gives the same type of upper bounds for R = 1 and
R=MIn %

Corollary 3.3. Let Q be a bounded domain. Then, Theorem 3.1 implies the
following estimate:

(3.10) H (A W2(2)) < Cvol@)In .

9
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which reflects the well-known fact that, in this case, the attractor A has the finite
fractal dimension.

Corollary 3.4. Let Q = R¥ x w™ " be a cylindrical domain (w is bounded). Then,
estimate (3.6) gives the following bound of the e-entropy of the attractor A:

k
1 1
(3.11) H. (A, sz’q(QﬂBfo)) <C (R—}—Klng) n .

Corollary 3.5. Let the assumptions of Theorem 3.1 hold, 2 = R, and let M > 0.
Then

(3.12) H. (A, w2, (Q)) < C(M) <1n 1) ntl .

€

Proof. Since the attractor A is bounded in W.9(Q), then there exists a number
R = R(M) such that

(3.13) | A, {|z| > RIn1/e}||o-r1el 9,4 < €/2
and, consequently
(314)  H (A W2,(9) < Hep (Al gm., WHABE)).

Thus, there remains to estimate the entropy in the right-hand side of (3.14). To
this end, we note that

(3.15) v, Be™ V¥ ||2,g < (CRIn1/e)™? ||v, By™ '/

b,2,q*

Thus, estimate (3.9) implies that

(3.16) H. (A\Béalnl/g,WQ’q(Bfln 1/5)) <

n1/e 1 n+41
< He/(cRm1/e)n/a (A, w2Bg Y )) < C(R) <ln E) :

where Inln1/e is majoranted by In1/e. Corollary 3.5 is proved.

Corollary 3.6. Let the assumptions of previous corollary hold and let K be the
same as in Theorem 3.1. Then, the following estimate is valid, for every R > 0:

(3.17) H. (/c, ([0, RIn1/e], sz’q(B(lflnl/e)> < C(R) <ln %)nﬂ .

Proof. Indeed, estimate (2.42), together with description (3.2), imply that, for every
T>0

(3.18) H, (IC,LOO([O,T], Wj;‘le)) < H. j(ger) (A, Wj;‘fM) .
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Inserting estimate (3.12) to this estimate and using obvious embedding Wb2 el C

2
WA, we have

n1/e 1 n+1
(3.19) H. (/C,LOO([O,Rlnl/g],W;;Q,2|$|(351 Y )) < Cp (m-) .
We now note that

[0, B ™ e 2,0 < 2RI 0, BE™ Ve oot 5.0 = €720, Be ™Y E |y om2ie 2.

and, consequently

H, (IC,LOO([O,RInl/s],sz’q(Bflnl/E)> <

/e 1 n+1
< Hores (IC,LOO([O,Rlnl/s],sz”eq_m‘(Bé{l Y )) < <lng> .

Corollary 3.6 is proved.

Remark 3.2. Since L*® C Wf’q(R"), then estimate (3.17) implies, in particular,
the following estimate:

/e 1 n+1
(3.20) H. (IC,LOO([O,Rlnl/g] x BEm1/ )) < Cr <lng> :

Moreover, arguing as in the proof of Corollary 3.5 and using the invariantness of
KC, we have

1 n+1

§4 QUANTIATATIVE CHARACTERISTICS FOR
THE SPATIAL AND TEMPORAL DYNAMICS.

In this Section, we introduce several characteristics for the dynamical system,
generated by equation (2.1) which generalize the concept of topological entropy to
the case of unbounded domains. For simplicity, we restrict ourselves to consider
only the case of spatially homogeneous equation (2.1) in Q = R”, i.e. we assume
that

(4.1) L(z)=LeR", g(x)=geR".

In this case, the attractor A of equation (2.1) possesses an additional structure,
namely, the group {T},h € R"} of spatial shifts acts on it:

(4.2) ThA=A, (Thuo)(z):=uo(z+h), heR".

We recall that, by the definition of the attractor, the dynamical semigroup {S¢,t >
0} defined by (2.41) also acts on the attractor. Moreover, this semigroup evidently
commutes with group (4.2) of spatial shifts:

(43) StA == A, ThSt == StTh, Vit € R‘F? h € Rn.
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Thus, the extended (n + 1)-parametrical semigroup {S; n),t € Ry, h € R"} acts
on the attractor:

(4.4) SenyA=A, (Sunuo)(x):= Sup(z+h), teRy, heR".

Extended semigroup (4.4) can be interpreted as a dynamical system (with multidy-
mensional ’time’) acting on the phace space A, and, consequently, can be studied
from the dynamical point of view.

We first recall the definition of the topological entropy (see e.g. [25]) adopted to
the case of multidimensional 'time’. To this end, we endow our attractor A by the
metric of the space L3’ (R"), where the weight ¢ has exponential growth rate (see
Section 1) and satisfies the following assumption:

(4.5) lim ¢(x) =0.

|z|—o00

It is not difficult to verify that, due to the fact that A is bounded in L*°(R™),
the topologies induced on A by the embeddings A C LF(R") and A C Ly (R")
coinside (see e.g. [43]). In particular, this topology is independent of the particular
choice of the weight ¢. For every R > 0, we define a new metric on the attractor

A by the following expression:

(46) dR7¢(U0,’U0) = sup ||S(t,h)u0 — S(t,h)UOHLg’-
(t,h)e[0,R]"+1

Definition 4.1. The topological entropy of semigroup (4.4) is the following num-
ber:

(4.7) g1 (A) := lim lim sup

€20 R o

T (A, dre),

where the symbol H, (A, dr 4) denotes the Kolmogorov’s e-entropy of the set A in
the space generated by the metric dg 4 (obviously, H. (A, dg,¢) is a nondecreasing
function of e, so limit (4.7) exists).

It is well known (see e.g. [25]), that topological entropy (4.7) depends only on
the topology in A and independent of the particular choice of the metric on it. In
particular, quantity (4.7) is independent of ¢. Moreover, it is not difficult to verify
(analogously to [43]) that

(4.8) Tyt (A) = lim lim sup

e=0 R

WH&: (IC, LOO([O’ R]n+1)) 9

where the set K is defined in Theorem 3.1.

Proposition 4.1. The following limit exists, for every e > 0:

_ 1
4.9 H () := 1 —— H. (K, L>™(|0, R - x |0, R, .
(49) K= Jim g (6 L0 ] 0. R
Proof. Indeed, let
(410) @(Rl, s 7Rn+1) = HE (’C, LOO([O, Rl] X - X [0, Rn+1])) .
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Then, it follows from the invariantness of IC under the spatial and temporal shifts
that this function is subadditive with respect to every arguments:

(411) @(Rla' T 7R; +R;/7' T 7Rn+1) S q)(Rla' te 7R1/;7' te 7Rn+1)+
+CI)(R17 7R;/,"' ,Rn—i—l)

and, cosequently

R}LIEOO CI)(Rlv ,Rn—i—l) = }%Z_>fo @(Rl, ,Rn—i—l),
i=1,..,n+1 i=1,..,n+1

which finishes the proof of Proposition 4.1.

Corollary 4.1. The following expressions can be considered as the equivalent de-
finitions of the topological entropy hy,1(A):

~ 1
(4.12) hpt1(A) = lim lim

e—0 R—+00 WHE (K, L>=([0, R]"*)) =

We note that the expression in the right-hand side of (4.12) is equivalent to the so
called topological entropy per unit volume introduced in [12]. Thus, relation (4.12)
gives, in particular, the dynamical and geometrical interpretation of the topological
entropy per unit volume.

We note that, a priori, expression (4.7) may be infinite. The following theorem
shows that it is not the case in our situation.

Theorem 4.1. Let the assumptions of Theorem 3.1 hold and let Q@ = R™ and (4.1)
be satisfied. Then, the topological entropy defined by (4.7) is finite:

~

(4.13".) Tt (A) < C < .

Proof. Indeed, due to subadditivity (4.11) and due to (3.20), for every R > In1/e,
we have

H. (K, L([0, R"*1) < ( * 1>n+ He (K, L(10, In1/e]**)) <

Inl/e
< C1R™' 4+ CoR™ (In1/e)™ !

and, consequently
hpt1(A) < Cy.

Theorem 4.1 is proved.

Let us study now the analogues of the quantities A1 (A) for the k-parametri-
cal subsemigroups of the extended dynamical system {S¢ ), t > 0, h € R"}. Let
Vi C Ry x R? be an arbitrary k-dimensional hyperplane, then we consider the
following subsemigroup of extended dynamical system (4.4):

(4.13) St = {Smy (£, h) € Vi N (Ry x R™)}.
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It is evident, that
R

R
Let us fix now the orthonormal basis {e1,--- ,ex} in Vi in such way that e; C R?,

for i = 2,--- ,k, and the semiaxis {he;,h € Ry} € Ry x R® and, analogously to
(4.6), define a new metric on A:

(4.14) dr,v, (o, vo) = sup IS5, 1,e,u0 — Sy, lieiv0||Loo_m(Rn).
i=71,i-i,k ‘

Definition 4.2. The (modified) toplogical entropy of semigroup (4.12) is the fol-
lowing number:

1
He (A, dgv,) .

k—n—1
~ 1
(4.15) hk(A) := limsup ( In = lim sup —
R—o00 RF

e—0 €

Remark 4.2. We note that, in the case k = n + 1, quantity (4.15), coinsides with
expression (4.7) and, for k # n + 1, it differs from the standard Definition 4.1 of
the topological entropy by the factor (In1/¢)*="=1, which is introduced in order to
provide the finiteness of limit (4.15) (see Theorem 4.2 below and the examples in
Sections 5 and 7).

We also note that, although we have defined quantities (4.15) using a special
basis in the space Vg, it is not difficult to verify that these quantities are, in fact,
independent on the concrete choice of the basis and depend only on the subspace V.

