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eAbstra
t. We 
onsider in this arti
le a nonlinear rea
tion-di�usion system with atransport term (L;rx)u, where L is a given ve
tor �eld, in an unbounded domain 
.We prove that, under natural assumptions, this system possesses a lo
ally 
ompa
tattra
tor A in the 
orresponding phase spa
e. Sin
e the dimension of this attra
toris usually in�nite, we study its Kolmogorov's "-entropy and obtain Upper and lowerbounds of this entropy.Moreover, we give a more detailed study of the spatio-temporal 
haos generatedby the spatially homogeneous RDS in 
 = Rn . In order to des
ribe this 
haos, weintrodu
e an extended (n + 1)-parametri
al semigroup, generated on the attra
torby 1-parametri
al temporal dynami
s and by n-parametri
al group of spatial shifts(=spatial dynami
s). We prove that this extended semigroup has �nite topologi
alentropy, in 
ontrast to the 
ase of purely temporal or purely spatial dynami
s, wherethe topologi
al entropy is in�nite. We also modify the 
on
ept of topologi
al entropyin su
h a way that the modi�ed one is �nite and stri
tly positive, in parti
ular forpurely temporal and for purely spatial dynami
s on the attra
tor.In order to 
larify the nature of the spatial and temporal 
haos on the attra
tor,we introdu
e a new model dynami
al system whi
h is an adaptation of Bernoullishifts to the 
ase of in�nite entropy and 
onstru
t homeomorphi
 embeddings ofit into the spatial and temporal dynami
s on A. As a 
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x6 The spatial dynami
al system in the extended phasespa
e.x7 The spatial dynami
al system near the exponentially uns-table equilibrium.x8 Complexity of temporal dynami
s in RDS in unboundeddomains and temporal 
haos.Introdu
tion.In this paper, the following quasi-linear paraboli
 boundary problem:(0.1) � �tu = a�xu� (L;rx)u� �0u� f(u) + g; x 2 
;u���
 = 0; u��t=0 = u0in an unbounded domain 
 (whi
h is assumed to satisfy some natural regularity
onditions formulated in x1) is 
onsidered. Here, u = (u1; � � � ; uk) is an unknownve
tor-valued fun
tion, (L;rx) :=Pni=1 Li�xi , f and g are given fun
tions, �0 > 0is a positive 
onstant, a is a given k � k-matrix with a positive symmetri
 part:(0.2) a+ a� > 0and L = L(x) 2 C1b (
) is a given ve
tor �eld whi
h satis�es the assumption(0.3) k divLkL1(
) � �0=2:(We note that, in appli
ations, the ve
tor �eld L is often a solution of the stationaryNavier-Stokes equation and (0.3) is not a great restri
tion.)The longtime behavior of solutions of (0.1) is of a great re
ent interest. It iswell known that, under appropriate assumptions on the nonlinear term f(u), thisbehavior 
an be des
ribed in terms of attra
tors A of the 
orresponding dynami
alsystem generated by (0.1) (see, e.g. [4℄, [5℄, [30℄, [34℄). One of the possible 
hoi
esof these assumptions is the following:(0.4) 8><>: 1: f 2 C3(Rk ;Rk );2: f(u):u � �C;3: f 0(u) � �K;where u:v denotes a standard inner produ
t in Rk (see, e.g., [4℄, [19℄ and [23℄for other possibilities). We note that (0.4) is ful�lled for many interesting (fromthe physi
al point of view equations) su
h as Chafee-Infante equation, FitzHugh-Nagumo system, generalized Ginsburg-Landau equations and others.In the 
ase where the domain 
 is bounded, the global attra
tors for (0.1) havebeen 
onstru
ted and studied under various assumptions on f , a and g (see [4℄,[24℄, [3℄ and the referen
es therein). In parti
ular, the attra
tor's existen
e for (0.1)under assumptions (0.2) and (0.4) has been proved in [40℄. It is also proved therethat, if the nonlinearity f satis�es the additional growth restri
tion(0.5) jf(u)j � C(1 + jujp); p < 1 + 4=(n� 4);2



(for n � 4 the exponent p may be arbitrarily large), then the 
orresponding se-migroup is di�erentiable with respe
t to the initial value u0, possesses L1-boundsand the fra
tal dimension of the attra
tor is �nite.In the 
ase where the domain 
 is unbounded (e.g. 
 = Rn), the situationbe
omes more 
ompli
ated. In this 
ase, even the 
hoi
e of the appropriate phasespa
e for (0.1) is a nontrivial problem. Indeed, the phase spa
e L2(
) (as in the
ase of bounded domains) does not seem to be adequate sin
e a number of natural(from the physi
al point of view) stru
tures (su
h as spatially periodi
 solutions,travelling waves, et
.) do not belong to that spa
e. As a result, the global attra
torin L2(
) of (0.1) exists only for very parti
ular 
ases (see e.g. [5℄, [7℄, [17℄, [29℄).That is the reason why, following [21℄, [33℄, [39℄, we will 
onsider equation (0.1) inthe spa
es(0.6) W l;pb (
) := fu0 2 D0(
) : ku0kW l;pb := supx02
 ku0kW l;p(
\B1x0 ) <1g;with an appropriate 
hoi
e of exponents l and p (here and below, BRx0 denotes theR-ball in Rn 
entered at x0 and W l;p(V ) is the Sobolev spa
e of fun
tions whosederivatives up to the order l belong to Lp(V )). Roughly speaking, spa
es (0.6)
onsist of all suÆ
iently regular fun
tions u0(x) whi
h remain bounded as jxj ! 1and 
ontain, therefore, all the stru
tures mentioned above.To the best of our knowledge, the existen
e of the global attra
tor of (0.1) in theunbounded domain 
 = Rn has been �rstly established in [1℄ and [5℄ (for a s
alar
ase k = 1 and under the very restri
tive growth assumption p < minf4=n; 2=(n�2)g). These growth restri
tions have been removed later in [20℄ and [29℄. The 
aseof systems (k � 2) with a s
alar di�usion matrix a has been 
onsidered in [7℄,[16℄, [17℄, [18℄, [39℄. The 
ase of systems of type (0.1) (without the transport term(L;rxu)) with general di�usion matri
es (satisfying (0.2)) has been 
onsidered in[43℄ under the assumptions on the nonlinear term whi
h are 
lose to (0.4) and (0.5).We mention also that, for the parti
ular 
ases of equations of the form (0.1), e.g.for 
omplex Ginsburg-Landau equations, more powerful results have been obtained(see [30℄ and the referen
es therein).In the present paper (whi
h 
an be 
onsidered as a 
ontinuation of our previouspaper [43℄), we give a 
omprehensive study of spatio-temporal dynami
s generatedby problem (0.1) on the 
orresponding attra
tor. To this end, we need to 
onsidermore general problems of type (0.1) with the nonhomogeneous and nonautonomousboundary 
ondition(0.7) u���
 = u0 = u0(t; x); t 2 R+ ; x 2 �
(instead of u���
 = 0) whi
h requires to impose the following additional regularityassumption to the nonlinear term:(0.8) jf 0(u)jp=(p�1) � C(jf(u)j+ juj+ 1); 8u 2 Rn ;where p is the same as in (0.5). As usual, we �rst prove that problem (0.1) posseses aunique solution in the appropriate fun
tional 
lass and derive a dissipative estimatefor that solution whi
h allows to establish the existen
e of the global attra
tor forthe semigroup asso
iated with this problem.3



Theorem 1. Let assumptions (0.2){(0.8) hold, g 2 Lqb(
), for some q > n + 1,and the boundary data u0 belong to the 
orresponding spa
e 	b(R+ � �
) (whi
h isde�ned in Se
tion 2). Then, for every u0 2 �b(
) := W 2;qb (
) \ fu0���
 = u0(0)g,problem (0.1) possesses a unique solution u(t) 2 �b(
), for t � 0, whi
h satis�esthe following estimate:ku(t)k�b � Q(ku0k�b)e��t +Q(kgkLqb) +Q(ku0k	b);where � is a positive 
onstant and Q is an appropriate monotoni
 fun
tion whi
hare independent of u0 and, 
onsequently, the solving operators(0.9) St : �b(
)! �b(
); t � 0; Stu0 := u(t)are well de�ned for problem (0.1) and generate a semigroup in the phase spa
e �b,if the boundary data u0 = u0(x) is independent of t.Moreover, this semigroup possesses a lo
ally 
ompa
t global attra
tor A in thephase spa
e �b(
) (see Se
tion 3 for the details).We note that, under the assumptions of Theorem 1, the Hausdor� and fra
-tal dimensions of the attra
tor are usually in�nite (see, e.g. [5℄, [38℄ and Th. 2below). That is the reason why the 
on
ept of Kolmogorov's "-entropy is usuallyexploited in order to obtain some qualitive or/and quantitative information on su
hattra
tors ("-entropy of in�nite-dimensional uniform attra
tors asso
iated with no-nautonomous RDE in bounded domains is studied in [9℄; the 
ase of autonomousrea
tion-di�usion equations in Rn is 
onsidered in [11℄ and [38℄; the "-entropy inthe 
ase of general unbounded domains are investigated in [18℄ and [39℄, for the
ase of autonomous and nonautonomous RDE, and in [13℄, [41℄ and [42℄, for the
ase of damped hyperboli
 equations).We re
all that, if K is a pre
ompa
t set in a metri
 spa
e M , then it 
an be
overed (due to the Hausdor� 
riteria) by a �nite number of "-balls, for every" > 0. Let N"(K;M) be the minimal number of su
h balls. Then, by de�nition,the Kolmogorov's "-entropy of K in M is the following number:(0.10) H "(K;M) := lnN"(K;M):It is worth to emphasize that, in 
ontrast to the fra
tal dimension, quantity (0.10)remains �nite, for every " > 0 and every pre
ompa
t set K in M .Moreover, it is proved in [39℄, [42℄ and [43℄ that, for a large 
lass of equa-tions of mathemati
al physi
s in unbounded domains (in
luding various types ofrea
tion-di�usion equations, hyperboli
 problems, et
.), the "-entropy of restri
tionsA��
\BRx0 of the 
orresponding attra
tors A to bounded domains 
 \ BRx0 possessthe following universal estimate:(0.11) H "(A��
\BRx0 ;�b) � C vol(
 \BR+K ln 1="x0 ) ln 1" ; " � "0 < 1;where the 
onstants C, K and "0 depend on the 
on
rete form of the equation, butare independent of ", R, and x0. As shown in Se
tion 3, this 
lass of equationsin
lude, in parti
ular, equations of type (0.1), if the assumptions formulated aboveare satis�ed.Moreover, following [39℄ and [43℄, we also obtain lower bounds for the entropy ofrestri
tions A��BRx0 in the 
ase where 
 = Rn , g � 
onst and L � 
onst and underthe natural assumption that (0.1) possesses at least one spatially homogeneousexponentially unstable equilibria point. 4



Theorem 2. Let the assumptions of Theorem 1 hold and let 
 = Rn , g � 0,L � 
onst and f(0) = 0. We also assume that(0.12) �(a�x � (L;rx)� f 0(0)� �0) \ fz 2 C : Re z > 0g 6= ?;where �(L) denotes the spe
trum of the linear operator L. Then, the entropy of theattra
tor possesses the following estimates:(0.13) H "(A��BRx0 ;�b) � C1Rn ln 1" ; C1 > 0; " � "0 < 1:Moreover, for every � > 0, there exists a 
onstant C� > 0 su
h that(0.14) H "(A��B1x0 ;�b) � C� �ln 1"�n+1�� :We note that, for the parti
ular 
ase 
 = Rn , (0.11) reads(0.15) H "(A��BRx0 ;�b) � C2�R+K ln 1"�n ln 1" :Therefore, Theorem 2 shows that estimate (0.11) is sharp, at least in the 
ase
 = Rn . On the other hand, in the 
ase where the domain 
 is bounded, estimate(0.11) yields H "(A;�) � C vol(
) ln 1" ;whi
h re
e
ts the well-known heuristi
 prin
iple that the equations of mathemati-
al physi
s in bounded domains have the �nite fra
tal dimension (and, moreover,indi
ates in a right way the dependen
e of this dimension on the 'size' of 
). Thus,estimate (0.11) may be 
onsidered as a natural generalization of this prin
iple tothe 
ase of unbounded domains (see also [18℄ or [42℄).The main part of the paper is devoted to the more detailed study of the spatiallyhomogeneous 
ase of equation (0.1) (
 = Rn , g � 
onst, L � 
onst). In this 
ase,the attra
tor A possesses an additional stru
ture, namely, it is invariant under thegroup fTh; h 2 Rng of spatial shifts:(0.16) Th : A ! A; ThA = A; h 2 Rn ; (Thu0)(x) := u0(x+ h)and, 
onsequently, it is invariant under the extended (n+1)-parametri
al semigroupS(t;h) de�ned by the following expression:(0.17) S(t;h)u0 := ThStu0; S(t;h)A = A:In the present paper, we suggest to interpret this semigroup as a dynami
al system(with multidimensional 'time') a
ting in the phase spa
e A. Thus, in order tostudy the spatio-temporal 
omplexity (and spatio-temporal 
haos) of A, we willbelow investigate the dynami
al properties of system (0.17).5