It is also worth to emphasize that, in contrast to the case of K = n+1, quantities
(4.15) are not topological invariants, but only Liptschitz continuious invariants
and depend, consequently, on the particular choice of the metric, if &k < n+1 (it is
reasonable from many points of view to fix the exponentially decaying metric L°2,,,
on the attractor A (as it is implicitly done in Definition 4.2)).

Moroeover, although quantities (4.15) are not invariant under the Holder conti-
nuous homeomorphisms, but, obviously

(4.16) Ry (F(A)) < o 1Rk (A),

where 0 < o < 1 is the Holder constant of the homeomorphism F. Consequently,
the property of the (modified) toipological entropy to be equal zero or to be strictly
positive preserves under the Holder continuous homeomorphisms, in particular, it
preserves under the replacing of the initial weighted metric of L2 ., on the attractor
by the metric of L2 for every p > 0 and zo € R”.

—plz—zgl?

Remark 4.3. The most natural choices of the hyperplane Vj, are the following:

(4.17) Tsp(A) := o= (A) and hy(A) := Bt (A),
which are responsible to the spatial and temporal complexity of the dynamics res-
pectively. The fact that these quantitatives are striclty positive for a sufficiently
large class of equations (2.1) will be verified in Sections 5 and 7.
Let us formulate now the analogue of Proposition 4.1 and Corollary 4.1 for the
entropies introduced in (4.15).
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Proposition 4.2. Let W = V,j N R, where V,j stands for the orthogonal
complement of the space Vi, let x = (z",2") correspond to the decomposition
R? = (Vx NRY) x Wi and ey = € + €Y, where e} € Wy, €] € Ry. Then, quantity
(4.15) can be defined in the following equivalent way:

e—0 €

k—n—1
- , 1 1 N
(4.18) hY*(A) = limsup (ln —) 1%1_{20 ﬁHE (IC,Lef‘w,ftelll(Vk(R) X Wk)> ,

where Vi,(R) := [0, Re{] x ([0, Rez] X --- x [0, Reg]) (if e € RZ, thent = 0 and the
set KC should be replaced by A, according to relation (3.2) and the vector ey in the
definition of Vi, (R) should be replaced by e; € RY ).

Proof. We consider below only the most complicated case e # 0 (the case ¢] =0
and, consequently, V;, C R? is analogous, but even slightly more simple).
It follows from the definition of the set IC and from (4.14) and (4.15) that

k—nm+1
~ . ]_ . ]- o0 n
(419) Ry (A) = limsup <ln g) lim sup 7 H, (K, Lg;, ([0, Rel] x RY))

where

(4.20) dr(t,z) = sup e | —tera" =10l
l”E[O,R]kfl

We note that ¢R(t,x) = e_|m’—te’1|, if 2" € [O,R]k_l and
(4.21) d)R(t, 33) < e—|a;'—te'1|e—a dist(wll’[O,R]k—l),

with an appropriate o > 0, if 2 ¢ [0, R]¥~!, consequently, there exists a constant
K > 0 which is independent of R such that

(4.22) H. (/C,L:iw,,te,l (Vi(R) x Wk)> <H. (K, L3, ([0, Ref] x RY) <

<H. (IC,LOO (Vi(R + 2K In1/e) x Wk)) .

il — el
e |z tel\

Multiplying (4.22) by R~* and passing to the limit R — oo, we derive (4.18). The
existence of the limit as R — +oco follows (as in Proposition 4.1) from the obvious
subadditivity of the function

(4.23) ®p(Ru, -, Ry) =
—H (IC,LZ‘ilz,_te,l‘([O,Rle’l’] % [0, Roea] % - - x [0, Ryex] % Wk)) .

Proposition 4.2 is proved.

We recall that, analogously to Definition 4.1, the k-dimensional topological en-
tropy introduced in (4.15) also, a priori, may be infinite. The following analogue of
Theorem 4.1 shows that it is not the case in our situation.
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Theorem 4.2. Let the assumptions of Theorem 3.1 hold and let, in addition, Q) =
R™ and (4.1) be satisfied. Then, for every k € [0,--- ,n+1] and for every hyperplane
Vi € Ry X R?, the corresponding (modified) topological entropy is finite:

(4.24) B (A) < C < oo

Proof. Let us verify (4.24) only for the most complicated case e] # 0 (the case
e/ =0 can be considered analogously). Using the subadditivity of function (4.23),
we derive that, for R >> In1/e, the following estimate is valid:

(4.25) e (K, L7200y (Vi(R) X Wa) ) <

k
< &° ! ! .
- <ln1/5 + 1) He (’C’Le*\z 7t61|(Vk(ln 1/e) x Wk))

We now note that, if ¢ € [0,1n1/¢], then

(4.26) ce—17' < g—lo'—tell < L o—1a
€

and, consequently, (due to the boundedness of K in L* and estimate (3.20))
H. (/C,L:ilm,,te,ﬂ(vk(ln1/g) x Wk)) < He (K, L%, (Vi(In1/e) x Wy)) <

< H. (K,L®(Vg(In1/e) x [0, K In1/e]*T17F)) <

00 1 n+1 1 n
< H. (K,L%([0,K;In 5]"*) ) <C(In- :
€ €

Inserting the obtained estimate to (4.25), we have

Sy
€ g

1 n+l1—k 1 n+1
H. (IC,L°° e (Vi(R) % Wk)> < C1R* <lng> + CoRF! <ln—> :

Inserting this estimate to (4.18), we derive the finiteness of TL,‘;’“ (A) and finish the
proof of Theorem 4.2.

The following theorem clarifies the relations between the topological entropies
which correspond to different k.

Theorem 4.3. Let the assumptions of Theorem 4.1 hold and let the toplogical
entropy which corresponds to some k-dimensional hyperplane Vi, (0 < k <n+1)
be strictly positive:

(4.27) BYE(A) > 0.

Then, for every k' < k and every k'-dimensional hyperplane V)., C Vi, the corres-
ponding topological entropy is also strictly positive:
/\V’,
(4.28) hyr' (A) > 0.
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Proof. We first note that it is sufficient to consider only the case k' = k — 1, i.e.
Vie = Vi x {Re}, where e € Ry x R?. There are two main possibilities (the other
ones can be easily reduced to them):

1. Vir C RY, but Vi, contains the temporal directions (e ¢ R?).

2. We add the spatial direction e € R7..

Let us consider the first case. We fix the orthonormal basis {e, -, e} in Vg
in such way that {ea,---,er} is an orthonormal basis in Vj» C R?. Let us assume
now that the assertion of the theorem is wrong and

(4.29) By (A) = 0.

Then, according to Proposition 4.2

1 k—n—2
(4.30) gl_rf(l] <ln g> h}r%n_folip =1

H. (A, L, (R")) =0,

’ n l”

where ¢r(z) 1= sup;i o, gjr-1 € —l@ T (p =o' 2" 2" € ViR 2 € Vily).

We note that the weight ¢r(z) has exponential growth rate y = 1, moreover
this weight satisfies (1.1) with the constant Cy, < C where C is independent of R.
Consequently, it follows from estimates (2.43) and (1.19) that, for every ug, vy € A,
the following estimate is valid:

(4.31)  [|S1uo — Sl’UOHW:,’(Z%(R") < Chlluo = vollrg , @y < Calluo = vollogs, @n),

where the constants C; are independent of R and wug,vg € A (see [39] and [43]).
Estimate (4.31), together with the invariantness of the attractor, imply that

(4.32) H.c, (A W (R")) <H. (A, L, (RY)).

Arguing analogously, but using estimate (2.42) with T = In1/e instead of (2.43),
we have

(4.33) H. (K, Lg, ([0,In1/e] x R")) <

<H,q, (/c ([0, In1/e], W>4 R"))) < Hom /o, (A, LE(R)).

b,¢%,

where m := K + 1 is independent of € and ¢g. Using inequality (4.26), we deduce
from (4.33) that

(4.34) B (I, L2 0 (10, (n1/2)el] x Vi_y(R) x Wi_1)) <
< He (K, L2, ([0,(In1/e)ef] x V{_1{(R) x Wi_1)) <

e—l='l

< H. (K,L3,([0,In1/e] x R")) < Heom /c, (A, L3, (R™)),

where V/_,(R) := [0, Rez] x - -- x [0, Rey].
Estimates (4.30) and (4.34) imply that, for every p > 0, there is ¢ such that,
for every € > g

1 1 n+2—k
Rh_r}r;o =1 <IC L. ([0, ln ~¢ N xVi_i(R) x Wk_1)> <u <lng> .
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Using the subadditivity of function (4.23), we derive from the last estimate that

1 1 -
Jim T B (KL (0, 7€) X Vi (R) x Wie)) <

n+1—k
1
Su(m—>
€

and, consequently

1Yk (A) = lims n 2 knll 1y ! H. (K
k N 1r§1_>(1]1p ne Tooo T Rosoo RF—1 ’

L% o (10, Tl ] X Vi1 (R) X Wi1) ) =0,

which contradicts to assumption (4.27).

Let us now consider the second case and assume again that the assertion of the
theorem is wrong, i.e., (4.29) is true. We fix the orthonormal basis {e1,--- ,ex} in Vj
in such way that e; € R?, for i = 2, - k and {e1, - ,ex—1} be the orthonormal
basis in Vi_1. Let us assume also that e ;é 0 (the other case ] = 0 is completely
analogous). Let z = (2", 2/, y) be the decomp051t1on of x € R™ which corresponds
to the decomposition R? = (Vy_1 NR?) & Wi, @ {Rex }. Then, using Proposition
4.2 and the fact that Wi_; = Wi, @ {Rey }, we have

1 k—nm—2
4.35) lim | In- lim sup H. (X,
€

e—0 R—o00 Rk_l

LOO

e~ —tel Yl

(Vi1 (R) x Wi_1)) = 0.
Using the obvious inequality

e~ 1@ =t o)l > gl —terl for |y| < In1/e,
we derive from (4.35) that

k—n—2
(4.36) lim (lng> lim sup

e—0 R—00 Rk_l HE (K:,

oo
L —|z! —te

o (Vi1 (R) x [0, e In g] « Wk)> 0.

Arguing now as in the end of the proof for the first case (after obtaining estimate

(4.34)) and using the subadditivity of function (4.23), we derive that ﬁkv" (A) =0
which contradicts to (4.27) and finishes the proof of Theorem 4.3.

Remark 4.4. We have proved, in a fact, a slightly more strong result, namely, we
have obtained the following estimate:

(4.37) BYVE(A) < LhY* 1 (A), Vi1 C Vi,

for the appropriate constant L which is independent of £ and V). This result can
be considered as a generalization of the well known relation between the fractal di-
mension and the topological entropy for the Lipschitz continuous dynamical sytems
with one dimensional 'time’:

(4.38) htop(A) < L dimp(A).

Indeed, for one dimensional *time’ (n = 0), we have fo(A) = dimp(A) and Ty (A) =
htop(A).
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Corollary 4.2. Let the assumptions of Theorem /.1 hold and let, in addition,
topological entropy (4.8) is strictly positive. Then, for every k € [0,--- ,n+ 1] and
for every k-dimensional hyperplane Vi, the corresponding topological entropy is also
strictly positive: TLZ’“ (A) > 0.

On the other hand, if the 0-dimensional entropy is equal to zero, i.e.

—n—1
lim <ln 1) H. (A, LOO(B})“/E)) — 0,

e—0 g

then all the entropies, defined by (4.14) are equal to zero.

Remark 4.5. It is possible to consider the spatial and temporal dynamics from
the unified point of view. Indeed, let us endow the set K, defined in Theorem 3.1
by the topology of the space L, . (R**!) and consider the (n 4 1)-parametrical
semigroup of spatial and temporal shifts {T(, ),s € Ry,h € R"} acting in this
space. Then, by definition, the set I is strictly invariant under this semigroup:

(4.39) T,y =K, (Ton))ult,z) :=u(t+s,2+h), seRy, heR"

and, consequently, we may define all quantities (4.15) for semigroup (4.39) as well.
We denote them by h)* (K). We claim that

(4.40) Ci (K) < B (A) < Cab* (K).

Indeed, let KT := IC‘DO, then, according to (2.42), we have the Liptschitz conti-
nuous isomorphism between the sets

(441 (AWPLRY)) = (K6 L (R WL (RY)

b’e_Q|$|

which is realized by the solving operator of problem (2.1) (if K is large enough, see
also (4.31) and [43]). We also note that, due to (4.31), the entropies of .A computed
in the L2, -metric coinsides with the ones computed in the metric of the left hand
side of (4.41). Therefore, the topological entropies of X+ computed in the metric of
the right-hand side of (4.41) coinsides with the corresponding topological entropies
of A. Using now estimates (4.16) for estimating the entropies in the unified metric
e~ 12 we easily derive the following analogue of estimates (4.40):

(4.42) Cily* (K1) < Ik (A) < Calyl* ().
Arguing as in the proof of Theorem 4.3, we derive that

() < () < Cshyl (K),
which implies estimate (4.40).

§5 LOWER BOUNDS OF THE e-ENTROPY AND SPATIAL CHAOS.

In this Section, following [39] and [43], we derive the lower bounds for the Kol-
mogorov’s e-entropy of the attractor A of spatially homogeneous equation (2.1) in
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2 = R™ (assumptions (4.1) are assumed to be satisfied) and obtain a topological
description of the spatial complexity of this attractor.

We first note that it follows from conditions (2.3) that equation (2.1) possesses
at least one spatially homogeneous equilibrium zo € R™, f(2p) + Aozo = g. Without
loss of generality, we may assume that zp = 0 (f(0) = g = 0) and, consequently,
equation (2.1) has the following view:

(5.1) Opu = algu — (L, Vg)u+ Bu— f(u), f(0)= f(0)=0,

where B := —Xou — f'(0) € L(R*,R¥) and f(u) := f(u) — f/(0)u. Our main
assumption is the following: the equilibrium 2z, = 0 is exponentially unstable, i.e.
(5.2) o(aA; — (L,Vy)+B)N{Rez > 0} # @,

where o(T') denotes the spectrum of the operator T.
In order to formulate the result on the infinite dimensional unstable manifold for
equation (5.1), we need the following classical spaces (see e.g. [27]).

Definition 5.1. We denote by B, (R") = B, (R",C) the subspace of L>*(R",C)
which consists of all functions ¢ the Fourier transform ¢ of which satisfies

(5.3) supp ¢ C [~a, o)™
Analogously, we denote by Be » (R*), £ € R* a slightly general class of functions
which consists of functions ¢ the Fourier transform ¢ of which satisfies

(5.4) supp ¢ C & + [0, o)™

We recall that the space B¢ , is isomorphic to B, and this homeomorphism is given
by multiplication on the function e’*.

Theorem 5.1. Let the assumptions of Theorem 4.1 hold, equation (2.1) have the
form (5.1), and assumption (5.2) be satisfied. Then, for every N >> 1, there exist a
positive number o > 0, a vector & € R™, o < |&ol|, a positive number r = r(N) > 0
and a map

(55) Uy : B(r, O,Bgoyg) — A, Ty oUy = Uy o Th,
where B(r,v, V') denotes the r-ball of the space V' centered at v, such that, for every
xog € R", the following estimates hold:

[Uo(u1) — Uo(uz), By,

w1 —u2, By lo,00
|2,q <Cn SUPzeq (1+]z—z0 2N)1/2

llUo (u1)—Uo (u2),By ll2.q
(1+|x—m0|2N)1/2 )

where the constant Cn depends only on N and is independednt of xg.
Moreover, there exists a vector | € R* and a linear operator S : Be, »(R™) —
W2 9(R™, R¥) such that

|u1 — u2, By, llo,c0 < ON SUPLeq

(5.7) S(up).l = Reug, for every ug € B, - (R™)
and, for every ug € B(r,0,Bg, »), the following estimate hold:
(5.8) 4o (u0) — S (wo0) s ny < CllwollZze n)-

The detailed proof of this theorem is given in [43], for the case L = 0. The
general case L # 0 is completely analogous, so we omit the proof here (see also
Section 7 where the proof of the analogous result will be given in a more complicated
situation).

Estimate (5.8), together with the information about the e-entropy in the spaces
B, allows to obtain the lower bounds for the attractor of equation (2.1).
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Theorem 5.2. Let the assumptions of Theorem 5.1 hold. Then, the e-entropy of
the attractor A of this equation possesses the following estimate:

(5.9) H. (A, L™(B{)) > CR" h%, e<egy <1,

which shows that (3.8) is sharp, if R>>In1/e and for R ~Ini.
Moreover, for every § > 0, there exists a constant Cs > 0 such that

n+1—4
(5.10) H. (A, LOO(B(%)) > Cs (hl g) , €<egy<l1

and, consequently, (3.8) is sharp for the case R < ln% as well.

Proof. Let uf,ud € B(u,0,B¢, ») and p < r (where r,0,& are the same as in
Theorem 5.1). Then, for every R > 0

(5.11) ledo (ug) — Uo (ug)l| Lo (mzy > 1 Re(ug — ug) || oo sy — Chi®,
where C' is independent of R. Indeed, according to (5.8) and (5.7)

4o (ug) — Uo (ut)ll Lo (1) =
> [|Sug — Sugl oo () — 1Uo(ug) — Sug|l Lo rmy — [Uo(ug) — Sug|lp=(zn) >

> ||Sug — Sug||peo(pry — Crlllugllz, ., +IlugllE, . ) >

o,€0 a,€0

> || Re(ug — ug)ll poe mr) — Cni”.

Thus,

(512) (A LR0) > 1 (B(( ) " 0B ausD)) -

= H(ZC€)1/2 (3(17 07 Bg)e,a)v Cb(Béz)) )
where, by definition, ]B%fzeﬂ(]R" ,R) := ReBg, »(R",C). To complete the proof of the
theorem, we need the following lemma.

Lemma 5.1. The e-entropy of the unit balls in the spaces B, » and IB%?O‘*’U possesses
estimates (5.9) and (5.10) (where A is replaced by B(1,0,B, ) or B(l,O,IB%?Oe,U)
respectively).

The proof of the lemma is given, e.g. in [27] or [39] for the spaces Bg, ,. The
case of Bg, , is completely analogous (see also [43]).

Estimating entropy in the right-hand side of (5.12) by Lemma 5.1, we immedia-
tely obtain estimates (5.9) and (5.10) for the e-entropy of the attractor and finish
the proof of Theorem 5.2.

Corollary 5.1. Let the assumptions of Theorem 5.1 hold. Then, the (modified)
topological entropy hs,(A) (see (4.17)) is strictly positive:

(5.13) Tgp(A) > 0
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and, consequently (due to Theorem 4.3), the topological entropies /i\zkv’“ (A) are also
strictly positive, for all Vi, C R7.

Remark 5.1. It follows from (5.13) that the (classical) topological entropy of the
group {7}, h € R"} acting on the attractor (which is defined by (4.15) without the
stabilizing factor (In1/e)™1) is infinite. The same is true for all its subsemigroups
{Th,h € Vk} if Vi, C RZ

Theorem 5.1 allows also to obtain some topological description of the spatial
complexity of the attractor A.

Corollary 5.2. Let the assumptions of Theorem 5.1 hold and let
(5.14) K:= B(r,0,Be, ) endowed by the topology of Ly, (R™),

where r, o and &y be the same as in Theorem 5.1. Then, the map Uy realizes a
homeomorphism

(5.15) Uy : (K, Tp) = U(K), Ty) C (A, Th).

Moreover, this homeomorphism preserves the topological entropy /i\zsp

-~

(5.16) 0 < hgp(K) = hayUo(K)) < hap(A).

Proof. The fact that the map Uy is a homeomorphism in a local topology is an
immediate corollary of estimates (5.6). The homeomorphism of ’"dynamical systems’
follows from the fact that Uy commutes with T}, (see (5.5)). Relations (5.16) can
be easily derived from Lemma 5.1 and from estimates (5.6) (see [43]). Corollary
5.2 is proved.