Theorem 3. Let the assumption of Theorem 1 hold and let, in addition, equation(0.1) be spatially homogeneous. Then, the topologi
al entropy (see e.g. [25℄) ofsemigroup (0.17) is �nite(0.18) htop(A;S(t;h)) <1and 
oin
ides with the topologi
al entropy per unit volume introdu
ed in [12℄.Thus, Theorem 3 gives a simple geometri
al interpretation for the topologi
alentropy per unit volume.It is also reasonable to study the dynami
al systems, generated by k-parametri
alsubgroups of the extended semigroup (0.17), namely, let Vk be an arbitrary k-dimensional hyper-plane Vk � Rt � Rnx and let(0.19) SVk(t;h) := fS(t;h); t � 0; (t; h) 2 Vkgbe the k-parametri
al dynami
al system whi
h 
orresponds to the hyper-plane Vk.The most natural 
hoi
es of the plane Vk are the following: 1. k = n, Vn = Rnx ,then SVn(t;h) := Th, whi
h 
orresponds to the purely spatial dynami
s on the attra
torand 2. k = 1, V1 = Rt , then SV1(t;h) := St, whi
h 
orresponds to the purely temporalevolution restri
ted to the attra
tor; although intermediate 
hoi
es of Vk, whi
hdes
ribe the intera
tion between the spatial and temporal modes are of independentinterest.We note that, in 
ontrast to the 
ase of k = n + 1, the topologi
al entropy fordynami
al systems (0.19) may be in�nite (and is usually in�nite as shown below)if k < n+ 1. Consequently, new quantitative 
hara
teristi
s of the 
omplexity arerequired for these 
ases. We suggest to use in this situation the modi�ed topologi
alentropies whi
h di�er from the 
lassi
al one by presen
e of the fa
tor (ln 1=")k�n�1(for k-dimensional subgroups) in their de�nition (see Se
tion 4). For instan
e, ifVn = Rnx , thenbhsp(A) := bhVnn (A) := lim sup"!0 �ln 1"��1 limR!1 1Rn H " (A; L1([0; R℄n))and, for V1 = Rt , we havebht(A) := bhV11 (A) := lim sup"!0 �ln 1"��n limT!1 1T H " �K; L1([0; T ℄; L1e�jxj(Rn ))� ;where K denotes the set of all the solutions u(t), t 2 R, of (0.1) whi
h belong toL1(R;�b) (see Se
tion 3) and L1e�jxj(
) is a weighted spa
e (see Se
tion 1).The following theorem, whi
h 
an be treated as a generalization of the well-known relation between the fra
tal dimension and topologi
al entropy (see e.g.[25℄) des
ribes the relations between bhVkk (A) 
omputed for di�erent hyperplanesVk.Theorem 4. Let the assumptions of Theorem 3 hold. Then, for every k, 0 � k �n+1 and for every hyperplane Vk, the 
orresponding (modi�ed) topologi
al entropyis �nite:(0.20) bhVkk (A) <1:6



Moreover, if Vk � Vl (k < l), then(0.21) bhVll (A) � Kl�kbhVkk (A);where the 
onstant K > 0 depends only on the equation.Thus, it folows from (0.21) that, if the topologi
al entropy of extended semigroup(0.17) is stri
tly positive, then the (modi�ed) topologi
al entropy of dynami
al sys-tem (0.19) is also stri
tly positive for every hyperplane Vk. Unfortunately, theproblem of obtaining the lower bounds for quantity (0.17) for more or less 
on
reteequations of mathemati
al physi
s is extremely diÆ
ult, even in the 
ase n = 0(whi
h 
orresponds to the ODE of type (0.1), see [25℄ and the referen
es therein),although several examples of equations of type (0.1), for whi
h the 
orrespondingspatio-temporal topologi
al entropy is stri
tly positive, has been re
ently 
onstru
-ted (see [44℄).In 
ontrast to that, the 
ase of the dynami
s asso
iated with n-dimensional hy-perplanes Vn � Rt � Rnx is simpler and we give below some natural (and e�e
tive)suÆ
ient 
onditions whi
h allow to verify that the 
orresponding modi�ed topolo-gi
al entropies are stri
tly positive for a large 
lass of equations of mathemati
alphysi
s.We start with the 
ase Vn = Rnx , whi
h des
ribes the purely spatial dynami
s.The phenomena of spatial 
omplexity and spatial 
haos has been studied, e.g. in[2℄, [6℄, [14℄, [15℄, [43℄ (see also the referen
es therein) for several parti
ular 
asesof equation (0.1). In our 
ase, estimate (0.13), obviously, implies that the modi�edtopologi
al entropy of spatial dynami
al system (0.16) (Vn := Rnx ) is stri
tly positivebhsp(A) > C > 0and, 
onsequently, the 
lassi
al (non modi�ed) topologi
al entropy of that semi-group is in�nite, if the assumptions of Theorem 2 are satis�ed. Thus, the dynami-
al behavior of (0.16) is extremely 
haoti
. We also note that, in 
ontrast to the
ase of dynami
al 
haos, generated by ODE or by PDE in bounded domains, thesymboli
 dynami
s (Bernoulli shifts with �nite number of symbols, see e.g. [25℄) isnot an adequate model example for understanding the nature of the spatial 
haosin (0.16), sin
e the topologi
al entropy of su
h symboli
 dynami
s is �nite. Thatis the reason why (following [43℄), we use another model dynami
al system whi
hgeneralizes the 
lassi
al Bernoulli shifts and is adopted to the 
ase of in�nite topo-logi
al entropy. Namely, let D be a unit dis
 in C and letM := D Zn endowed by theTikhonov's topology. Then, a dis
rete dynami
al system Th with multidimensional'time' h 2 Zn on M 
an be de�ned in the following natural way:(0.22) Thv(l) := v(h+ l); h; l 2 Zn; v 2 M:(We re
all that, as usual, M is interpreted as a spa
e of fun
tions v : Zn ! D ).Applying a general s
heme of investigating the spatial 
omplexity of the attra
-tors of equations of mathemati
al physi
s developed in [39℄, [42℄ and [43℄ to equation(0.1), we derive (in Se
tion 5) the following result whi
h 
lari�es the nature of thespatial 
haos in (0.16). 7



Theorem 5. Let the assumptions of Theorem 2 hold. Then, there exists a positivenumber � > 0, a 
losed subset K � A and a homeomorphism � :M! K su
h that(0.23) T�hK = K and T�h�(v) = �(Thv); 8h 2 Zn; v 2 M:Moreover, this homeomorphism is Lips
hitz 
ontinuous under the appropriate 
hoi
eof metri
s on A and M and preserves the modi�ed topologi
al entropy:0 < bhsp(M) = bhsp(K) � bhsp(A) <1:As an immediate 
orollary of this result, we obtain the fa
t that every �nitedimensional dynami
s 
an be realized (up to a homeomorphism) by restri
tingspatial dynami
al system (0.16) to appropriate 
losed subsets of A.Corollary 1. Let the assumptions of Theorem 5 hold, let K � RN be an arbitray
ompa
t set in RN , N 2 N, and let F1; � � � ; Fn : K ! K be arbitrary pairwise
ommutative homeomorphisms, i.e.Fi Æ Fj = Fj Æ Fi; i; j 2 f1; � � � ; ng:Then, there exist a positive number 
 = 
(N) < 0 and a homeomorphism(0.24) b� : K ! b�(K) � A;su
h that(0.25) T
lb�(k) = b� �F l11 Æ � � � Æ F lnn k� ; k 2 K; l 2 Zn;where F lii denotes the li-th iteration of the map Fi.This result 
on�rms, from the alternative point of view, that spatial dynami
s(0.16) is indeed extremely 
haoti
.The main task of the rest of the paper is to obtain the analogue of Theorem 5 inthe 
ase where Vn 
ontains a temporal dire
tion and to in
lude, thus, the temporaldynami
s into 
onsideration. We note that the general s
heme of investigating thephenomena of spatial 
haos mentioned above is based on the te
hnique of in�nitedimensional unstable manifolds and gives no information on the temporal evolution(at least in a dire
t way). Nevertheless, we suggest below a tri
k whi
h allows toobtain su
h an information based on this s
heme. The main idea of this tri
k isto 
onstru
t a new auxiliary dynami
al system the attra
tor of whi
h 
oin
ides (ina sense) with the attra
tor of the initial system (0.1) and su
h that the dire
tiont is o

ured to be 'spatial' for this dynami
al system. Applying the s
heme ofstudying the spatial 
omplexity to this auxiliary system, we obtain simultaneouslythe des
ription of the temporal evolution for the initial problem (sin
e the dire
tiont is 'spatial' for that auxiliary system!).In order to 
onstru
t this auxiliary dynami
al system, we assume that the ve
tor�eld L has the form L := L(1; 0; � � � ; 0), where L > 0 (a general 
ase 
an be easilyredu
ed to this one by an appropriate rotation) and 
onsider the following boundaryvalue problem:(0.26) ( a(�2x1u+�x0u)� L�x1u� �0u� f(u) = �tu;u��x1=0 = u0; t 2 R; x1 2 R+ ; x0 2 Rn�1 ;8



where x = (x1; x0). Boundary value problem (0.26) 
an be formally interpreted asan evolution equation with respe
t to x1 and 'spatial' dire
tions t; x0. Moreover, itis proved (in Se
tion 6) that this boundary value problem de�nes indeed a di�eren-tiable and dissipative dynami
al system on the appropriate tra
e spa
e 	b, if L > 0is large enough (see Theorem 6.1 for the rigorous statement). Then, on the onehand, the sets of all 
omplete bounded solutions of equations (0.1) and (0.26) whi
hare de�ned for all (t; x) 2 Rn+1 
oin
ide and, on the other hand, the hyperplaneVn := spanft; x2; � � � ; xng 
orresponds now to the spatial dynami
s for this system.Applying the above general s
heme to that auxiliary dynami
al system, we obtain(in Se
tion 8) the following result.Theorem 6. Let the assumptions of Theorem 2 hold and let, in addition, theve
tor �eld L have the form L = L(1; 0; � � � ; 0), where L > 0 is large enough (see
ondition (6.6)). Then, the modi�ed topologi
al entropy of dynami
al system (0.19)where Vn := spanft; x0g is stri
tly positive(0.27) bhVnn (A) > C > 0and, 
onsequently, thanks to Theorem 4, the modi�ed temporal topologi
al entropyis also stri
tly positive(0.28) bht(A) > C1 > 0and the 
lassi
al (nonmodi�ed) one equals in�nity.Thus, the temporal dynami
s is also exteremely 
haoti
 under the assumptionsof Theorem 6. Moreover, analogously to Theorem 5, we obtain the following em-bedding.Theorem 7. Let the assumptions of Theorem 6 hold and let, in addition, thedi�usion matrix satisfy the te
hni
al assumption aa� = a�a. Then, there exist anumber � > 0 and a homeomorphi
 embedding(0.29) b� :M!A;su
h that(0.30) S�lb�(v0) = b�(T x1l v0); T xi�l b�(v0) = b�(T xil v0) ; i = 2; � � � ; n;for every l 2 Z and every v0 2 M. Moreover,bhVnn (b�(M)) > 0;where Vn := spanft; x2; � � � ; xng.As in the 
ase of spatial dynami
s, embedding (0.29) allows to prove that every�nite dimensional dynami
s 
an be realized (up to a homeomorphism) by restri
tingthe temporal evolution semigroup St to the appropriate invariant subset of theattra
tor. 9



Corollary 2. Let the assumptions of Theorem 7 hold, K � RN be an arbitrary
ompa
t set in RN , N 2 N, and F1; � � � ; Fn : K ! K be arbitrary pairwise 
ommu-tative homeomorphisms, i.e.(0.31) Fi Æ Fj = Fj Æ Fi; i; j 2 f1; � � � ; ng:Then, there exist a positive number 
 = 
(N) > 0 and a homeomorphism(0.32) ~� : K ! ~�(K) � A;su
h that(0.33) S
l1 Æ T x2
l2 Æ � � � Æ T xn
ln~�(k) = ~� �F l11 Æ � � �F lnn k� ; k 2 K; l 2 Zn;where F lii denotes the li-th iteration of the map Fi.We illustrate the obtained results on the simplest example of one dimensionalChafee-Infante equation pertubed by the transport term(0.34) �tu = �2xu� L�xu+ u� u3; x 2 R1 :It 
an be easily veri�ed that all the assumptions of Theorem 7 are satis�ed for (0.34),if L > 2. Consequently, in this 
ase, (0.34) generates an extremely 
ompli
atedtemporal dynami
s. In parti
ular, this equation possesses a non
ountable number ofessentially di�erent time periodi
 solutions (whi
h are parametrized by the periodi
orbits of (generalized) Bernoulli shifts (M; Tl)). We also note that, for L = 0,(0.34) generates the so-
alled extended gradient system and, 
onsequently (see [22℄),this system does not possess any time periodi
 solution (any uniformly re

ursivesolution and so on). Thus, simplest model (0.34) gives a good example illustratingthe in
uen
e of transport terms to the rea
tion-di�usion dynami
s.The paper is organized as follows. De�nitions of fun
tional spa
es, whi
h are offundamental signi�
an
e for our study equation (0.1), and their simple propertiesare given in Se
tion 1. Various a priori estimates for the solutions of (0.1) are ob-tained in Se
tion 2. Moreover, based on these estimates, we verify the existen
e ofa solution, its uniqueness and derive some estimates for the di�eren
es of solutionswhi
h will be essentially used later. The existen
e of a global attra
tor A for system(0.1) is veri�ed in Se
tion 3. Moreover, the upper bounds of its Kolmogorov's "-entropy are obtained here. Quantitative 
hara
teristi
s for the (n+1)-parametri
alextended dynami
al system and for its k-parametri
al subgroups are investigatedin Se
tion 4. In parti
ular, the proof of Theorem 4 is given here. In Se
tion 5,we dedu
e the lower bounds of "-entropy for equation (0.1) and give a topologi
aldes
ription of the phenomena of spatial 
omplexity and spatial 
haotisity (in parti-
ular, Theorems 2 and 5 are proved here). General analyti
 properties of auxiliaryspatially dynami
al system (0.26) (su
h as existen
e of solutions, their uniqueness,smoothness and so on) are obtained in Se
tion 6. The behaviour of the auxiliaryspatial dynami
al system near the exponentially unstable equilibria point is inves-tigated in Se
tion 7. The main result of this Se
tion is the existen
e of an in�nitedimensional unstable manifold of this dynami
al system. The topologi
al des
rip-tion of temporal 
omplexity of the dynami
s generated by (0.1) (Theorems 6 and7) is obtained in Se
tion 8 based on the results of Se
tion 7.A
knowledgements. The author has greatly bene�ted from helpful 
omments ofM.Efendiev, A.Mielke, D.Turaev and M.Vishik.10



x1 Fun
tional spa
es.In this Se
tion, we introdu
e several 
lasses of Sobolev spa
es in unboundeddomains and re
all shortly some of their properties whi
h will be essentially usedbelow. For the detailed study of these spa
es, see [17℄ and [39℄.De�nition 1.1. A fun
tion � 2 Clo
(Rn) is a weight fun
tion with (exponential)growth rate � � 0 if the 
ondition(1.1) �(x+ y) � C�e�jxj�(y); �(x) > 0is satis�ed, for every x; y 2 Rn . Analogously, a fun
tion � 2 Clo
(Rn) is a weightfun
tion with polynomial growth rate � if the following inequality is valid, for everyx; y 2 Rn :(1.2) �(x+ y) � C� �(1 + jy1j2)(1 + jy2j2) � � � (1 + jynj2)��=2 �(x); �(x) > 0:Remark 1.1. Obviously, every weight fun
tion whi
h satis�es (1.2), for some � �0, satis�es automati
ally (1.1), for every � > 0. Moreover, it is not diÆ
ult todedu
e from (1.1) that(1.3) �(x+ y) � C�1� e��jxj�(y)is also satis�ed, for every x; y 2 Rn . Estimates (1.1) and (1.3) imply, in parti
ular,that(1.4) C�1� e��R�(x) � supjx0j�R �(x� x0) � C�e�R�(x):The following examples of weight fun
tions are of fundamental signi�
an
e forour purposes:(1.5) �";x0(x) = e�"jx�x0j; " 2 R; x0 2 Rn :Obviously, these weights have growth rate j"j and satisfy (1.1) uniformly with res-pe
t to x0 2 Rn (i.e., the 
onstant C�";x0 in (1.1) is independent of x0).Analogously, the model example of a weight fun
tion with polynomial growthrate is the following:(1.6) '�;x0(x) = �(1 + jx1 � x10j2) � � � (1 + jxn � xn0 j2)��=2 ; x0 2 Rn ; � 2 R:Obviously, weights (1.6) have polynomial growth rate j�j and also satisfy (1.2)uniformly with respe
t to x0 2 R.De�nition 1.2. Let 
 � Rn be some (unbounded) domain in Rn and let � be aweight fun
tion with growth rate �. We setLp�(
) = �u 2 D0(
) : ku;
kp�;0;p � Z
 �(x)ju(x)jp dx <1� :Analogously, the weighted Sobolev spa
e W l;p� (
), l 2 N , is de�ned as the spa
e ofdistributions whose derivatives up to the order l belong to Lp�(
).In order to simplify the notations, we will write below W s;pf"g instead of W s;pe�"jxj .We also de�ne another 
lass of weighted Sobolev spa
es as follows:W l;pb;�(
) = �u 2 D0(
) : ku;
kpb;�;l;p = supx02
�(x0)ku;
 \ B1x0kpl;p <1� :Here and below, we denote by BRx0 the ball in Rn of radius R, 
entered at x0 andku; V kl;p stands for kukW l;p(V ).We will write W l;pb instead of W l;pb;1 . 11



Proposition 1.1.1. Let u belong to Lp�(
), where � is a weight fun
tion with growth rate �. Then,for any 1 � q � 1, the following estimate is valid:(1.7) �Z
 �(x0)q �Z
 e�"jx�x0jju(x)jp dx�q dx0�1=q � C Z
 �(x)ju(x)jp dx;for every " > �, where the 
onstant C depends only on ", � and the 
onstant C�from (1.1) (and is independent of 
).2. Let u belong to L1� (
). Then, the following analogue of estimate (1.7) is valid:(1.8) supx02
��(x0) supx2
fe�"jx�x0jju(x)jg� � C supx2
f�(x)ju(x)jg:The proof of this proposition 
an be found in [17℄ or [39℄.In order to study nonlinear RDS (0.1), we need some regularity assumptions onthe domain 
 � Rn , whi
h are assumed to be valid throughout of the paper.We assume that there exists a positive number R0 > 0 su
h that, for every pointx0 2 
, there exists a smooth domain Vx0 � 
 su
h that(1.9) BR0x0 \ 
 � Vx0 � BR0+1x0 \ 
:Moreover, we also assume that there exists a di�eomorphism �x0 : B20 ! BR0+2x0su
h that �x0(x) = x0 + px0(x), �x0(B10) = Vx0 and(1.10) kpx0kCN + kp�1x0 kCN � K;where the 
onstant K is independent of x0 2 
 and N is large enough. Forsimpli
ity, we assume from now on that (1.9) and (1.10) hold for R0 = 2.We note that, in 
ase 
 is bounded, 
onditions (1.9) and (1.10) are equivalentto the following: the boundary �
 is a smooth manifold. Now, for unboundeddomains, the sole smoothness of the boundary is not suÆ
ient to obtain the regularstru
ture of 
 as jxj ! 1, sin
e some uniform with respe
t to x0 2 
 smoothness
onditions are required. It is however more 
onvenient to formulate these 
onditionsin the form (1.9) and (1.10).Proposition 1.2. Let the domain 
 satisfy 
onditions (1.9) and (1.10), the weightfun
tion � satisfy 
ondition (1.1) and R be some positive number. Then, the follo-wing estimates are valid:(1.11)C2 Z
 �(x)ju(x)jp dx � Z
 �(x0) Z
\BRx0 ju(x)jp dx dx0 � C1 Z
 �(x)ju(x)jp dx:The proof of this proposition is given in [17℄ or [39℄.Corollary 1.1. Let (1.9) and (1.10) hold. Then, the following norm is equivalentto the usual norm in in W l;p� (
):(1.12) ku;
k�;l;p = �Z
 �(x0)ku;
 \BRx0kpl;p dx0�1=p :12



In parti
ular, norms (1.12) are equivalent, for R 2 R+ .To study equation (0.1), we also need weighted Sobolev spa
es of fra
tional orders 2 R+ (and not for s 2 Z only). We �rst re
all (see [35℄ for details) that, if V isa bounded domain, a 
lassi
al norm in the spa
e W s;p(V ), s = [s℄ + l, 0 < l < 1,[s℄ 2 Z+, 
an be de�ned by(1.13) ku; V kps;p = ku; V kp[s℄;p + Xj�j=[s℄Zx2V Zy2V jD�u(x)�D�u(y)jpjx� yjn+lp dx dy:It is not diÆ
ult to prove, arguing as in Proposition 1.2 (see [17℄) and using thisrepresentation, that, for any bounded domain V with a suÆ
iently smooth boun-dary(1.14) C1ku; V kps;p � Zx02V ku; V \ BRx0kps;p dx0 � C2ku; V kps;p:This justi�es the following de�nition.De�nition 1.3. We de�ne the spa
e W s;p� (
), for s 2 R+ , as the spa
e of distri-butions whose norm (1.12) is �nite.It is not diÆ
ult to 
he
k that these norms are also equivalent for di�erent R > 0.In order to 
onsider problem (0.1) with nonhomogeneous boundary 
onditions,we need the following proposition.Proposition 1.3. Let the domain 
 satisfy assumptions (1.9) and (1.10).Then,for every " > 0 and x0 2 Rn , the following estimate is valid:(1.15) Z�
 e�"jx�x0j dS � C";where the 
onstant C" is independent of x0.Proof. Let ~n(x) 2 W 1;1b (
) be an arbitrary extention of the normal ve
tor �eldfrom �
 inside of the domain 
 (the existen
e of su
h an extention is guaranteedby 
onditions (1.9) and (1.10)). Then, due to the Gauss' formulaZ�
 �";x0 dS = Z
 div(�";x0~n(x)) dx � Ck~n;
kb;1;1k�";x0 ;
k1;1 � C"and Proposition 1.3 is provedCorollary 1.2. Let the assumptions of Proposition 1.3 hold. Then,(1.16) Z�
 e�"jx�x0j dS � C"e�"=2 dist(x0;�
);where dist(x0; �
) denotes the distanse from the point x0 to the boundary �
.Indeed,Z�
 e�"jx�x0j dS � supx2�
ne�"=2jx�x0joZ�
 e�"=2jx�x0j dS � C"e�"=2 dist(x0;�
):13



De�nition 1.4. Analogously to De�nition 1.2, we de�ne the weighted Sobolevspa
es of fun
tions de�ned on the boundary �
. For instan
e, the weighted spa
eW l;p� (�
) is determined by the following norm:ku0; �
kp�;l;p := Z�
 �(s)ku0; �
 \ B1skpl;p dS:The spa
es W l;pb;�(�
) are de�ned analogously.We now note that the weight fun
tions (1.5) satisfy the 
onditions (1.1) uniformlywith respe
t to x0 2 Rn , 
onsequently, all the estimates obtained above for thearbitrary weights will be valid for family (1.5) uniformly with respe
t to x0 2 Rn .Sin
e these estimates are of fundamental signi�
an
e for what follows, we writethem expli
itly in the following propositions.Proposition 1.4. Let u belong to LpfÆg(
), for 0 < Æ < ". Then, the followingestimate holds uniformly with respe
t to y 2 Rn :(1.17) �Z
 e�qÆjx0�yj �Z
 e�"jx�x0jju(x)jp dx�q dx0�1=q �� C";q Z
 e�Æjx�yjju(x)jp dx:Moreover, if u 2 L1fÆg(
), Æ < ", then(1.18) supx02
�e�Æjx0�yj supx2
fe�"jx�x0jju(x)jg� � C";Æ supx2
fe�Æjx�yjju(x)jg:Proposition 1.5. Let u belong to W l;pb;�(
) and � be a weight fun
tion with growthrate � < ". Then(1.19) C1ku;
kpb;�;l;p �� supx02
��(x0) Zx2
 e�"jx�x0jku;
 \B1xkpl;p dx� � C2ku;
kpb;�;l;p:For the proof of this 
orollary, see [39℄.The following analogue of Proposition 1.5 is valid for polinomial weights (1.6).Proposition 1.6. Let � be a weight fun
tion with polynomial growth rate � < N .Then, the following estimate is valid:(1.20) C1 supx02
�(x0)u(x0) �� supx2
��(x) supy2
 �(1 + jx1 � y1j2) � � � (1 + jxn � ynj2)��N=2 u(y)� �� C2 supx02
�(x0)u(x0):The proof of this proposition is 
ompletely analogous to that of Proposition 1.5(see e.g. [43℄). 14