Thus, we have constructed the embedding of the model ’dynamical system’
(K, Tp) to the spatial dynamics on the attractor. In order to clarify the chaotic
nature of this model dynamical sytem, we restict ourselves to consider the discrete
dynamics {T},h € aZ™} for the appropriate « > 0. For this case, the description
of the dynamics (K, T} ) can be essentially simplified.

Definition 5.2. Let D := {z € C : |z| < 1} be a unit disk in C. We set M := D*"
and endow this space by the standard Tikhonov’s topology. We define a group
{Ti,l € Z"} on M as follows:

(5.17) (Tiv)(m) :==v(l+m), I,mel’ veM,

where the space M is interpreted as a space of all functions v : Z"™ — D.

Propositrion 5.1. There exist a positive number o« > 0 and a continuous map
k: M — K such that

(5.18) Toik(vo) = k(Tive), L E€Z", vy € M.

Moreover, for every weight function with polinomial growth rate pu < 1, the following
estimate s valid:

(5.19)  Cillvr —vallzg@ny < 6(v1) = £(v2)l|Lge@n) < Callvr — v2l[Le@n),
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for every vi,va € M (where the constants C; depend only on p and Cy from
assumption (1.2)).
If we define the (modified) topological entropy for (M, T;) as follows:

(5.20) TLSP(M) := lim sup <ln 1) - lim L]HIE (M, L>=([0,T]")),

e—0 € T—oo ITT™

(compare with (4.15) and (4.18)), then the map k preserves the topological entropy
(up to the multiplier o™ ):

~

(5.21) 0 < @ "hep(M) = Tgp((M)) < hap(K).

The proof of Proposition 5.1 is based on the classical Kotelnikov-Cartrait inter-
polation formula (see [27]) for functions from the class B, and is given in [43].
Combining Theorem 5.2 and Proposition 5.1, we obtain the following result.

Theorem 5.3. Let the assumptions of Theorem 5.1 hold. Then, there exists a
number o > 0 and a homeomorphic embedding

(5.22) T (M, T) = (A Tw), ez,

which preserves the (modified) topological entropy

-~

(5.23) 0 < " hgp(M) = Tgp(T(M)) < hyp(A).

Indeed, it is sufficient to take 7 := Uy o k.

Remark 5.2. The dynamical system (M, 7;) can be considered as one of possible
ways to generalize the symbolic dynamics (Bernoulli shifts, see e.g. [25]) to the case
of infinite (and even continual) number of symbols. Indeed, considering the closed
invariant subset My C M which consists of functions v : Z" — {ay,- - ,an},
where a; € D are different complex numbers, we obtain from (5.22) the embedding
of the symbolic dynamics with finite number N symbols to the dynamical system of
spatial shifts on the attractor. Thus, the construction of embedding (5.22) clarifies
the nature of the spatial chaotisity on the attractor of (2.1), in particular, it explains
why we should use the factor (In %)_1 for the proper definition of the topological

entropy /i\zsp of the spatial dynamics on the attractor (see, e.g. [43] for a more
detailed study of the phenomena of spatial chaos).

Thus, embedding (5.22) shows that the spatial dynamics on the attractor A is
extremely chaotic. In particular, this embedding allows to realize (up to a ho-
meomorphism) every finite dimensional dynamics by restricting the group of shitfts
{T}, h € R"} to the appropriate spatially invariant subset of A. To be more precise,
the following result holds.

Corollary 5.3. Let the assumptions of Theorem 5.1 hold, let K C RN be an
arbitray compact set in RN, N € N, and let Fy,--- ,F, : K — K be arbitrary
patrwise commutative homeomorphisms, i.e.

(5.24) FioF;=FjoF;, i,jec{l,---,n}.
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Then, there exist a positive number v = v(N) > 0 and a homeomorphism

(5.25) 7K - 7(K) C A,
such that
(5.26) T7(k) =7 (Flll 0.0 an(k)) , ke K, lezn,

where Fili denotes the l;-th iteration of the map F;.

Proof. Indeed, due to Theorem 5.3, it is sufficient to construct only the embedding
7 : K — M which satisfies (5.26). Moroever, without loss of generality, we may
assume that K ¢ DM" | for the appropriate M € N, and {(K)my oo m, €D, m; =
0,1,---,M — 1} is the corresponding coordinate system in it. We define the map
7 : K — M by the following formula:

7(k) (1) == (Flkl o---opgn(k-)) L= kMA+ri, k € Z, 1y € {0+, M—1).

T1,Tn

Then, obviously, this map satisfies (5.26) with v = M and the continuity of this em-
bedding follows immediately from the fact that F; are homeomorphisms. Corollary
5.3 is proved.

In order to study the spatial complexity of an individual point at the attractor,
it is natural to introduce (following [43]) the following quantity.

Definition 5.3. Let ug € A. Then, by definition, the (modified) spatial entropy
of ug is the following number:

(5.27) Rsp (o) = hsp(H (ug)), where H(ug) := [Thug, h € R*]1x (gny,

where [-]y denotes the closure in the space V.

Corollary 5.4. Let the assumptions of Theorem 5.1 hold. Then, for every point
ug € A, its spatial entropy is finite. Moreover, there exist points ug € A the spatial
entropy of which is strictly positive:

-~

(5.28) 0 < hap(ug) < 00.

Indeed, the first assertion of the corollary follows immediately from Theorem 4.2
and the second one follows from Theorem 5.1 and from the obvious fact that the
dynamical system {M, 7;} is topologically transitive (i.e. possesses dense orbits).

Remark 5.3. It is proved in [43] that, under some natural assumptions on (2.1),
spatial entropy (5.27) preserves under the temporal evolution:

(5.29) Tsp (Spuo) = hap(tg), uo € A.
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§6 THE SPATIAL DYNAMICAL SYSTEM IN THE EXTENDED PHASE SPACE.

Our next task is to extend Theorem 5.3 to the case of temporal dynamics. To
this end, we construct the auxiliary dynamical system for which the direction ¢
will be ’spatial’ and, applying the algorithm of studying the spatial chaos given in
Section 5 to that system, we obtain the description of the temporal chaos for initial
system (2.1).

As in Sections 4 and 5, we consider only spatially homogeneous case

(6.1) Q=R", g=0, L(z):=LeR", f(0)=0.
Moreover, without loss of generality, we may assume that the vector L has the form
(62) L= Lel, €1 = (1,0, ,0), L€R+

(the general case may be reduced to this one by the appropriate spatial rotation).
We now introduce the following auxiliary parabolic boundary value problem in
the half-space z = (r1,2') € Ry x R*~1:

(6.3) { Opu = a(02 u+ Apu) — Loy, u— Xou— f(u), teR, z' e R"1,

_ .0
‘m:o_“’ z1 > 0.

We consider this boundary problem as a (formal) evolution equation with respect
to the variable x1. In order to indicate this idea in a more clear way, we introduce
new variables

(6.4) ni=x1, Y= un) = (YY) = ().

In these variables problem (6.3) has the following view:

(65) { a(97u + Ayu) — Loyu — Xou — f(u) = dy,u, y R, n>0,

The following theorem shows that problem (6.5) defines indeed a dynamical system
with respect to n, if L is large enough.

Theorem 6.1. Let the assumptions of Theorem 2.1 hold and (6.2) be satisfied. We
also assume that there exists a nonnegative constant Ay > 0 such that

(6.6) LAg — (at —2a_(ay) 'a_) A — K >0,

where ay :=1/2(a + a*), a— :=1/2(a — a*) and K is the same as in (2.3). Then,
for every u® € Up(Rx R 1) := {u0 9,u’ € Wb(l_l/(zq)’z_l/q)’q(R”)}, problem (6.5)
has a unique bounded solution u(n,y), i.e. the unique solution in the class

(6.7) u, Opu € W29 (R, x (Ry o, x RIT1))

Proof. The existence of a solution for problem (6.5) follows from Theorems 2.1

and 2.2 (even without assumption (6.6)). Indeed, it follows from these theorems

that problem (6.5) with additional conditions y; > —N and u =N = U0 (where
41
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uy € Wf’q(]&, x R™) such a function that ug =0, if n > 1, |Juollp2.4 < |u°]w,, and
the first compatibility condition at n = 0, y; = —N is satisfied) has a solution uy,
for every N € N. Moreover, estimate (2.9) implies that

(6.8) lun (), Ba, ll2.q + 110sun (8), Bz, llog < Q(lu’llw,) + Q(llgllzy),

where the function () is independent of NV and x(. Passing now to the limit N — oo
and using uniform estimate (6.8), we easily derive the existence of a solution for
problem (6.6). We also note that estimate (2.9) implies the following estimate for
this solution:

(6.9)  lu(t), By,

|2.g + 100u(t), By,

lo.g < QUIu’llw,)e™*" + Q(llgllzy).

where @@ and « are independent of ¢ and xzy. We now recall that ¥,(R™) is a
trace space for space (6.7) to the hyperplane z; = 0 (see e.g. [28]), consequently,
differentiating equation (6.5) with respect to ¢ = y; and applying the parabolic
L-regularity theorem to the obtained equation, we derive from (6.9) that

T+1
6100 [ (o) B, + 100u(e). BL I, -+ 10Fu(e) B, 1§ ) e <

< QUIu’llw,)e™*™ + Q(llgllzy),

where () and « are independent of xy and T'. Thus, the existence of a solution of
(6.5) in the class (6.7) is verified. Moreover, (due to the embedding theorem and
the fact that ¢ > n + 1), we have

(6.11) lulloy =y xrmy < QUIW"lw,) + Q(lgllzy),

for the appropriate monotonic function Q).