In 
on
lusion of this Se
tion, we inrodu
e the anysotropi
 Sobolev spa
es offun
tions de�ned on R+ � 
 or R+ � �
.De�nition 1.5. We denote by W (l1;l2);q([T; T + 1℄ � 
) the 
lassi
al Sobolev-Slobodetskij spa
e of fun
tions whi
h have t-derivatives up to the order l1 andx-derivatives up to the order l2 belonging to Lq (see e.g. [28℄). We re
all that, forinteger li � 0, the norm in this spa
e is de�ned bykukqW (l1;l2);q([T;T+1℄�
) := k�l1t ukqLqb([T;T+1℄�
)++ kDl2x ukqLqb([T;T+1℄�
) + kukqLqb([T;T+1℄�
);where Dl2x denotes a 
olle
tion of all x-derivatives of the order l2, and, for thenoninteger li, 
an be de�ned by the interpolation, analogously to (1.13) (see [28℄ or[35℄).We now de�ne, analogously to De�nition 1.2, the spa
es W (l1;l2);qb (R+ � 
),W (l1;l2);qb (R+ � �
), and the 
orresponding spa
es of fun
tions on R � 
. Forinstan
e, the norm in the spa
e W (l1;l2);qb (R+ � �
) is de�ned by the followingexpression: kukW (l1;l2);qb (R+��
) := supT2R+;x02�
 kukW (l1;l2);q([T;T+1℄�(�
\B1x0):Moreover, let � = �(t; x) be a weight fun
tion of variables (t; x) with exponentialgrowth rate � (see De�nition 1.1). Then, we de�ne the spa
es W (l1;l2);q� (R+ � 
)and W (l1;l2);q� (R+ � �
) in a standard way. For instan
e,kukqW (l1;l2);q� (R+��
) := Z(T;s)2R+��
 �(T; s)kukqW (l1;l2);q([T;T+1℄�(�
\B1s) dS dT:x2 A priori estimates, existen
e of solutions, uniqueness.In this Se
tion, we derive several a priori estimates for the solutions of rea
tion-di�usion system (0.1) with nonhomogeneous boundary 
onditions(2.1) � �tu = a�xu� (L(x);rx)u� �0u� f(u) + g(x); x 2 
;u���
 = u0(t; x); u��t=0 = u0(x)in the unbounded domain 
 � Rn satisfying the assumptions of the previous Se
-tion. Moreover, based on these estimates, we derive the existen
e of a solution u(t)for (2.1), its uniqueness and obtain several estimates for di�eren
es of solutions of(2.1) whi
h will be used below for studying the attra
tor of this system.We re
all, that u(t) = (u1(t; x); � � � ; uk(t; x)) is the ve
tor-valued fun
tion, a isthe 
onstant k � k-matrix satisfying the 
ondition a + a� > 0, �0 > 0, the ve
tor�eld L 2 C1b (Rn ;Rn) satis�es the inequality(2.2) k divLk0;1 � �0=2and the nonlinear term f(u) satis�es the assumptions(2.3) 8><>: 1: f 2 C3(Rk ;Rk );2: f(u):u � �C;3: f 0(u) � �K:15



Moreover, we impose the additional growth restri
tions for the nonlinearity f(u):(2.4) � 1: jf(u)j � C(1 + jujp);2: jf 0(u)jp=(p�1) � C(1 + jf(u)j+ juj);where the exponent p > 1 is arbitrary, for n � 4, and p < 1 + 4n�4 , for n � 5.We also assume that the external for
e g belongs to the spa
e Lqb(
), for someq > n+1, the initial data u0 belongs to the spa
e W 2;qb (
) and the boundary datau0 belongs to the following tra
e spa
e:(2.5) 	b(R+ � �
) := Tr ���
 nu; �tu 2W (1;2);qb (R+ � 
)o �� nu0; �tu0 2W (1�1=(2q);2�1=q);qb (R+ � �
)o(see De�nition 1.5 and [28℄). Moreover, we assume that the �rst 
ompatibility
ondition(2.6) u0���
 = u0��t=0is satis�ed.By de�nition, a solution of (2.1) is a fun
tion(2.7) u 2 L1(R+ ;W 2;qb (
)) \ C([0;1); Lqb(
))whi
h satis�es equation (2.1) in the sense of distributions.Remark 2.1. It follows from the Sobolev's embedding theorem and from our
hoi
e of the exponent q (q > n=2) that the solution u belongs to L1(R+ � 
),
onsequently, the nonlinear term in (2.1) is well-de�ned and belongs to L1. The-refore, it follows from (2.7) and from equation (2.1) that�tu 2 L1(R+ ; Lqb(
)):Moreover, it 
an be shown by standard arguments (see e.g. [39℄) that(2.8) u 2 C([0; T ℄;W 2;qe�"jxj(
)) \ C1([0; T ℄; Lqe�"jxj(
));for every T > 0 and every " > 0. We, however, note that, in 
ontrast to the 
aseof bounded domains, for generi
 u0 2 �, the 
orresponding solution u(t) is not
ontinuous at t = 0 as a fun
tion with values in W 2;qb (
) (see e.g. [33℄ for the
onditions on u0 whi
h guarantee this 
ontinuity).The main result of this Se
tion is the following theorem.Theorem 2.1. Let the above assumptions hold and let u(t) be a solution of (2.1).Then, the following estimate is valid:(2.9) ku(t);
 \ B1x0k2;q � Q�ku(0)kW 2;qb (
)� e��t++Q �ku���
k	b(R+��
)� e�� dist(x0;�
) +Q�kgkLqb(
)� ;where � is a positive 
onstant whi
h depends only on the equation and Q is amonotoni
 fun
tion whi
h also depends only on the equation (and is independent ofu, u0 and u0).Proof. Estimate (2.9) has been proved in [43℄, for the parti
ular 
ase of u0 = 0 andL = 0. In general 
ase, although the presen
e of nonzero drift term (L;rx)u is notessential for that proof (due to assumption (2.2)), but the nonhomogeneous boun-dary 
onditions require the additional a

ura
y and the additional te
hni
alitieswhi
h will be indi
ated below. 16



Lemma 2.1. Let the above assumptions hold. Then, the following estimate isvalid, for every x0 2 
, � > 0 and for " > 0 small enough:(2.10) �ju(T )j2; �";x0�+ Z T+1T �jrxu(t)j2; �";x0� dt �� Ce��T �ju(0)j2; �";x0�+ C �jgj2; �";x0�+ C++ � Z T0 e��(T�t) ��";x0 ; jrxu(t)j2��
 dt+ C�e�" dist(x0;�
)ku0k2	b ;where the positive 
onstants C;�; " are independent of x0, C� depends only on� > 0, and (u; v) and (u; v)�
 stand for the inner produ
t in L2(
) and in L2(�
)respe
tively.Proof. Multiplying equation (2.1) by u(t)e�"jx�x0j (with " > 0 small enough), in-tegrating by parts and using the dissipativity assumption f(u):u � �C, the positi-veness of a, assumption (2.2) and the obvious estimate(2.11) krx �e�"jx�x0j� k � "e�"jx�x0j;we derive that(2.12) �t �ju(t)j2; �";x0�+ � �ju(t)j2; �";x0�+ � �jrxu(t)j2; �";x0� �� C �1 + �jgj2; �";x0�+ �ju0(t)j2; �";x0��
 + �ju0(t)j � jrnu(t)j; �";x0��
� ;where � > 0 is an appropriate positive 
onstant whi
h is independent of x0 (seee.g. [17℄ or [43℄ for details). Applying the H�older inequality to the last term in theright-hand side of (2.12) and using inequality (1.16), together with the Gronwallinequality, we obtain the assertion of the lemma.Lemma 2.2. Let the above assumptions hold. Then, the following estimate isvalid, for suÆ
iently small " > 0:(2.13) �ju(T )j2 + jrxu(T )j2; �";x0�+ Z T+1T �j�xu(t)j2; �";x0� dt � C++Ce��T �ju(0)j2 + jrxu(0)j2; �";x0�+C �jgj2; �";x0�+Ce�� dist(x0;�
)Q(ku0k	b);where the positive 
onstants C;� and the monotoni
 fun
tion Q are independentof x0.Proof. Multiplying equation (2.1) by the expression(2.14) nXi=1 �xi (�";x0(x)�xiu(t)) := �";x0�xu(t) +rx�";x0 :rxu(t)and setting " > 0 small enough, we obtain, after the standard integration by partsand using the monotoni
ity assumption f 0(u) � �K and the inequality (2.11), that(2.15) �t �jrxu(t)j2; �";x0�+ � �jrxu(t)j2; �";x0�+ � �j�xu(t)j2; �";x0� �� (2K + CkLk20;1) �jrxu(t)j2; �";x0�+ C �jgj2; �";x0�++ C �(j�tu0(t)j+ jf(u0(t))j) � jrnu(t)j; �";x0��
 :17



We now re
all that, due to our 
hoi
e of the exponent q, u0 2 Cb(R+ � 
) and,
onsequently, the last term in the right-hand side of (2.15) 
an be estimated asfollows:(2.16) C �(j�tu0(t)j+ jf(u0(t))j) � jrnu(t)j; �";x0��
 �� C�e�"=2 dist(x0;�
)Q(ku0k	b) + � �jrnu(t)j2; �";x0��
 ;where the 
onstant � > 0 
an be 
hosen arbitrarily small.Applying the Gronwall inequality to relation (2.15) and estimating the last twoterms in the right-hand side of it by (2.10) and (2.16), we have, after simple 
om-putations(2.17) �ju(T )j2 + jrxu(T )j2; �";x0�+ Z T+1T �j�xu(t)j2; �";x0� dt �� C �e��t �ju(0)j2 + jrxu(0)j2; �";x0�+ 1 + �jgj2; �";x0��++ C�e�� dist(x0;�
)Q(ku0k	b) + � supt2[0;T ℄ e��(T�t) Z t+1t �jrnu(s)j2; �";x0��
 ds;where Q is an appropriate monotoni
 fun
tion, � > 0 is a 
ertain positive 
onstantand � > 0 is arbitrary.Due to the regularity theorem for the Lapla
e operator in weighted Sobolevspases (see, e.g. [35℄), we have(2.18) ku(t)kW 2;2�";x0 (
) � C(k�xu(t)kL2�";x0 (
)+ku(t)kL2�";x0 (
)+ku(t)kW 3=2;2�";x0 (�
))and, 
onsequently, the last term in (2.17) 
an be estimated as follows:(2.19) �jrnu(s)j2; �";x0��
 � C �j�xu(s)j2; �";x0�+ C �ju(s)j2; �";x0�++ Ce�"=2 dist(x0;�
)ku0k2	b :Inserting this estimate to the right-hant of (2.17) and using (2.10), we derive(2.20) �ju(T )j2 + jrxu(T )j2; �";x0�+ Z T+1T �j�xu(t)j2; �";x0� dt �� C1 �e��t �ju(0)j2 + jrxu(0)j2; �";x0�+ 1 + �jgj2; �";x0��++ C 0�e�� dist(x0;�
)Q(ku0k	b) + C� supt2[0;T ℄ e��(T�t) Z t+1t �j�xu(s)j2; �";x0� ds:There remains to note that estimate (2.20) implies (2.13) in a standard way, ifC� < 1=2 (see [17℄ or [42℄) and Lemma 2.2 is proved.Our next task is to obtain the analogous to (2.13) estimate for the W 2;2�";x0 -norm.To this end, we introdu
e the following 'norm', whi
h depends on " > 0 and x0 2 
:(2.21) kvk2D";x0 := kvk2W 2;2�";x0 (
) + kf(v)k2L2�";x0 (
):18



Lemma 2.3. Let the above assumptions hold and let " > 0 be small enough. Then,the following estimate is valid for the solutions of equation (2.1):(2.22) ku(t)k2D";x0 �� Ce(2K+1)t �ku(0)k2D";x0 + 1 + kgk2L2�";x0 (
) + e�� dist(x0;�
)Q(ku0k	b)� ;where the 
onstant K is the same as in (2.3), � > 0 and the 
onstant C and thefun
tion Q are independent of x0 and ".Proof. We give below only the formal dedu
ing of estimate (2.22) whi
h 
an bejusti�ed in a the standard way (using, e.g. the uniqueness of a solution of (2.1) inthe 
lass (2.7) whi
h is veri�ed in Theorem 2.2).We di�erentiate equation (2.1) with respe
t to t and denote �(t) := �tu(t). Then,this fun
tion satis�es the following equation:(2.23) � �t� = a�x� � (L;rx)� � �0� � f 0(u)�;�(0) = a�xu0 � (L;rx)u0 � �0u0 � f(u0) + g; ����
 = �tu0:Let us now �x the extention w(t) (w(t); �tw(t) 2W (1;2);qb (R+�
)) of the boundary
ondition u0 2 	b inside of the domain 
 su
h that(2.24) ( 1: kwkW (1;2);qb (R+�
) + k�twkW (1;2);qb (R+�
) � Cku0k	b ;2: w(t; x) � 0; if dist(x0;
) � 1:The existen
e of su
h an extention is and immediate 
orollary of the de�nition of	b (see (2.5)). Then, the fun
tion �1(t) := �(t) � �tw(t) satis�es the followingequation:(2.25) � �t�1 = a�x�1 � (L;rx)�1 � f 0(u)�1 + hw(t)� f 0(u)�tw;�1��t=0 = ���t=0 � �tw��t=0; �1���
 = 0;where hw(t) := �2tw(t)�a�x�tw(t)� (L;rx)�tw(t)��0�tw(t). Multiplying (2.25)by �1(t)�";x0 , integrating over 
 and using that " > 0 is small enough and assump-tion f 0(u) � K, we derive, after the standard estimates, that(2.26) 12 �j�1(t)j2; �";x0�+ �04 �j�1(t)j2; �";x0� �� K �j�1(t)j2; �";x0�+ C �jhw(t)j2; �";x0�� (f 0(u(t))�tw(t):�1(t); �";x0) ;where the 
onstant C > 0 is independent of x0. Estimating the last term in (2.26) byH�older inequality and using assumption (2.4)(2), the embeddingW (1;2);qb (R+�
) �C(R+ � 
) and estimates (2.24), we have(2.27) (f 0(u)�tw:�1; �";x0) � ��jf 0(u)j2p=(p�1); �";x0�+ �0=4 �j�1j2; �";x0�++ C� �j�twj2p; �";x0� � � �jf(u)j2; �";x0�+ C �1 + �juj2; �";x0��++ �0=4 �j�1j2; �";x0�+ C�e�� dist(x0;�
)ku0k2p	b ;19