Let us verify now the uniqueness of a solution under assumption (6.6). Indeed,
let uq(n) and uy(n) be two solutions of problem (6.5) and let v(n) := u1(n) — u2(n).
Then, this function satisfies the following relation:

(6.12) { a(97v + Ayw) — Logv — Av — l(n)v = 9y,v, y €R™, 1 >0,
6.12

where [(n) := f01 f'(su1(n) + (1 — s)us(n)) ds. Moroeover, due to (2.3) and (6.11),
we have

(6.13) () 2 -K and [[Ullgpe, xzny < QUluil,_ollw,)-

Let us now introduce the variable () := e~%07y(n), where Ag > 0 is the same as
in (6.6). Then, we have the following equation:

(6.14)  a(0260 + Ay8) — (L — 2aM)y0 — (LAg — aAf —1(n)) 0 — A8 = D, 0.

Let us multiply equation (6.14) by e~=(m=mol+ly=vDg () := 4. (1, y)0, where 5y > 0,

Yo € R® and ¢ is a small parameter which will be fixed below, and integrate over

(n,y) € Ry x R™ (since v is bounded and Ay > 0 then € is also bounded and,
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consequently, all integrals obtained below have a sense). Then, we derive, after the
integration by parts, using inequality (2.11) and evident estimates, that

(615) - <a+a7]9'87797 ¢6> - <a+vy'9'vy’9, w€>+2A0| <a’—a7]9'9, 1/)5> |_>‘0 <|9|27 ¢5>
— (LA — ax A — K)0.0,¢.) + Ce {|0,01> + [V, 0 + 10>, ¢c) > 0,

here and below (u,v) denotes the standard inner product in L?(R, x R"). Estima-
ting the third term in (6.15) as follows:

20o| (a—0,0.0, ¢c) | > —1/2 (a4.0,0.0,0,1%.) + 205 (a—(ay) " 'a_0.0,¢.),
we obtain the inequality

(6.16)  1/2 (ay0y0.0,0, ) + (ay Vyrf.Vy0,00) + Ao (|0, 9) +
((LAo — (ay — 2a_(ay) " ta_)Af — K)0.0,¢c) <
< Ce (10,017 + [V 0” +16]%, e ) -

Due to condition (6.6), the third term in (6.16) is nonnegative, consequently, there
exists a positive constant p > 0 (independent of e, ny and yg) such that

(6.17) (1 — Ce) (|0,0> + |V 0> + |0], 1) <0,

which implies that § = 0 if € is small enough and finishes the proof of Theorem 6.1.

Corollary 6.1. Let the assumptions of Theorem 6.1 hold. Then, problem (6.5)
defines a semigroup {S,,n > 0} in the phase space U, (R™):

(6.18) Sy Uy — Ty, n>0, Su’:=u(n),
where u(n) is a solution of (6.5), with u(0) = u®. Moreover, this semigroup pos-
sesses the following estimate:

(6.19) 1871 llw, < QUIu’llw,)e™" + Q(llgllg),

for the appropriate positive o > 0 and monotoinic function Q.

Indeed, estimate (6.19) is an immediate corollary of (6.10) and the definition of
the trace space Uy. The existence of the semigroup follows then from the main
assertion of Theorem 6.1.

Our task now is to study dynamical system (6.18). At the first step, we show that
this system is Lipschitz continuous in the spaces Wy, where ¢ 4, (y) == e cly=vol
(see Definitions 1.2 and 1.5), if £ > 0 is small enough.

Corollary 6.2. Let the assumptions of Theorem 6.1 hold and let ui(n) and us(n)
be two bounded solutions of (6.5), with different “initial values’. Then, the following
estimate s valid:

(6.20) lur(n) = uz(m)l|w,., < Cet™ur(0) = uz(0)llw,_,
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where € > 0 is small enough and the constant C depends only on € and ||u;(0)||s,,
i =1,2 (but is independent of yo € R™ ).

Proof. Let, as in the proof of Theorem 6.1, 8(n) := e=20"(uy(n) — ua(n)). Then,

this function satisfies equation (6.14), with non-zero boundary conditions 9‘77:0 =

u1(0) — uz(0). Let us now introduce a function w(n,y) := w(t, z) (the extention of
the function u1(0) — u2(0) inside of the domain R; x R™) which belongs to class
(6.7) and satisfies the following condition:

(6.21) w(t,x) =0, for x4 >1
and the following inequality:

(6.22) l@llwo.2.aqrrigxs: noy) + 10c0]lwa.oqrrigx s, noy)) <

< Ollua(0) = u2(0)[w(r-1,7+21x (B2, N9 ))»

where Qy (=R, ;, x Rg,_l, the constant C' is independent of 7' € R and z( € €24
and the space U is defined in (2.5). Such an extension exists since ¥y is the trace
space for functions of class (6.7). Let 01(n) := 6(n) — w(n). Then, this function,
obviously, satisfies the non-homogeneous analogue of (6.14):

(623) a(8391 + Ayfﬁl) — (L — 2aA0)8,791 — (LAO — G,A(z) — l(n)) 91 — )\091 =
= 8ylgl + h(’?),

where 91‘77:0 = 0 and, according to (6.13), (6.21) and (6.22), the function h(n) :=

h(n,y) = h(t, ) satisfies

(6.24) ||7l||Lq([T,T+1]><(B;Omm))||5t71||Lq([T,T+1]><(B;Omm))S

< Cul|ur(0) = u2 (0)lw(ir—1,7+21x (B2, n9921))»

where the constant C; depends on ||u;(0)||w,, but is independent of 7" € R and
xo = (1, z() € Q. We also note that the right-hand side of (6.24) vanishes if n > 2,
since, in this case, B2 N o0, = @.

Multiplying now equation (6.23) by e~¢ln—mol=¢ly=tolg, and arguing as in the
proof of Theorem 6.1, we derive that, for sufficiently small ¢ > 0 the following
estimate holds:

(6.25) <|8,791|2 + |V 01 + |91|2,e_€|77—770|—6|21—y0|> <

<" <|h|2, e—sln—nol—ely—yo|> :

where the constant C” is independent of 79 and yo. Estimates (6.24) and (6.25)
imply that

(6.26)  |01]lL2(r,r+1x (B2, N2ty <
< Coe™Mur(0) — uz(0)llw,., » ¥o:=(T,x5), =o:= (n,2p),

where Cy depends on ||u;(0)||w,, but is independent of T € R and z( € Q.
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We now recall that, due to the standard interior regularity theory applied to
parabolic equation (6.23) (see e.g. [28]), we have the following estimate:

(6:27)  01llwo2.aqrrr1x B, nes) + 1001w os.orrinx s, nes)) <
< C’3(||91||L2([T—1,T+1]x(BgOmsz+)) + 1Bl par-1,741x (B2, N4 ) T

+ ||3th||Lq([T_1,T+1]x(BgOmQ+))),

where Cj3 is independent of T' € R and z¢ € 2. Inserting estimates (6.26), (6.24)
into the right-hand side of (6.27) and using the definition of the trace space ¥, we
obtain, after simple calculations, that

1011,y < Cae™ur(0) — u(0)[lw,, @)
and, consequently
(6.28) lur(n) = ua ()@, ) < Cse™ D ur (0) = uz(0) |, &m),

where the constants Cy and C5 depend on ||u;(0)||w, and &, but are independent of
yo € R”. Multiplying this estimate by e~*t1¥0—=2 ¢, < ¢, integrating over yo € R”
and using estimate (1.7), we derive (6.20). Corollary 6.2 is proved.

Corollary 6.3. Let the assumptions of Theorem 6.1 hold. Then, the semigroup
{Sy,n > 0} defined by expression (6.18) possesses a locally compact attractor Ag,
(i.e. (Wy,Vioc)-attractor, see Definition 3.1). Moreover, this attractor has the
following structure:

(6.29) Asp = K|

231:07
where KC is the same as in Theorem 3.1.

Proof. Indeed, according to the attractors existence theorem for abstract semi-
groups (see e.g. [4], [24] or [34]), it is sufficient to verify the following conditions:

1. The semigroup (6.18) is ¥;,.-continuous on every ¥j-bounded set.

2. There exists an absorbing set B C U for this semigroup, which is compact
in U;,.-topology.

We note that the first condition is an immediate corollary of estimate (6.20).
Let us verify the second one. It follows from estimate (6.19) that the set

(6.30) Bp = {u®: [|u°]|y, < R}

is an absorbing set for semigroup (6.18), if R is large enough (which is not compact
in Uy,.). We claim, however, that the set B := S;Bpg is a desired absorbing set
which is (pre)compact in ¥y,

Indeed, it follows from (6.10) and from the embedding theorem (¢ > n + 1) that

1f (W)lley @, xrny < C = C(R),

if u(0) € Br. Consequently, due to the L2%-interior regularity theorem for the
parabolic equations (see (6.27), where ¢ is replaced by 2¢) and due to the explicit
description of the corresponding trace space at n = 0, we have

(6.31) ||u(1)||Wb(171/(4q),271/(2q)(Rn) + ||8y1u(1)||Wb(171/(4q),271/(2q)(Rn) < Q1(R),
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if u(0) = u” € Bgr. There now remains to note that the space in the left-hand side
of (6.31) is compactly embedded to ¥y,..

Thus, all the conditions of the attractors existence theorem are verified for se-
migroup (6.18) and, consequently, it possesses a locally compact attractor As,.
Description (6.29) also follows from this abstract theorem and from the evident
fact that the sets of all bounded trajectories for semigroups (6.18) and (2.41) coin-
side. Corollary 6.3 is proved.

Our next task is to verify that the semigroup {S,,n > 0} is differentiable with
respect to the initial data u°. To this end, we need the solvability result for the
corresponding equation of variations.

Corollary 6.4. Let the assumptions of Theorem 6.1 hold, u(n) := S,u®, u® € Uy,
be an arbitrary solution of (6.5), and a function h(n,y) be such that

(6.32) e 2oMn(n,y), e "9, h(n,y) € L}(Ry x R™).
Then, for every w°® € WUy, the following problem:

a(02w + Ayw) — LOyw — Xow — f'(u(n))w = 0, w + h,
(6.33) { (n Y ) n 0 (()) Y

has a unique solution in the class
(634) w € LZ?AOT, (R+, \I/b(Rn))

and the following estimate is valid, for a sufficiently small € > 0 and for every
Yo € R*:

635) Jw(nl}, =~ < Cet@omuoyg 4

®e,y0

oo
T A (A [P LS P R
£,90 €,90

Y

where the constant C' depends on ||u®||g, and e, but is independent of yq.

The proof of this Corollary is completely analogous to that of Theorem 6.1 and
Corollary 6.2, so we omit it here.

Remark 6.1. It is essential that we consider only such solutions w of (6.33) which
grow as 17 — 400 not faster than e®”, Usually, there exists a number of other
solutions of (6.33) which grow faster than e*°” but all these solutions are out of
the consideration, due to assumption (6.34).

Theorem 6.2. Let the assumptions of Theorem 6.1 hold and let u(n) and uy(n) be
two arbitrary solutions of (6.5). We define the function w(n) as a unique solution
(in class (6.34)) of problem (6.33), with h = 0 and w(0) = u(0) — u1(0). Then,
the following estimate is valid, for sufficiently small € > 0, p > 0, and for every
Yo € R":

(6.36) llu(n) —ui(n) —wn)lle,,, <Ce"u(0)=ui(0)]y, [u(0) —ui(0)w,_,, .
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where the constant C' depends on ||u(0)||w,, ||u1(0)||w,, €, and u, but is independent
of yo € R™.

Proof. We set v(n) := u(n) —u1(n) and 0(t) := v(t) —w(t). Then, the last function
satisfies the following equation:

(6.37) { a(@%Q + Ay8) — LOyO — Xof — f'(u(n))f = 0,0 + h(n),
' 9\77:0 =0,

where

(6.38) h(n) := /0 [ (u(n) = sv(n)) = f'(u(n))] ds v(n).
Applying estimate (6.35) to equation (6.37), we have

(6:39) 6%, <

S Cquon/ 6—qe|7l—770|—q/\0770 (Hh(n)”%q (Rn) + ||8y1h(n)||%q (Rn)> d770.
0 be,y0 %e,y0

Thus, there remains to obtain the appropriate estimates for function (6.38) and its
yi-derivative. To this end, we recall that f’ € C! and, consequently

(6.40) £ (&) = ()] < Qul&] + 1&0)[61 — &,

for every ¢; € R¥ and every 0 < p < 1 (here Q , is a monotonic function depending
on u and f. Therefore, (due to the embedding ¥, C C' and Corollary 6.1)

(6.41) ihm)llzg_ @) < Cllvm)llg,llvm)lle,, ,, .

where C' depends on y, ||u(0)||w, and ||u1(0)|w,, but is independent of yo. Estima-
ting the right-hand side of (6.41) by (6.20), we have

(6.42) ||h(17)||L3>E,y0 ®n) < C1e(1+“)(A0—5)”||v(0)||(f,b||v(0)||q,¢€,y0.

Arguing analogously, but using the fact that f” € C' and C*' C ¥, we have

(6.43) 10y, ()l () < Coe TP 0(0) g, 0 (0)lw,.,,, -

Seting p > 0 in such way that (1 4+ p)(Ag —e) < Ay and inserting estimates (6.42)
and (6.43) into the right-hand side of (6.39), we obtain estimate (6.36) after simple
calculations. Theorem 6.2 is proved.

Corollary 6.5. Let the assumptions of Theorem 6.1 hold. Then, semigroup (6.18)
1s Frechet differntiable in Uy, for every fixed n > 0 and its Frechet derivative
D08, (u®)é = we(n), where & € Uy, and we(n) is a unique solution of (6.33),
with h =0 and w(0) = £. Moreover,

(6.44) S, € CTHH (T, y)
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and the following estimates hold, for every ul,uy € Uy:

(6.45) 15 (u3) = Sy(ug) = DuoSp(ug) (uf — uh)lw, < Cejuf — uf|g}”

(6.46) 1Du Sy (1) = DugSy(u)ll 2w,m,) < Celuf — ually,,

where > 0 and the constant C' depends on ||u?]|g,, i = 1,2.

Indeed, applying the supremum with respect to yo € R™ to the both sides of
(6.36) and using (1.19), we obtain estimate (6.45). Estimate (6.46) is a standard
corollary of (6.45).

Remark 6.2. In contrast to the case of semigroups, generated by the evolution
equations, we cannot gurantee that S, € C?, even for the case where f € C*.
In a fact, in order to obtain the regularity CV, one should require, in addition,
assumption (6.6) to be satisfied not only for A = Ag, but also for A = 2Aq,--- ,A =
NAy. Fortunately, regularity (6.44) is enough for what follows.

Remark 6.3. The method of introducing the spatial dynamical systems (and the
so-called spatial reduction) was initiated in [26] in order to study the elliptic boun-
dary problems in cylindrical domains from the dynamical point of view, see also [8],
[36] and the references therein for the further developement of this method and its
applications to elliptic boundary problems. Nevertheless, to the best of our kno-
ledge, this method has never been directly aplied to study the spatial ’"dynamics’
generated by parabolic equations.

§7 THE SPATIAL DYNAMICAL SYSTEM NEAR
THE EXPONENTIALLY UNSTABLE EQUILIBRIUM.

In this Section, we construct the infinite dymensional unstable manifold of zero
equilibrium of the spatial dynamical system {S,,n > 0} constructed in the previous
Section. We recall that, due to Corollary 6.5, this semigroup is of the class C1T#,
for some positive x> 0, and the linearized semigroup at u° =0

(7.1) Sy := Dy Sy(0)
can be determined by the following expression: S)v? := w(n), where the function
w(n) is a unique (due to Corollary 6.4) solution of the following problem:

(7.2) 0

{ a(Opw + Ayrw) — LOyw — dow — f'(0)w = 0y, w,

w‘n:O

which belongs to class (6.34). Moreover, estimate (6.35) allows to extend this
semigroup in a unique way to the semigroup, acting in the weight space W, for every
weight function ¢ with sufficiently small exponential growth rate, in particular, for
every ¢ with polynomial growth rate (see Definition 1.1).

The following proposition describes the spectrum of this linarized semigroup.

Proposition 7.1. Let the assumptions of Theorem 6.1 hold. Then, the spectrum
of the operator 83, n > 0, in ¥y, coinsides with its spectrum in V4, where ¢ is an
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arbitrary weight function with polynomial growth rate and can be found from the
following expression:

(7.3) o(S) ={0}u{r=¢"":3B€C, Ref < Ao, I €R", such that
det (a(B? = [¢']) = LB — Xo — f'(0) — i&1) = 0}.

The assertion of this Proposition is more or less standard and can be verified
using the Fourier transform and the classical theorems on multiplicators in L9(R™)
(see, e.g. [35]).

Our next task is to verify that linearized semigroup (7.1) is exponentially uns-
table, if (5.2) is fulfilled.

Proposition 7.2. Let the assumption of Theorem 6.1 hold and let, in addition,
condition (5.2) is also fulfilled, i.e.

(7.4) o (a(0} + Ay) — Ly — Ao — f'(0)) N {Re A > 0} # 2.
Then, linearized semigroup (7.1) is exponentially unstable, i.e

(75) o(S9) N A =1} # 2.

Proof. Indeed, it follows from (7.4) that there exist a point Sy € iR, a point £’ €
R"~! and a point A}, Re A\ > 0 such that

(7.6) det (a(5 — ¢']%) = Lo — Xo — f'(0) = Xg) = 0.
On the other hand, condition (6.6) obviously implies that
(7.7) Reo (a(A§ — [€']?) — LAg — Ao — f'(0)) < 0.

It now follows from (7.6), (7.7) and the continuity arguments that there exists a
point B € C, 0 < Re 8 < Ay, such that

(7.8) o (alB? = €'12) = LBy — do — £(0)) N {iR} # .
Consequently, there exists £; € R such that
(7.9) det (a(B8% — |¢'|°) = LB — Ao — f'(0) —i&1) = 0.

The assertion of the proposition is an immediate corollary of (7.9) and (7.3).

We are now ready to formulate the main result of this Section which is the
analogue of Theorem 5.1 for the spatial dynamical system.

Theorem 7.1. Let the assumptions of Theorem 6.1 hold and assumption (5.2) be
satisfied. Then, for every N >> 1, there exist a positive number o > 0, a vector
&0 € R*, 0 < |&|, a positive number ro = ro(N) > 0 and a commuting with the
group {T},h € R"} of ’spatial’ shifts map

(710) V() : B(T‘, O,Bgo,g) — Asp, T;LJ o V() = VO ¢} T;LJ,
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such that, for every yo € R™, the following estimates hold:

[l —ua, B0, 00
y

||V0(u1) - VO(U2)7 B;OH\IJ <Cn SUpyern (It ly—yoPN)1/2

Vo (u1)=Vo(uz2),B, |lw
|0,oo < C’N SupyeRn (1_+_|y_y0|2N)1/g ’

(7.11)

||U]_ — U2, B;o

where the constant C'n depends only on N and independednt of yq.
Moreover, there exist a vector | € R¥ and a linear operator Sg : Be, »(R") —
U, (R™)* such that

(7.12) So(uo).l = Rewug, for every ug € Be, »(R™)

and, for every ug € B(r,0,B, »), the following estimate holds:
(7.13) Vo(uo) — So(uo)llw, @) < ClluollpZigny.

where 1 > 1> 0 is the same as in (6.44).
Proof. Let L := 8y, Lo := 8, and P := L — Lgy. Then, due to Corollary 6.5

(7.14) 1Pv .., < CU° )0, 10w, »

where C' is independent of .

According to description (6.29), it is sufficient construct a sufficiently large set
of bounded backward solutions (i.e. defined for < 0) for problem (6.5) (which
can be parametrized by the points from B(r,0,B, ,)). Instead of considering the
continuous dynamics generated by (6.5), we consider the ’equivalent’ discrete one

(7.15) v(m+ 1) = Lov(m) + Pv(m), m € Z_,

which acts on the space of sequences {v(m)} € L>®(Z_,¥;). Our plan now is to
solve (7.15) near zero equilibrium using the implicit function theorem. To this end,
we first study the linear non-homogeneous analogue of (7.15)

(7.16) w(m + 1) — Low(m) = h(m).