where the 
onstant � > 0 
an be 
hosen arbitrarily small.Inserting estimate (2.27) to the right-hand side of (2.26), applying the Gronwallinequality to the obtained relation and using (2.13) and (2.24) (in order to estimatethe fun
tion �thw(t)), we derive that(2.28) �j�tu(T )j2; �";x0� � Ce2KT �ku(0)k2D";x0 + 1 + �jgj2; �";x0��++ C�e2KT�� dist(x0;�
)Q(ku0k	b) + � Z T0 e2K(T�t) �jf(u(t))j2; �";x0� dt;where the 
onstant � 
an be 
hosen arbitrarily small.After obtaining estimate (2.28) for the L2-norm of the t-derivative, we may
onsider paraboli
 equation (2.1) as an ellipti
 boundary value problem at a �xedpoint T :(2.29) a�xu(T )� (L;rx)u(T )� f(u(T )) = hu := �tu(T )� g; u(T )���
 = u0(T );with the right-hand side hu belonging to the spa
e L2�";x0 (
). Arguing as in theproof of Lemma 2.2 (multiplying the equation by expression (2.14) and using esti-mate (2.18)), we derive the following estimate:(2.30) ku(T )k2W 2;2�";x0 (
) � C �1 + khuk2L2�";x0 (
) + e�� dist(x0;�
)Q(ku0k	b)� :Estimates (2.28) and (2.30) and equation (2.1) imply now that(2.31) �jf(u(T ))j2; �";x0� � C1e2KT �ku(0)k2D";x0 + 1 + �jgj2; �";x0��++ C 0�e2KT��dist(x0;�
)Q(ku0k	b) + C2� Z T0 e2K(T�t) �jf(u(t))j2; �";x0� dt:Setting � = 1=C2 and applying the Gronwall inequality to relation (2.31), we �nallyhave�jf(u(T ))j2; �";x0� � C3e(2K+1)T �ku(0)k2D";x0 + 1 + �jgj2; �";x0��++ C4e(2K+1)T e�� dist(x0;�
)Q(ku0k	b):Combining this estimate with (2.28) and (2.30), we obtain estimate (2.22) whi
hproves Lemma 2.3.We now note that the obtained estimate of the W 2;2�";x0 -norm diverges exponen-tially with respe
t to t ! 1 whi
h is not good from the attra
tors point of view.In order to remove this divergen
e, we need the following smoothing property.Lemma 2.4. Let the above assumptions hold. Then, the following estimate isvalid, for any solution u(t) of problem (2.1):(2.32) ku(1)k2W 2;2�p";x0 (
) �� C �1 + ku(0)k2pW 1;2�";x0 (
) + kgk2pL2�";x0 (
) + e�� dist(x0;�
)Q(ku0k	b)� ;20



for a 
ertain monotoni
 fun
tion Q, positive 
onstant � > 0 and for a suÆ
ientlysmall positive " > 0.Proof. Let us �x an arbitrary x0 2 
 and a suÆ
iently small " > 0. Then, it followsfrom estimates (2.13) and (2.18) that(2.33) Z 10 ku(t)k2W 2;2�";x0 (
) dt �� C �1 + ku(0)k2W 1;2�";x0 (
) + kgk2L2�";x0 (
) + e�� dist(x0;�
)Q(ku0k	b)� :It follows from (2.33) that there exists a point T = T (x0) 2 [0; 1℄ su
h that(2.34) ku(T )k2W 2;2�";x0 (
) �� C �1 + ku(0)k2W 1;2�";x0 (
) + kgk2L2�";x0 (
) + e�� dist(x0;�
)Q(ku0k	b)� :Moroeover, it is proved in [43℄ that the �rst growth restri
tion of (2.4), togetherwith Sobolev embedding theorem, imply the following estimate:(2.35) kf(u(T ))k2L2�p";x0 (
) � C �1 + ku(T )k2pW 2;2�";x0 (
)� :Estimates (2.34) and (2.35) imply that(2.36) ku(T )k2Dp";x0 �� C1 �1 + ku(0)k2pW 1;2�";x0 (
) + kgk2pL2�";x0 (
) + e�� dist(x0;�
)Q(ku0k	b)� :Applying now estimate (2.22) (where " is repla
ed by p") at the initial momentt = T instead of t = 0 and using (2.36), we derive estimate (2.32). Lemma 2.4 isproved.Thus, we have proved the analogue of estimate (2.9) for q = 2.Lemma 2.5. Let the above assumptions hold. Then(2.37) ku(t);
 \B1x0k2;2 �� Q(ku0kW 2;2b (
))e��t +Q(kgkL2b(
)) + e�� dist(x0;
)Q(ku0k	b);for some positive � and 
ertain monotoni
 fun
tion Q.Indeed, this lemma is a simple 
orollary of estimates (2.13), (2.22) and (2.32).Estimate (2.9) of the W 2;q-norm of the solution u 
an be now dedu
ed from(2.37) in a standard way, using the regularity theorems for the linear paraboli
equation and the �rst growth 
ondition of (2.4) for improving steps by steps theregularity of solution u(t) (see [43℄). Theorem 2.1 is proved.21



Corollary 2.1. Let the assumptions of Theorem 2.1 hold. Then, the followingestimate is valid:(2.38) ku(t)kW 2;qb (
) � Q(ku(0)kW 2;qb (
))e��t +Q(ku0k	b) +Q(kgkLqb(
));for the appropriate monotoni
 fun
tion Q and positive 
onstant � > 0.Indeed, estimate (2.38) is an immediate 
orollary of estimate (2.9).As usual, after obtaining a priori estimate (2.9), one 
an easily verify the exis-ten
e of a solution for problem (2.1).Theorem 2.2. Let the above assumptions hold. Then, for every u0 2 W 2;qb (
)whi
h satis�es the 
ompatibility 
ondition (2.6), equation (2.1) possesses a uniquesolution u(t). Moreover, the following estimate holds, for every two solutions u1(t)and u2(t) of equation (2.1):(2.39) ku1(T )� u2(T )k2L2�";x0 (
) + Z T+1T ku1(t)� u2(t)k2W 1;2�";x0 (
) dt �� Ce2KT ku1(0)� u2(0)k2L2�";x0 (
);where the 
onstant K is the same as in (2.3), " > 0 is a small parameter, and the
onstant C depends only on the equation.Proof. The existen
e of a solution of (2.1), in 
ase 
 is bounded, 
an be dedu
edfrom a priori estimate (2.38) using the Leray-S
hauder �xed point prin
iple (seee.g. [37℄). The existen
e of a solution in the unbounded domain 
 
an be provedafter that, approximating the unbounded domain 
 by the bounded ones 
N andpassing to the limit N !1 (see e.g. [17℄ or [43℄ for the details).Let us now prove estimate (2.39) whi
h immediately implies the uniqueness. Letu1(t) and u2(t) be two solutions of (2.1) and let v(t) = u1(t) � u2(t). Then, thisfun
tion satis�es the equation(2.40) �tv = a�xv � (L;rx)v � �0v � l(t)v; v���
 = 0; v��t=0 = u1(0)� u2(0);where l(t) := R 10 f 0(su1(t) + (1 � s)u2(t)) ds. We note that, a

ording to our as-sumptions on f , we have l(t) � �K, 
onsequently, multiplying equation (2.40) byv(t)�";x0 , integrating over the x 2 
 and arguing as in the proof of Lemma 2.1, wederive estimate (2.39) and �nishes the proof of Theorem 2.2.Corollary 2.2. Let the above assumptions hold and let the boundary 
onditionu0 2 	b(R+ � 
) be independent of t (i.e. u0(t; x) � u0(x) 2 W 2�1=q;qb (�
)).Then, problem (2.1) generates a semigroup fSt; t � 0g in the phase spa
e �b(
) :=W 2;qb (
) \ fu0���
 = u0g:(2.41) St : �b(
)! �b(
); u(t) = Stu0;where u(t) is the solution of (2.1) with u(0) = u0.22



Theorem 2.3. Let the assumptions of Theorem 2.1 hold. Then, for every twosolutions u1(t); u2(t) 2 �b and for every " > 0, the following estimate is valid:(2.42) ku1(t)� u2(t)kW 2;q�";x0 (
) � CeKtku1(0)� u2(0)kW 2;q�";x0 (
);where the 
onstants C;K depend on kuikW 2;qb , ku0k	b and ", but are independentof x0 2 
.Moreover, the following version of smoothing property is valid for solutions ui(t):(2.43) ku1(1)� u2(1)kW 2;q�";x0 (
) � C1ku1(0)� u2(0)kLq�";x0 (
);where C1 is also independent of x0 2 
.Proof. The proof of these estimates is based on a standard analysis of linear equa-tion (2.40) and 
an be obtained in the spirit of the proof of Theorem 2.1, butessentially simpler, sin
e equation (2.40) is linear and the 
oeÆ
ient l(t) is smoothenough:(2.44) kl(t)kW 1;qb \Cb(
) � Q(kui(0)kW 2;qb ; ku0k	b)(thanks to (2.9) and due to the fa
ts that f 2 C2 and W 2;qb � C, see e.g. [17℄ or[43℄ for the details). x3 The global attra
tor and upperbounds of its Kolmogorov's "-entropy.In this Se
tion, we will only 
onsider the autonomous 
ase of equation (2.1), i.e.we assume that(3.1) u0(t; x) � u0(x) 2 W 2�1=q;qb (�
):Then, a

ording to Corollary 2.2, this equation generates a semigroup fSt; t � 0g inthe phase spa
e �b(
) by expression (2.41). Moreover, a

ording to estimate (2.38),this semigroup possesses a bounded absorbing set B in the phase spa
e �b(
), i.e.,for any other bounded subset B � �b(
), there exists T = T (B) su
h thatStB � B if t � T;but, nevertheless, in 
ontrast of the 
ase of bounded domains, the 
ompa
t attra
torin �b(
) for equation (2.1) may not exist in the 
ase of unbounded domains, e.g.the Chafee-Infante equation in Rn (k = 1, f(u) = u3��u, � > �0) does not possessa 
ompa
t attra
tor in the topology of W 2;qb (Rn) (see, e.g. [39℄).That is the reason why (following [20℄, [21℄, [31℄, [32℄, [33℄), we 
onsider belowthe attra
tor A of semigroup (2.41) whi
h attra
ts bounded subsets of �b(
) onlyin a lo
al topology of the spa
e �lo
 = W 2;qlo
 (
) (i.e., A is the (�b;�lo
)-attra
torof (2.41) in notations of [4℄).We re
all that the spa
e �lo
(
) is re
exive metrizable F-spa
e whi
h is genera-ted by semi-norms k � ;
 \ B1x0k2;q, x0 2 
.23



De�nition 3.1. A set A � �b(
) is the attra
tor of the semigroup St if the follo-wing assumptions hold:1. The set A is 
ompa
t in �lo
(
).2. The set A is stri
tly invariant with respe
t to St, i.e.StA = A; for t � 0:3. The set A is an attra
ting set for St in lo
al topology, i.e., for every neigh-borhood O(A) of A in the topology of the spa
e �lo
(
) and for every bounded inuniform topology subset B � �b(
), there exists T = T (O; B) su
h thatStB � O(A) if t � T:We also re
all that the �rst 
ondition means that the restri
tion A��
1 is 
ompa
tin the spa
e W 2;q(
1), for every bounded 
1 � 
.Analogously, the third 
ondition means that, for every bounded 
1 � 
, everybounded B in �b(
) and every W 2;q(
1)-neighborhood O(A��
1) of the restri
tionA��
1 , there exists T = T (
1;O; B) su
h that(StB)��
1 � O(A��
1) if t � T:Theorem 3.1. Let the assumptions of Theorem 2.1 hold and let, in addition, (3.1)be satis�ed. Then, the semigroup St, de�ned by (2.41), possesses an attra
tor A,in the sense of De�nition 3.1, whi
h has the following stru
ture:(3.2) A = K��t=0;where we denote by K the set of all solutions u of (2.1), de�ned and bounded for allt 2 R (supt2R ku(t)k�b(
) <1).The proof of this theorem is more or less standard and given, e.g. in [43℄ for theparti
ular 
ase L(x) � 0 and u0(x) � 0. The proof in general 
ase is 
ompletelyanalogous, so we omit it here.We re
all that the attra
tor A, 
onstru
ted in Theorem 3.1, is not 
ompa
t in thephase spa
e �b(
), but only its restri
tions A��
\BRx0 are 
ompa
t inW 2;q(
\BRx0),for every R > 0 and x0 2 
. Moreover, in 
ontrast to the 
ase of bounded domains,the fra
tal dimension of these restri
tions may be in�nite in many physi
ally re-levant examples (it will be the 
ase, e.g. for the Chafee-Infante equation in Rnmentioned above (see e.g. [39℄)). That is the reason why, following [38℄, [39℄ and[41℄, we study the Kolmogorov's "-entropy of these restri
tions and its dependen
eon three parameters ", R and x0.For the 
onvenien
e of the reader, we re
all below the de�nition of Kolmogorov's"-entropy. For the detailed study of this 
on
ept, see [27℄ and [35℄.De�nition 3.1. Let M be a metri
 spa
e and let K be a pre
ompa
t subset in it.For a given " > 0, let N"(K) = N"(K; M ) be the minimal number of "-balls in Mwhi
h 
over the set K (this number is, obviously, �nite by Hausdor� 
riteria). Byde�nition, Kolmogorov's "-entropy of K in M is the following number:(3.3) H "(K) = H "(K; M ) := lnN"(K):24