Lemma 7.1. Let the above assumptions hold. Then, for every a > r(Lg) :=
lo(Lo)| > 1 and for every h € L%, (Z_,Vy,), there exists a unique solution w €
L% . (Z_,Vy) such that

(7.17) lwllpe 2w,y < Cllbll> (@ v,

and, consequently, the linear operator

To : L o (Z_, Up) — L, (Z_, Uy)

is well defined by the expression (Toh)(l) := w(l). Moreover, for every N € N and
Yo € R?

(7.18) lollzse o ws, ) < ONIBlES @, )

T ¥N,yg
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where the weight ¢ 4, is defined by (1.6) and the constant Cn is independent of
Yo € R™.

Indeed, the operator T, is given by the following expression:

(7.19) (Tah)(1) == > Li™h(m).

m=—0o0

The fact that definition (7.19) is correct, together with estimate (7.17), follows from
the assumption o > |o(Lp)| and from the standard formula for the spectral radius
of Ly. The fact that the function w := T, h satisfies (7.16) can be easily verified in
a direct way. Estimate (7.18) can be obtained in the same way as (7.17) using, in
addition, the fact that the spectra of Lo in Wy, and ¥, ~ coinside (according to
Proposition 7.1).

Let us consider now homogeneous problem (7.16) (h = 0).

Lemma 7.2. Let the above assumptions hold. Then, there exist a positive num-
ber ayg, r(Lg) > ag > 1, satisfying a(1)+“ > r(Lg), a vector & € R™, a number
o> 0,0 <|&|, avectorl € R¥ and a linear operator

S: Bﬁo,U(Rn) - Lzo—m(Z—7 \I,b(Rn))k7
0

such that

1. w(m) := (Sup)(m) is a solution of (7.16) with h =0, for every ug € Be, .

2. (Souo).fz Reug, for every ug € Be, », where Soug := (Sup)(0).

3. For every N € N, every yo € R" and every ug € B, », the following estimate
15 valid:

(7.20) ISuollzes 2w,y ) < Onlluollezs, —@n),

T ¥qN,y
0
where the constant Cn s independent of yo and, consequently

(721) ||Su0||L°°_m(Z_,‘Ilb) S CHUOHLOO(RTL).

0

Proof. According to Proposition 7.2, there exist a point £, € R and a point By =
B(&): 0 < Re By < A such that

(7.22) det (a(B(&0)* = 1€0]%) — LB (&) — Ao — f'(0) — &) = 0.

We note that equation (7.22) defines an algebraic (2n-sheeted) function B(¢). Con-
sequently, without loss of generality, we may assume that (&g, 50(&0)) is not a branch
point of this function. Moreover, without loss of generality, we may assume also
that & # 0 and (1 + p)Re By > Inr(Ly), where r(Lg) is a spectral radius of L
which, due to Proposition 7.1, can be calculated as follows:

(7.23) In7(Lo) = max{Re B(¢) : £ € R, Re B(£) < Ao}
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Thus, there exist a neighbourhood Bg; and smooth functions (3 : Bg; — Bg;' and
e: BL — C" such that B(&) = Sy and

(7.24) (a(B(&)* — [€'*) — LB(E) — Xo — f'(0) —i€") e(€) = 0, for every & € B,.

Moreover, we may assume (see e.g. [43]) that the eigenvalue e(¢) is normalized in
such way that

(7.25) e(&).f: 1, for every ¢ € Bg{;,

for the appropriate constant vector I € RF.
We also assume that r' > 0 is small enough that (1 + u)(Re Sy — ") > Inr(Lg)

and define oy 1= eRebo—r", Moreover, we define the exponent ¢ > 0 in such way
that
(7.26) supp g C BEO/Q, for every wg € B, »(R"),

where 1y denotes the Fourier transform of the function uyg.
There now remains to define the operator S’ : Be,,o — L°°,, (Z—, Up(R", C))k
0

by the expression:

L —

(7.27) S"(ug) (m)(€) == ™ ©Oug(&)e(€), up € B, o

and to define finally S(ug) := ReS’(up). Then, it is not difficult to verify (analo-
gously to [43]) that the operator thus obtained satisfies all the assumptions of the
lemma. Lemma 7.2 is proved.

Lemma 7.3. Let the above assumptions hold and let Sy be the same as in Lemma
7.2. Then, the following estimates hold:

(7.28) C]?rlHUOHLgON,yO @) < [ISouollzz, @) < Onlluolleg, —@n),

where the constant Cn is independent of yq.

Indeed, the right inequality of (7.28) is an immediate corollary of Lemma 7.2
and the proof of the left one is based on the formula Sgug = Re ug and on the fact
that every function from B, ,, with o < |{p], is determined in a unique way by its
real part (see [43] for the details).

Let us verify some important properties of the operator P acting on the space
of sequences.

Lemma 7.4. Let the above assumptions hold. Then, the operator P, determined
by the expression

(7.29) (Pv)(m) := Pv(m),
s of the class

(730) P e Cl‘f'll(LZO_m (Z—v \Ijb)a Lzo—m(1+u) (Z—7 q,b))a
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for every a > 1 and the following estimate holds, for every N and yq:

(731 Poll,, @ vy, SONIOlL @ apllzs @ v, )

where the constant C'n s independent of yo € R™.

Proof. Estimate (7.31) is an immediate corollary of (7.14) and (1.7). Let us now
verify the differentiability. Let vi,ve € LS2,,(Z_, ¥,). Then, due to Corollary 6.5

(7.32)  [|[P(vi(m)) — P(v2(m)) = Duo P(v1(m))(vi(m) — va(m))l|w, =
1L (v1(m)) =L (va(m)) = Dyy L(w1 (m)) (01 (m) —vz(m)) || w, < Cllvr (m) —vs(m) |1 "

Multiplying (7.32) by a~(1+#)™ and taking the supremum over m € Z_, we obtain
that the map P is differentiable (and verify the evident formula for its derivative).
There remains to verify that the derivative is Holder continuous. Let, in addition,
£ € L, (Z_,¥) be an arbitrary sequence. Then, due to (6.46)

(7.33)  [[[Duo P(v1(m)) = Dy P(v2(m))[E(m) || w, =
= [I[Duo L(v1(m)) = Dyy L(v2(m)) 1§ (m) |, < Cllor —v2lg, IE(m) ],

Multiplying now this relation by o~ (+#)™ and taking the supremum over m € Z_,
we verify that the derivative is indeed Holder continuous and finish the proof of
Lemma 7.4.

We are now ready to complete the proof of the theorem. To this end, we rewrite
equation (7.15) as follows:

(7.34) v = Sug+ To1uPo,

where ap > 1 is the same as in Lemma 7.2, uy € B, » and v € L m (Z—, V) and

solve it near 0 using the implicit function theorem. Indeed, let us deﬁne the map
(7.35) F L, (Z_, V) x Be, o(R") = L. (Z_, ¥p)

g ’ o
by the following expression

(7.36) F(v,ug) :=v — Sup — Ty +n P,

According to our construction, a(1,+“ > r(Lg) and, consequently (due to Lemmata
7.1 and 7.4), function (7.36) is well defined. Moreover, it follows from Lemma
7.4 that this function is of the class C'*# and D,F(0,0) = Id. Thus, due to the
implicit function theorem, there exist 7o > 0 and a C'-map V : B(ro,0,B¢, ») —
L . (Z_, ) such that

)

(7.37) F(V(uo), uo) = 0

and, consequently, the function v := V(ug) solves (7.15). We now set Vp(up) :=
V(up)(0). We claim that this map satisfies all the assertions of Theorem 7.1. Indeed,
since D,,,V(0) = 0, then

(7.38) [V(uo)ll=_ (z_w,) < Clluol[z= < Cro.
%0
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It follows from (7.31), (7.37), and (7.38) that

(7.39) V(uo) — Suoll=~_ @,y < Clluoll;

0

Restricting (7.39) to m = 0, we obtain (7.13). Let us verify estimates (7.11). Let
u1, ug € B(ro,0,Be, »). Then, it follows from (7.37), (7.17), and from (6.45) that

(7.40)  [V(w1) = V(uz) = S(ur —uz)llz= @, )<

2T ¥N,yp
0

2
<Cn Z ||V(’U/i)||uooim(z_’q;b)||V(u1) - V(UZ)“LZO,m(Z—v‘I’vN,yO)'
“o

=1 0

Using now estimates (7.38), (7.20) and decreasing ro > 0, if necerssary, we derive
from (7.40) that

(7.41) IV(uy) — V(UQ)HLZO_m(Z Voone) < Onluy — “2||L$°N,y0’

—77 ¥gN,
0

for all uy,up € B(ro(IN), 0, B, ») and for sufficiently small positive r4(N) > 0. The
first estimate of (7.13) is an immediate corollary of this estimate (with N replaced

by N —n—1). Let us now verify the second one. To this end, we derive from (7.40)
and from (7.28) that

(7.42) Cy'llur —uzllre, < [Vo(ur) = Vo(uz)|lre, — +
»TQ ,TQ

2
+ Cy Z ||V(ui)||u,oo_m(z_’\1,b) V(u1) = V(ua)llz=  (z_w,, o)
o, o ’

i=1 0
Inserting estimates (7.38) and (7.41) into the right-hand side of (7.42), we have

(7.43)  flur —wallzg, < ClVo(ur) = Vo(ualleg,  + Cnrgllun —ualles,

Setting now 7o = ro(N) small enough, we obtain from (7.43) that

(7.44) Jur —uallpee, < CiVo(u1) = Vo(uz)llzes,
,ZQ »TQ

for every wi,us € B(ro(N),0,B¢, ). Thus, the second estimate of (7.13) is also
verified. We also note that the fact that Vy commutes with ’spatial’ shifts follows
from the fact that all operators involving in equation (7.34) commute with these
shifts and from the uniqueness part of the implicit function theorem.