The fra
tal dimension dimF (K; M ) 
an be de�ned as follows:(3.4) dimF (K) = dimF (K; M ) := lim sup"!0 H "(K)ln 1" :Remark 3.1. We note that the fra
tal dimension dimF (K) may be in�nite forsuÆ
iently large 
ompa
ts K, but the Kolmogorov's "-entropy is �nite, for every" > 0 (due to the Hausdor� 
riteria). In parti
ular, it is �nite for the restri
tionsA��
\BRx0 of the attra
tor A 
onstru
ted in Theorem 3.1.The following theorem gives the universal upper bounds of the "-entropy forthese restri
tions.Theorem 3.2. Let the assumptions Theorem 3.1 be valid and let(3.5) vol
;x0(R) = vol(
 \ BRx0):Then, for every R 2 R+ , x0 2 
, and " � "0 < 1(3.6) H " �A��
\BRx0 ;W 2;qb (
 \ BRx0)� � C vol
;x0(R+K ln 1" ) ln 1" ;where the 
onstants C, K and "0 are independent of R and x0 2 
.Estimate (3.6) is, in fa
t, a 
orollary of the smoothing property (2.43) for di�e-re
es of solutions belonging to the attra
tor A (see e.g. [39℄ or [42℄ for the detailedproof).Let us formulate now several 
orollaries of estimate (3.6) (see also [39℄ or [42℄).Corollary 3.1. Sin
e Cb(
) �W 2;qb (
), then(3.7) H " �A; C(
 \ BRx0)� � C vol
;x0(R+K ln 1" ) ln 1" :Corollary 3.2. Let 
 = Rn . Then, vol
;x0(r) = 
rn and, 
onsequently(3.8) H " �A;W 2;qb (BRx0)� � ~C �R+K ln 1"�n ln 1" :Setting R :=M ln 1" , M > 0, we have(3.9) H " �A;W 2;qb (BM ln 1"x0 )� � CM �ln 1"�n+1 :We note that estimate (3.8) gives the same type of upper bounds for R = 1 andR =M ln 1" .Corollary 3.3. Let 
 be a bounded domain. Then, Theorem 3.1 implies thefollowing estimate:(3.10) H " �A;W 2;qb (
)� � C vol(
) ln 1" ;25



whi
h re
e
ts the well-known fa
t that, in this 
ase, the attra
tor A has the �nitefra
tal dimension.Corollary 3.4. Let 
 = Rk �!n�k be a 
ylindri
al domain (! is bounded). Then,estimate (3.6) gives the following bound of the "-entropy of the attra
tor A:(3.11) H " �A;W 2;qb (
 \ BRx0)� � C �R+K ln 1"�k ln 1" :Corollary 3.5. Let the assumptions of Theorem 3.1 hold, 
 = Rn , and letM > 0.Then(3.12) H " �A;W 2;qe�Mjxj(
)� � C(M)�ln 1"�n+1 :Proof. Sin
e the attra
tor A is bounded in W 2;qb (
), then there exists a numberR = R(M) su
h that(3.13) kA; fjxj > R ln 1="gke�Mjxj;2;q � "=2and, 
onsequently(3.14) H " �A;W 2;qe�Mjxj(
)� � H "=2 �A��BR ln 1="0 ;W 2;q(BR ln 1="0 )� :Thus, there remains to estimate the entropy in the right-hand side of (3.14). Tothis end, we note that(3.15) kv;BR ln 1="0 k2;q � (CR ln 1=")n=q kv;BR ln 1="0 kb;2;q:Thus, estimate (3.9) implies that(3.16) H " �A��BR ln 1="0 ;W 2;q(BR ln 1="0 )� �� H "=(CR ln 1=")n=q �A;W 2;qb (BR ln 1="0 )� � C(R)�ln 1"�n+1 ;where ln ln 1=" is majoranted by ln 1=". Corollary 3.5 is proved.Corollary 3.6. Let the assumptions of previous 
orollary hold and let K be thesame as in Theorem 3.1. Then, the following estimate is valid, for every R > 0:(3.17) H " �K; L1([0; R ln 1="℄;W 2;qb (BR ln 1="0 )� � C(R)�ln 1"�n+1 :Proof. Indeed, estimate (2.42), together with des
ription (3.2), imply that, for everyT � 0(3.18) H " �K; L1([0; T ℄;W 2;qe�jxj)� � H "=(CeKT ) �A;W 2;qe�jxj� :26



Inserting estimate (3.12) to this estimate and using obvious embedding W 2;qb;e�2jxj �W 2;qe�jxj , we have(3.19) H " �K; L1([0; R ln 1="℄;W 2;qb;e�2jxj(BR ln 1="0 )� � CR �ln 1"�n+1 :We now note thatkv;BR ln 1="0 kb;2;q � e2R ln 1="kv;BR ln 1="0 kb;e�2jxj;2;q = "�2Rkv;BR ln 1="0 kb;e�2jxj;2;qand, 
onsequentlyH " �K; L1([0; R ln 1="℄;W 2;qb (BR ln 1="0 )� �� H "2R+1 �K; L1([0; R ln 1="℄;W 2;qb;e�2jxj(BR ln 1="0 )� � C 0R �ln 1"�n+1 :Corollary 3.6 is proved.Remark 3.2. Sin
e L1 � W 2;qb (Rn), then estimate (3.17) implies, in parti
ular,the following estimate:(3.20) H " �K; L1([0; R ln 1="℄� BR ln 1="0 )� � CR �ln 1"�n+1 :Moreover, arguing as in the proof of Corollary 3.5 and using the invariantness ofK, we have(3.21) H " �K; L1e�Mjtj�Mjxj(R � Rn )� � CM �ln 1"�n+1 :x4 Quantiatative 
hara
teristi
s forthe spatial and temporal dynami
s.In this Se
tion, we introdu
e several 
hara
teristi
s for the dynami
al system,generated by equation (2.1) whi
h generalize the 
on
ept of topologi
al entropy tothe 
ase of unbounded domains. For simpli
ity, we restri
t ourselves to 
onsideronly the 
ase of spatially homogeneous equation (2.1) in 
 = Rn , i.e. we assumethat(4.1) L(x) � L 2 Rn ; g(x) � g 2 Rn :In this 
ase, the attra
tor A of equation (2.1) possesses an additional stru
ture,namely, the group fTh; h 2 Rng of spatial shifts a
ts on it:(4.2) ThA = A; (Thu0)(x) := u0(x+ h); h 2 Rn :We re
all that, by the de�nition of the attra
tor, the dynami
al semigroup fSt; t �0g de�ned by (2.41) also a
ts on the attra
tor. Moreover, this semigroup evidently
ommutes with group (4.2) of spatial shifts:(4.3) StA = A; ThSt = StTh; 8t 2 R+ ; h 2 Rn :27



Thus, the extended (n + 1)-parametri
al semigroup fS(t;h); t 2 R+ ; h 2 Rng a
tson the attra
tor:(4.4) S(t;h)A = A; (S(t;h)u0)(x) := Stu0(x+ h); t 2 R+ ; h 2 Rn :Extended semigroup (4.4) 
an be interpreted as a dynami
al system (with multidy-mensional 'time') a
ting on the pha
e spa
e A, and, 
onsequently, 
an be studiedfrom the dynami
al point of view.We �rst re
all the de�nition of the topologi
al entropy (see e.g. [25℄) adopted tothe 
ase of multidimensional 'time'. To this end, we endow our attra
tor A by themetri
 of the spa
e L1� (Rn), where the weight � has exponential growth rate (seeSe
tion 1) and satis�es the following assumption:(4.5) limjxj!1�(x) = 0:It is not diÆ
ult to verify that, due to the fa
t that A is bounded in L1(Rn),the topologies indu
ed on A by the embeddings A � L1� (Rn ) and A � L1lo
(Rn)
oinside (see e.g. [43℄). In parti
ular, this topology is independent of the parti
ular
hoi
e of the weight �. For every R > 0, we de�ne a new metri
 on the attra
torA by the following expression:(4.6) dR;�(u0; v0) := sup(t;h)2[0;R℄n+1 kS(t;h)u0 � S(t;h)v0kL1� :De�nition 4.1. The topologi
al entropy of semigroup (4.4) is the following num-ber:(4.7) bhn+1(A) := lim"!0 lim supR!1 1Rn+1 H " (A; dR;�) ;where the symbol H "(A; dR;�) denotes the Kolmogorov's "-entropy of the set A inthe spa
e generated by the metri
 dR;� (obviously, H "(A; dR;�) is a nonde
reasingfun
tion of ", so limit (4.7) exists).It is well known (see e.g. [25℄), that topologi
al entropy (4.7) depends only onthe topology in A and independent of the parti
ular 
hoi
e of the metri
 on it. Inparti
ular, quantity (4.7) is independent of �. Moreover, it is not diÆ
ult to verify(analogously to [43℄) that(4.8) bhn+1(A) = lim"!0 lim supR!1 1Rn+1 H " �K; L1([0; R℄n+1)� ;where the set K is de�ned in Theorem 3.1.Proposition 4.1. The following limit exists, for every " > 0:(4.9) H "(K) := limRi!+1i=1;::;n+1 1R1 � � �Rn+1 H " (K; L1([0; R1℄� � � � � [0; Rn+1℄)) :Proof. Indeed, let(4.10) �(R1; � � � ; Rn+1) := H " (K; L1([0; R1℄� � � � � [0; Rn+1℄)) :28



Then, it follows from the invariantness of K under the spatial and temporal shiftsthat this fun
tion is subadditive with respe
t to every arguments:(4.11) �(R1; � � � ; R0i + R00i ; � � � ; Rn+1) � �(R1; � � � ; R0i; � � � ; Rn+1)++ �(R1; � � � ; R00i ; � � � ; Rn+1)and, 
osequentlylimRi!+1i=1;::;n+1 �(R1; � � � ; Rn+1) = infRi>0i=1;::;n+1 �(R1; � � � ; Rn+1);whi
h �nishes the proof of Proposition 4.1.Corollary 4.1. The following expressions 
an be 
onsidered as the equivalent de-�nitions of the topologi
al entropy bhn+1(A):(4.12) bhn+1(A) = lim"!0 limR!+1 1Rn+1 H " �K; L1([0; R℄n+1)� == lim"!0 limR!+1 1(2R)n limT!+1 1T H " (K; L1([0; T ℄; L1([�R;R℄n))) :We note that the expression in the right-hand side of (4.12) is equivalent to the so
alled topologi
al entropy per unit volume introdu
ed in [12℄. Thus, relation (4.12)gives, in parti
ular, the dynami
al and geometri
al interpretation of the topologi
alentropy per unit volume.We note that, a priori, expression (4.7) may be in�nite. The following theoremshows that it is not the 
ase in our situation.Theorem 4.1. Let the assumptions of Theorem 3.1 hold and let 
 = Rn and (4.1)be satis�ed. Then, the topologi
al entropy de�ned by (4.7) is �nite:(4.130.) bhn+1(A) � C <1:Proof. Indeed, due to subadditivity (4.11) and due to (3.20), for every R > ln 1=",we haveH " �K; L1([0; R℄n+1)� � � Rln 1=" + 1�n+1 H " �K; L1([0; ln 1="℄n+1)� �� C1Rn+1 + C2Rn (ln 1=")n+1and, 
onsequently bhn+1(A) � C1:Theorem 4.1 is proved.Let us study now the analogues of the quantities bhn+1(A) for the k-parametri-
al subsemigroups of the extended dynami
al system fS(t;h); t � 0; h 2 Rng. LetVk � Rt � Rnx be an arbitrary k-dimensional hyperplane, then we 
onsider thefollowing subsemigroup of extended dynami
al system (4.4):(4.13) SVk(t;h) := fS(t;h); (t; h) 2 Vk \ (R+ � Rn)g:29



It is evident, that SRt(t;h) = St and SRnx(t;h) = Th:Let us �x now the orthonormal basis fe1; � � � ; ekg in Vk in su
h way that ei � Rnx ,for i = 2; � � � ; k, and the semiaxis fhe1; h 2 R+g 2 R+ � Rn and, analogously to(4.6), de�ne a new metri
 on A:(4.14) dR;Vk(u0; v0) := sup0�li�Ri=1;��� ;k kSPi lieiu0 � SPi lieiv0kL1e�jxj(Rn):De�nition 4.2. The (modi�ed) toplogi
al entropy of semigroup (4.12) is the fol-lowing number:(4.15) bhVkk (A) := lim sup"!0 �ln 1"�k�n�1 lim supR!1 1Rk H " (A; dR;Vk) :Remark 4.2. We note that, in the 
ase k = n+ 1, quantity (4.15), 
oinsides withexpression (4.7) and, for k 6= n + 1, it di�ers from the standard De�nition 4.1 ofthe topologi
al entropy by the fa
tor (ln 1=")k�n�1, whi
h is introdu
ed in order toprovide the �niteness of limit (4.15) (see Theorem 4.2 below and the examples inSe
tions 5 and 7).We also note that, although we have de�ned quantities (4.15) using a spe
ialbasis in the spa
e Vk, it is not diÆ
ult to verify that these quantities are, in fa
t,independent on the 
on
rete 
hoi
e of the basis and depend only on the subspa
e Vk.It is also worth to emphasize that, in 
ontrast to the 
ase of k = n+1, quantities(4.15) are not topologi
al invariants, but only Lipts
hitz 
ontinuious invariantsand depend, 
onsequently, on the parti
ular 
hoi
e of the metri
, if k < n+ 1 (it isreasonable from many points of view to �x the exponentially de
aying metri
 L1e�jxjon the attra
tor A (as it is impli
itly done in De�nition 4.2)).Moroeover, although quantities (4.15) are not invariant under the H�older 
onti-nuous homeomorphisms, but, obviously(4.16) bhVkk (F (A)) � �k�n�1bhVkk (A);where 0 < � � 1 is the H�older 
onstant of the homeomorphism F . Consequently,the property of the (modi�ed) toipologi
al entropy to be equal zero or to be stri
tlypositive preserves under the H�older 
ontinuous homeomorphisms, in parti
ular, itpreserves under the repla
ing of the initial weighted metri
 of L1e�jxj on the attra
torby the metri
 of L1e��jx�x0j , for every � > 0 and x0 2 Rn .Remark 4.3. The most natural 
hoi
es of the hyperplane Vk are the following:(4.17) bhsp(A) := bhRnxn (A) and bht(A) := bhRt1 (A);whi
h are responsible to the spatial and temporal 
omplexity of the dynami
s res-pe
tively. The fa
t that these quantitatives are stri
lty positive for a suÆ
ientlylarge 
lass of equations (2.1) will be veri�ed in Se
tions 5 and 7.Let us formulate now the analogue of Proposition 4.1 and Corollary 4.1 for theentropies introdu
ed in (4.15). 30



Proposition 4.2. Let Wk := V ?k \ Rnx , where V ?k stands for the orthogonal
omplement of the spa
e Vk, let x = (x00; x0) 
orrespond to the de
ompositionRnx = (Vk \ Rnx ) �Wk and e1 = e01 + e001 , where e01 2 Wk, e001 2 Rt . Then, quantity(4.15) 
an be de�ned in the following equivalent way:(4.18) bhVkk (A) = lim sup"!0 �ln 1"�k�n�1 limR!1 1Rk H " �K; L1e�jx0�te01j(Vk(R)�Wk)� ;where Vk(R) := [0; Re001 ℄� ([0; Re2℄� � � � � [0; Rek℄) (if e1 2 Rnx , then t = 0 and theset K should be repla
ed by A, a

ording to relation (3.2) and the ve
tor e001 in thede�nition of Vk(R) should be repla
ed by e1 2 Rnx ).Proof. We 
onsider below only the most 
ompli
ated 
ase e001 6= 0 (the 
ase e001 = 0and, 
onsequently, Vk � Rnx is analogous, but even slightly more simple).It follows from the de�nition of the set K and from (4.14) and (4.15) that(4.19) bhVkk (A) = lim sup"!0 �ln 1"�k�n+1 lim supR!+1 1Rk H " �K; L1�R([0; Re001 ℄� Rnx )� ;where(4.20) �R(t; x) := supl002[0;R℄k�1 e�j(x0�te01;x00�l00)j:We note that �R(t; x) � e�jx0�te01j, if x00 2 [0; R℄k�1 and(4.21) �R(t; x) � e�jx0�te01je�� dist(x00;[0;R℄k�1);with an appropriate � > 0, if x00 =2 [0; R℄k�1, 
onsequently, there exists a 
onstantK > 0 whi
h is independent of R su
h that(4.22) H " �K; L1e�jx0�te01j(Vk(R)�Wk)� � H " �K; L1�R([0; Re001 ℄� Rnx � �� H " �K; L1e�jx0�te01j(Vk(R+ 2K ln 1=")�Wk)� :Multiplying (4.22) by R�k and passing to the limit R!1, we derive (4.18). Theexisten
e of the limit as R! +1 follows (as in Proposition 4.1) from the obvioussubadditivity of the fun
tion(4.23) �k(R1; � � � ; Rk) :== H " �K; L1e�jx0�te01j([0; R1e001 ℄� [0; R2e2℄� � � � � [0; Rkek℄�Wk)� :Proposition 4.2 is proved.We re
all that, analogously to De�nition 4.1, the k-dimensional topologi
al en-tropy introdu
ed in (4.15) also, a priori, may be in�nite. The following analogue ofTheorem 4.1 shows that it is not the 
ase in our situation.31



Theorem 4.2. Let the assumptions of Theorem 3.1 hold and let, in addition, 
 =Rn and (4.1) be satis�ed. Then, for every k 2 [0; � � � ; n+1℄ and for every hyperplaneVk 2 Rt � Rnx , the 
orresponding (modi�ed) topologi
al entropy is �nite:(4.24) bhVkk (A) � C <1:Proof. Let us verify (4.24) only for the most 
ompli
ated 
ase e001 6= 0 (the 
asee001 = 0 
an be 
onsidered analogously). Using the subadditivity of fun
tion (4.23),we derive that, for R >> ln 1=", the following estimate is valid:(4.25) H " �K; L1e�jx0�te01j(Vk(R)�Wk)� �� � Rln 1=" + 1�k H " �K; L1e�jx0�te01j(Vk(ln 1=")�Wk)� :We now note that, if t 2 [0; ln 1="℄, then(4.26) "e�jx0j � e�jx0�te01j � 1" e�jx0jand, 
onsequently, (due to the boundedness of K in L1 and estimate (3.20))H " �K; L1e�jx0�te01j(Vk(ln 1=")�Wk)� � H "2 �K; L1e�jx0j(Vk(ln 1=")�Wk)� �� H "2 �K; L1(Vk(ln 1=")� [0; K ln 1="℄n+1�k)� �� H "2 �K; L1([0; K1 ln 1"2 ℄n+1)� � C �ln 1"�n+1 :Inserting the obtained estimate to (4.25), we haveH " �K; L1e�jx0�te01j(Vk(R)�Wk)� � C1Rk �ln 1"�n+1�k + C2Rk�1�ln 1"�n+1 :Inserting this estimate to (4.18), we derive the �niteness of bhVkk (A) and �nish theproof of Theorem 4.2.The following theorem 
lari�es the relations between the topologi
al entropieswhi
h 
orrespond to di�erent k.Theorem 4.3. Let the assumptions of Theorem 4.1 hold and let the toplogi
alentropy whi
h 
orresponds to some k-dimensional hyperplane Vk (0 < k � n + 1)be stri
tly positive:(4.27) bhVkk (A) > 0:Then, for every k0 < k and every k0-dimensional hyperplane V 0k0 � Vk, the 
orres-ponding topologi
al entropy is also stri
tly positive:(4.28) bhV 0k0k0 (A) > 0:32



Proof. We �rst note that it is suÆ
ient to 
onsider only the 
ase k0 = k � 1, i.e.Vk = Vk0 � fReg, where e 2 Rt � Rnx . There are two main possibilities (the otherones 
an be easily redu
ed to them):1. Vk0 � Rnx , but Vk 
ontains the temporal dire
tions (e =2 Rnx ).2. We add the spatial dire
tion e 2 Rnx .Let us 
onsider the �rst 
ase. We �x the orthonormal basis fe1; � � � ; ekg in Vkin su
h way that fe2; � � � ; ekg is an orthonormal basis in Vk0 � Rnx . Let us assumenow that the assertion of the theorem is wrong and(4.29) bhVk0k�1(A) = 0:Then, a

ording to Proposition 4.2(4.30) lim"!0�ln 1"�k�n�2 lim supR!1 1Rk�1 H " �A; L1�R(Rn )� = 0;where �R(x) := supl002[0;R℄k�1 e�j(x0;x00�l00j (x = x0 + x00, x0 2 V ?k�1, x00 2 Vk�1).We note that the weight �R(x) has exponential growth rate � = 1, moreoverthis weight satis�es (1.1) with the 
onstant C�R � C where C is independent of R.Consequently, it follows from estimates (2.43) and (1.19) that, for every u0; v0 2 A,the following estimate is valid:(4.31) kS1u0 � S1v0kW 2;qb;�qR(Rn) � C1ku0 � v0kLqb;�qR(Rn) � C2ku0 � v0kL1�R (Rn);where the 
onstants Ci are independent of R and u0; v0 2 A (see [39℄ and [43℄).Estimate (4.31), together with the invariantness of the attra
tor, imply that(4.32) H "=C2 �A;W 2;qb;�qR(Rn)� � H " �A; L1�R(Rn)� :Arguing analogously, but using estimate (2.42) with T = ln 1=" instead of (2.43),we have(4.33) H " �K; L1�R([0; ln 1="℄� Rn)� �� H "=C1 �K; L1([0; ln 1="℄;W 2;qb;�qRRn))� � H "m=C2 �A; L1�R(Rn)� :where m := K + 1 is independent of " and �R. Using inequality (4.26), we dedu
efrom (4.33) that(4.34) H " �K; L1e�jx0�te01j([0; (ln 1=")e001 ℄� V 0k�1(R)�Wk�1)� �� H "2 �K; L1e�jx0j([0; (ln 1=")e001 ℄� V 0k�1(R)�Wk�1)� �� H "2 �K; L1�R([0; ln 1="℄� Rn)� � H "2m=C3 �A; L1�R(Rn)� ;where V 0k�1(R) := [0; Re2℄� � � � � [0; Rek℄.Estimates (4.30) and (4.34) imply that, for every � > 0, there is "0 su
h that,for every " > "0limR!1 1Rk�1 H " �K; L1e�jx0�te01j([0; ln 1" e001 ℄� V 0k�1(R)�Wk�1)� � ��ln 1"�n+2�k :33



Using the subadditivity of fun
tion (4.23), we derive from the last estimate thatlimT!1 1T limR!1 1Rk�1 H " �K; L1e�jx0�te01j([0; T e001 ℄� V 0k�1(R)�Wk�1)� �� ��ln 1"�n+1�kand, 
onsequentlybhVkk (A) = lim sup"!0 �ln 1"�k�n�1 limT!1 1T limR!1 1Rk�1 H " (K;L1e�jx0�te01j([0; T e001 ℄� V 0k�1(R)�Wk�1)� = 0;whi
h 
ontradi
ts to assumption (4.27).Let us now 
onsider the se
ond 
ase and assume again that the assertion of thetheorem is wrong, i.e., (4.29) is true. We �x the orthonormal basis fe1; � � � ; ekg in Vkin su
h way that ei 2 Rnx , for i = 2; � � � ; k, and fe1; � � � ; ek�1g be the orthonormalbasis in Vk�1. Let us assume also that e001 6= 0 (the other 
ase e001 = 0 is 
ompletelyanalogous). Let x = (x00; x0; y) be the de
omposition of x 2 Rn whi
h 
orrespondsto the de
omposition Rnx = (Vk�1 \ Rnx ) �Wk � fRekg. Then, using Proposition4.2 and the fa
t that Wk�1 =Wk � fRekg, we have(4.35) lim"!0�ln 1"�k�n�2 lim supR!1 1Rk�1 H "�K;L1e�j(x0�te01;y)j(Vk�1(R)�Wk�1)� = 0:Using the obvious inequalitye�j(x0�te01;y)j � "e�jx0�te01j for jyj � ln 1=";we derive from (4.35) that(4.36) lim"!0�ln 1"�k�n�2 lim supR!1 1Rk�1 H "�K;L1e�jx0�te001 j(Vk�1(R)� [0; ek ln 1" ℄�Wk)� = 0:Arguing now as in the end of the proof for the �rst 
ase (after obtaining estimate(4.34)) and using the subadditivity of fun
tion (4.23), we derive that bhVkk (A) = 0whi
h 
ontradi
ts to (4.27) and �nishes the proof of Theorem 4.3.Remark 4.4. We have proved, in a fa
t, a slightly more strong result, namely, wehave obtained the following estimate:(4.37) bhVkk (A) � LbhVk�1k�1 (A); Vk�1 � Vk;for the appropriate 
onstant L whi
h is independent of k and Vk. This result 
anbe 
onsidered as a generalization of the well known relation between the fra
tal di-mension and the topologi
al entropy for the Lips
hitz 
ontinuous dynami
al sytemswith one dimensional 'time':(4.38) htop(A) � L dimF (A):Indeed, for one dimensional 'time' (n = 0), we have bh0(A) = dimF (A) and bh1(A) =htop(A). 34