Thus, there remains to verify embedding (7.10). Let ug € B(ro,0,Be, ). Then

[ V(w)(m) if meZ._,
v(m) = { L™(ug) if meN

is a complete bounded trajectory of the discrete semigroup generated by the ope-

rator L. Moreover, it is also follows from Theorem 6.1 that the function v(n) =

S,v(m), where n =v+m, m € Z and 0 < v < 1, is a complete bounded trajectory
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of the continuous semigroup S,. Therefore, due to (6.29), v(0) = V(uo) € Asp and
Theorem 7.1 is proved.

Remark 7.1. We have proved a little more: namely, that there exists a Liptschitz
continuous embedding:

(745) V: (B(T070718§o,0)7T}?) — (’C7T}§,J)’
such that

(7.46) C’_1||u1—u2||L$oN,y <

< [[V(u1) =V(w2)lle ., ) S Clluy — u2||L$°N,y0’

PqN,

for the appropriate constant C' which is independent of yy. Indeed, this embedding
is given by formula

s {0770

Corollary 7.1. Let the assumptions of Theorem 7.1 hold. Then, fore < ey < 1,
the follwowing estimate holds:

1
(7.48) H. (Asp, L®(y € BE)) > CR"In -

Moreover, for R =1 and for every § > 0, there exists C'5 > 0 such that

n+1—46
(7.49) H, (Asp, L(By)) > Cs (m g) :

The proof of estimates (7.48) and (7.49) is completely analogous to that given
in Theorem 5.2 (only instead of (5.8) one should use (7.13)).

Corollary 7.2. Let the above assumptions hold. Then, the ’spatial’ topological
entropy (i.e. the entropy, which corresponds to the ’spatial’ shifts T} ) is strictly
positive:

(7.50) Trgp (Agp) > 0

(see Section 4).
Indeed, (7.50) is an immediate corollary of (7.48).

§8 COMPLEXITY OF TEMPORAL DYNAMICS IN RDS
IN UNBOUNDED DOMAINS AND TEMPORAL CHAOS.

In this Section, we return to study the dynamical system {S;,¢ > 0} and for-
mulate several statements which are corollaries of the results obtained in Section 7
for the case of spatial dynamical system {S,,n > 0}. We start our consideration
with the proof that the temporal (modified) topological entropy for the semigroup
Sy generated by equation (2.1) may be strictly positive.
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Theorem 8.1. Assume that equation (2.1) has form (6.3), the assumptions of
Theorem 2.1 are satisfied and conditions (6.6) and (5.2) are fulfilled. Then, the
(modified) topolgical entropy which corresponds to V,, = span{t,xa,- - ,x,} (see
Definition 4.2) is strictly positive for the attractor A of this equation:

(8.1) BV (A) > 0.

Proof. According to Corollary 7.2

(8.2) WY (Asp) = T (Asp) > 0.
Then, analogously to Remark 4.5 (see also (7.46)), we have
(8.3) 1Y (K) > 0.

(Here we have implicitly used the fact that the sets of all bounded solutions for Sy
and S, coinsides). Estimate (8.1) is an immediate corollary of (8.3) and (4.40) and
Theorem 8.1 is proved.

Corollary 8.1. Let the assumptions of Theorem 8.1 hold. Then, the temporal
(modified) topological entropy of the attractor A is strictly positive:

(84)  hy(A) :=limsup <1n1> lim %HE (K, L2, ([0,T] x R?)) > 0.

e—0 € T—+o0 el
Indeed, (8.4) is an immediate corollary of (8.1) and Theorem 4.3.

Remark 8.1. Estimate (8.4) shows, in particular, that the classical topological
entropy of the semigroup S; on A (which is defined analogously to (8.4), but without
the factor (In1)™") is infinite.

We also note that Theorem 8.1 hold not only for the transport term (E, V) =
Ld,,, but for all vectors L the norm |L| of which is large enough. Indeed, up to
the appropriate rotation, the general transport term is equivalent to |[_;|8m1.

Let us obtain now the analogue of Theorems 5.2 and 5.3 for the case of temporal
dynamics. To this end, we need the following proposition.

Proposition 8.1. Let the assumptions of Theorem /.1 hold and let, in addition,
the diffusion matriz a satisfy

(8.5) aa* = a*a.

Then, the map Iy : K — A, Tlpu := u(0) realizes a homeomorphism

(8.6) Iy : K — A,

where the sets K and A are endowed by the local topology of the spaces Cjo.(R?T1)
and Cioc(R™) respectively.

Proof. Indeed, since the sets K and A are compact and I1o(K) = A, then it is
sufficient to verify that map (8.6) is injective. In other words, it is sufficient to verify
that equation (2.1) possesses the property of backward uniqueness on the attractor.
This fact is verified in [43] based on the results of [3], under the additional technical
assumption (8.5) (to be more precise, it is verified in [43], for the case L = 0, but
the genaral case L # 0 is completely analogous). Proposition 8.1 is proved.
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Theorem 8.2. Let the assumptions of Theorem 8.1 and Proposition 8.1 hold.
Then, there exists a homeomorphic embedding:

(8.7) V: B(r9,0,Be, o) = A,

where o, £ and 1o are the same as in Theorem 7.1 (for a some fired N > 1) and
all topologies are ‘local’ (Cioc(R™) ), such that

(8.8) S\ V(o) = V(TP ug), TFV(ug) = V(T ug) , i =2, ,n,

for every uy € B(r0,0,B¢, ), t > 0 and h € R (here and below T} := The, is a
spatial shift along the x;). Moreover,

BY" (V(B(rg,0,Be, »)) > 0.

Proof. Indeed, according to estimate (7.46), we have a homeomorphic embedding V
of the set B(rp,0,Bg, ») to K endowed by the topology of LS (R4, ¥y (R™)). But
it is not difficult to show, using the standard interior estimates and the fact that
KC is bounded in L°°(R™), that the topologies, endowed on K by the embeddings
t0 Cioc(R™*1) and to Cloe(R, Uio. (R} )), coinside. Consequently, (7.45) is a homeo-
morphic embedding of B(rg,0,Bg, ,) to the space K endowed by the topology of
Cloc(R**1) as well.

We now define map (8.7) by the following expression:
(8.9) V:=1IoV,
where Il is defined in Proposition 8.1. It is not difficult to verify that the map
thus obtained satisies all the assertions of Theorem 8.2.

Combining Theorem 8.2 and Proposition 5.1, we obtain the following result
(which is analogous to Theorem 5.3).

Theorem 8.3. Let the assumptions of Theorem 8.2 hold. Then, there exist a
number a > 0 and a homeomorphic embedding

(8.10) FiMos A,
such that
(811) Sal?(’l)o) = ?(77’;1’()0), Tawll?(’ljo) = 7’3(771?1,00) , 7 = 27 cee o,

for every |l € Z and every vg € M. Moreover,

where Vy, = span{t, za, -+ , T, }.

Indeed, it is sufficient to take 7 := V o x, where & is defined in Proposition 5.1.
Thus, embedding (8.10) shows that the spatio-temporal dynamics on the attrac-
tor A is also may be extremely chaotic. In particular, this embedding allows to
realize (up to a homeomorphism) every finite dymensional dynamics by restricting
the (semi)group S; to the appropriate spatially invariant subset of A. To be more
precies, the following result holds (compare with Corollary 5.3).
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Corollary 8.2. Let the assumptions of Theorem 8.2 hold, K C RN be an arbi-

tray compact set in RV, N € N, and Fy,---,F, : K — K be arbitrary pairwise
commutative homeomorphisms, i.e.

(8.12) FioF;=FjoF;, i,jec{l,---,n}.

Then, there exist a positive number v = v(N) > 0 and a homeomorphism

(8.13) T:K—->7(K)CA

such that

(8.14) S,yhonflzo---oT;”lZ%(k):%(Flllo---oFfL”k>, ke K, lez®,

where Fil" denotes the l;-th iteration of the map F;.

The proof of this corollary is completely analogous to that of Corollary 5.3, so
we omit it here.

In order to study the temporal complexity of individual point on the attractor,
it is natural to introduce (analogously to Definition 5.3) the following quantity.

Definition 8.1. Let ug € A. Then, by definition, the (modified) temporal entropy
of ug is the following number:

(8.15) R (uo) = he(He(uo)), where Hy(ug) = [Stuo,t € Ry ] (o),
where [-]y denotes the closure in the space V.

Corollary 8.3. Let the assumptions of Theorem 8.2 hold. Then, for every point
ug € A its (modified) temporal entropy is finite. Moreover, there exist points ug € A
the temporal entropy of which is strictly positive:

(8.16) 0 < Ry (up) < oo

Indeed, the first assertion of the corollary follows immediately from Theorem 4.2
and the second one follows from Theorem 8.2 and from the evident fact that the
dynamical system {7,', M}, [ € N, is topologically transitive (i.e. possesses dense
orbits).

Let us consider, in conclusion, the simplest example of equation of type (2.1),
for which our theory works.

Example 8.1. Let Q = R”. We consider the following analogue of the scalar £ = 1
Chafee-Infante equation with the transport term:

(8.17) Opu = Agu — LOp,u +u —u®, x€R™,

Then, as it is not difficult to verify, the assumptions of Theorem 8.2 are satisfied,
if L > 2 and n < 6. Thus, we have an exetremely chaotic temporal dynamics on
the attractor (Theorems 8.1-8.3 and Corollaries 8.1-8.3 hold for equation (8.17),
if L > 2). In particular, there exists a great (uncountable) number of different
time periodic solutions of this equation parametrized by the corresponding periodic
trajectories of (7,"', M), | € Z.

We also note that the above results are not true without the transport term
Lo u(!). Indeed, for L = 0 (8.17) generates the so called extended gradient system
and, consequently (see [22]), does not possess any time periodic solutions (at least
in case n < 3). This example gives a good illustration for the influence of the
transport terms on the reaction-diffusion dynamics.
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