Corollary 4.2. Let the assumptions of Theorem 4.1 hold and let, in addition,topologi
al entropy (4.8) is stri
tly positive. Then, for every k 2 [0; � � � ; n+ 1℄ andfor every k-dimensional hyperplane Vk, the 
orresponding topologi
al entropy is alsostri
tly positive: bhVkk (A) > 0.On the other hand, if the 0-dimensional entropy is equal to zero, i.e.lim"!0�ln 1"��n�1 H " �A; L1(Bln 1="0 )� = 0;then all the entropies, de�ned by (4.14) are equal to zero.Remark 4.5. It is possible to 
onsider the spatial and temporal dynami
s fromthe uni�ed point of view. Indeed, let us endow the set K, de�ned in Theorem 3.1by the topology of the spa
e L1e�j(t;x)j(Rn+1) and 
onsider the (n+1)-parametri
alsemigroup of spatial and temporal shifts fT(s;h); s 2 R+ ; h 2 Rng a
ting in thisspa
e. Then, by de�nition, the set K is stri
tly invariant under this semigroup:(4.39) T(s;h)K = K; (T(s;h))u(t; x) := u(t+ s; x+ h); s 2 R+ ; h 2 Rnand, 
onsequently, we may de�ne all quantities (4.15) for semigroup (4.39) as well.We denote them by bhVkk (K). We 
laim that(4.40) C1bhVkk (K) � bhVkk (A) � C2bhVkk (K):Indeed, let K+ := K��t�0, then, a

ording to (2.42), we have the Lipts
hitz 
onti-nuous isomorphism between the sets(4.41) �A;W 2;qb;e�qjxj(Rn)�! �K+; L1e�Kjtj(R+ ;W 2;qb;e�qjxj(Rn))� ;whi
h is realized by the solving operator of problem (2.1) (if K is large enough, seealso (4.31) and [43℄). We also note that, due to (4.31), the entropies of A 
omputedin the L1e�jxj -metri
 
oinsides with the ones 
omputed in the metri
 of the left handside of (4.41). Therefore, the topologi
al entropies of K+ 
omputed in the metri
 ofthe right-hand side of (4.41) 
oinsides with the 
orresponding topologi
al entropiesof A. Using now estimates (4.16) for estimating the entropies in the uni�ed metri
e�j(t;x)j, we easily derive the following analogue of estimates (4.40):(4.42) C1bhVkk (K+) � bhVkk (A) � C2bhVkk (K+):Arguing as in the proof of Theorem 4.3, we derive thatbhVkk (K+) � bhVkk (K) � C3bhVkk (K+);whi
h implies estimate (4.40).x5 Lower bounds of the "-entropy and spatial 
haos.In this Se
tion, following [39℄ and [43℄, we derive the lower bounds for the Kol-mogorov's "-entropy of the attra
tor A of spatially homogeneous equation (2.1) in35




 = Rn (assumptions (4.1) are assumed to be satis�ed) and obtain a topologi
aldes
ription of the spatial 
omplexity of this attra
tor.We �rst note that it follows from 
onditions (2.3) that equation (2.1) possessesat least one spatially homogeneous equilibrium z0 2 Rn , f(z0)+�0z0 = g. Withoutloss of generality, we may assume that z0 � 0 (f(0) = g = 0) and, 
onsequently,equation (2.1) has the following view:(5.1) �tu = a�xu� (L;rx)u+Bu� �f(u); �f(0) = �f 0(0) = 0;where B := ��0u � f 0(0) 2 L(Rk ;Rk ) and �f(u) := f(u) � f 0(0)u. Our mainassumption is the following: the equilibrium z0 = 0 is exponentially unstable, i.e.(5.2) �(a�x � (L;rx) +B) \ fRe z > 0g 6= ?;where �(T ) denotes the spe
trum of the operator T .In order to formulate the result on the in�nite dimensional unstable manifold forequation (5.1), we need the following 
lassi
al spa
es (see e.g. [27℄).De�nition 5.1. We denote by B � (Rn) = B � (Rn ; C ) the subspa
e of L1(Rn ; C )whi
h 
onsists of all fun
tions � the Fourier transform b� of whi
h satis�es(5.3) supp b� � [��; �℄n:Analogously, we denote by B �;� (Rn ), � 2 Rn a slightly general 
lass of fun
tionswhi
h 
onsists of fun
tions � the Fourier transform b� of whi
h satis�es(5.4) supp b� � � + [��; �℄n:We re
all that the spa
e B �;� is isomorphi
 to B � and this homeomorphism is givenby multipli
ation on the fun
tion ei�:x.Theorem 5.1. Let the assumptions of Theorem 4.1 hold, equation (2.1) have theform (5.1), and assumption (5.2) be satis�ed. Then, for every N >> 1, there exist apositive number � > 0, a ve
tor �0 2 Rn , � < j�0j, a positive number r = r(N) > 0and a map(5.5) U0 : B(r; 0; B �0 ;�)!A; Th Æ U0 = U0 Æ Th;where B(r; v; V ) denotes the r-ball of the spa
e V 
entered at v, su
h that, for everyx0 2 Rn , the following estimates hold:(5.6) 8<: kU0(u1)� U0(u2); B1x0k2;q � CN supx2
 ku1�u2;B1xk0;1(1+jx�x0j2N )1=2 ;ku1 � u2; B1x0k0;1 � CN supx2
 kU0(u1)�U0(u2);B1xk2;q(1+jx�x0j2N)1=2 ;where the 
onstant CN depends only on N and is independednt of x0.Moreover, there exists a ve
tor ~l 2 Rk and a linear operator S : B �0 ;�(Rn) !W 2;qb (Rn ;Rk ) su
h that(5.7) S(u0):~l � Re u0; for every u0 2 B �0 ;�(Rn )and, for every u0 2 B(r; 0; B �0 ;�), the following estimate hold:(5.8) kU0(u0)� S(u0)kW 2;qb (Rn) � Cku0k2L1b (Rn):The detailed proof of this theorem is given in [43℄, for the 
ase L = 0. Thegeneral 
ase L 6= 0 is 
ompletely analogous, so we omit the proof here (see alsoSe
tion 7 where the proof of the analogous result will be given in a more 
ompli
atedsituation).Estimate (5.8), together with the information about the "-entropy in the spa
esB � allows to obtain the lower bounds for the attra
tor of equation (2.1).36



Theorem 5.2. Let the assumptions of Theorem 5.1 hold. Then, the "-entropy ofthe attra
tor A of this equation possesses the following estimate:(5.9) H " �A; L1(BR0 )� � CRn ln 1" ; " � "0 < 1;whi
h shows that (3.8) is sharp, if R� ln 1=" and for R � ln 1" .Moreover, for every Æ > 0, there exists a 
onstant CÆ > 0 su
h that(5.10) H " �A; L1(B10)� � CÆ �ln 1"�n+1�Æ ; " � "0 < 1and, 
onsequently, (3.8) is sharp for the 
ase R� ln 1" as well.Proof. Let u10; u20 2 B(�; 0; B �0 ;�) and � � r (where r; �; �0 are the same as inTheorem 5.1). Then, for every R > 0(5.11) kU0(u10)� U0(u20)kL1(BR0 ) � kRe(u10 � u20)kL1(BR0 ) � C�2;where C is independent of R. Indeed, a

ording to (5.8) and (5.7)kU0(u10)� U0(u20)kL1(BR0 ) �� kSu10 � Su20kL1(BR0 ) � kU0(u10)� Su10kL1(Rn) � kU0(u20)� Su20kL1(Rn) �� kSu10 � Su20kL1(BR0 ) � C1(ku10k2B�;�0 + ku20k2B�;�0 ) �� kRe(u10 � u20)kL1(BR0 ) � C�2:Thus,(5.12) H "=4 �A; L1b (BR0 )� � H " �B(� "2C �1=2 ; 0; BRe�0 ;�); Cb(BR0 )� == H (2C")1=2 �B(1; 0; BRe�0 ;�); Cb(BR0 )� ;where, by de�nition, BRe�0 ;�(Rn ;R) := Re B �0 ;�(Rn ; C ). To 
omplete the proof of thetheorem, we need the following lemma.Lemma 5.1. The "-entropy of the unit balls in the spa
es B �0 ;� and BRe�0 ;� possessesestimates (5.9) and (5.10) (where A is repla
ed by B(1; 0; B �0 ;�) or B(1; 0; BRe�0 ;�)respe
tively).The proof of the lemma is given, e.g. in [27℄ or [39℄ for the spa
es B �0 ;�. The
ase of B �0 ;� is 
ompletely analogous (see also [43℄).Estimating entropy in the right-hand side of (5.12) by Lemma 5.1, we immedia-tely obtain estimates (5.9) and (5.10) for the "-entropy of the attra
tor and �nishthe proof of Theorem 5.2.Corollary 5.1. Let the assumptions of Theorem 5.1 hold. Then, the (modi�ed)topologi
al entropy bhsp(A) (see (4.17)) is stri
tly positive:(5.13) bhsp(A) > 037



and, 
onsequently (due to Theorem 4.3), the topologi
al entropies bhVkk (A) are alsostri
tly positive, for all Vk � Rnx .Remark 5.1. It follows from (5.13) that the (
lassi
al) topologi
al entropy of thegroup fTh; h 2 Rng a
ting on the attra
tor (whi
h is de�ned by (4.15) without thestabilizing fa
tor (ln 1=")�1) is in�nite. The same is true for all its subsemigroupsfTh; h 2 Vkg if Vk � Rnx .Theorem 5.1 allows also to obtain some topologi
al des
ription of the spatial
omplexity of the attra
tor A.Corollary 5.2. Let the assumptions of Theorem 5.1 hold and let(5.14) K := B(r; 0; B �0 ;�) endowed by the topology of L1lo
(Rn);where r, � and �0 be the same as in Theorem 5.1. Then, the map U0 realizes ahomeomorphism(5.15) U0 : (K ; Th)! (U0(K ); Th) � (A; Th) :Moreover, this homeomorphism preserves the topologi
al entropy bhsp(5.16) 0 < bhsp(K ) = bhsp(U0(K )) � bhsp(A):Proof. The fa
t that the map U0 is a homeomorphism in a lo
al topology is animmediate 
orollary of estimates (5.6). The homeomorphism of 'dynami
al systems'follows from the fa
t that U0 
ommutes with Th (see (5.5)). Relations (5.16) 
anbe easily derived from Lemma 5.1 and from estimates (5.6) (see [43℄). Corollary5.2 is proved.Thus, we have 
onstru
ted the embedding of the model 'dynami
al system'(K ; Th) to the spatial dynami
s on the attra
tor. In order to 
larify the 
haoti
nature of this model dynami
al sytem, we resti
t ourselves to 
onsider the dis
retedynami
s fTh; h 2 �Zng for the appropriate � > 0. For this 
ase, the des
riptionof the dynami
s (K ; Th) 
an be essentially simpli�ed.De�nition 5.2. Let D := fz 2 C : jzj � 1g be a unit disk in C . We setM := D Znand endow this spa
e by the standard Tikhonov's topology. We de�ne a groupfTl; l 2 Zng on M as follows:(5.17) (Tlv)(m) := v(l+m); l;m 2 Zn; v 2 M;where the spa
e M is interpreted as a spa
e of all fun
tions v : Zn ! D .Propositrion 5.1. There exist a positive number � > 0 and a 
ontinuous map� :M! K su
h that(5.18) T�l�(v0) = �(Tlv0); l 2 Zn; v0 2 M:Moreover, for every weight fun
tion with polinomial growth rate � < 1, the followingestimate is valid:(5.19) C1kv1 � v2kL1� (Zn) � k�(v1)� �(v2)kL1� (Rn) � C2kv1 � v2kL1� (Zn);38



for every v1; v2 2 M (where the 
onstants Ci depend only on � and C� fromassumption (1.2)).If we de�ne the (modi�ed) topologi
al entropy for (M; Tl) as follows:(5.20) bhsp(M) := lim sup"!0 �ln 1"��1 limT!1 1Tn H " (M; L1([0; T ℄n)) ;(
ompare with (4.15) and (4.18)), then the map � preserves the topologi
al entropy(up to the multiplier �n):(5.21) 0 < ��nbhsp(M) = bhsp(�(M)) � bhsp(K ):The proof of Proposition 5.1 is based on the 
lassi
al Kotelnikov-Cartrait inter-polation formula (see [27℄) for fun
tions from the 
lass B � and is given in [43℄.Combining Theorem 5.2 and Proposition 5.1, we obtain the following result.Theorem 5.3. Let the assumptions of Theorem 5.1 hold. Then, there exists anumber � > 0 and a homeomorphi
 embedding(5.22) � : (M; Tl)! (A; T�l) ; l 2 Zn;whi
h preserves the (modi�ed) topologi
al entropy(5.23) 0 < ��nbhsp(M) = bhsp(�(M)) � bhsp(A):Indeed, it is suÆ
ient to take � := U0 Æ �.Remark 5.2. The dynami
al system (M; Tl) 
an be 
onsidered as one of possibleways to generalize the symboli
 dynami
s (Bernoulli shifts, see e.g. [25℄) to the 
aseof in�nite (and even 
ontinual) number of symbols. Indeed, 
onsidering the 
losedinvariant subset MN � M whi
h 
onsists of fun
tions v : Zn ! fa1; � � � ; aNg,where ai 2 D are di�erent 
omplex numbers, we obtain from (5.22) the embeddingof the symboli
 dynami
s with �nite number N symbols to the dynami
al system ofspatial shifts on the attra
tor. Thus, the 
onstru
tion of embedding (5.22) 
lari�esthe nature of the spatial 
haotisity on the attra
tor of (2.1), in parti
ular, it explainswhy we should use the fa
tor (ln 1" )�1 for the proper de�nition of the topologi
alentropy bhsp of the spatial dynami
s on the attra
tor (see, e.g. [43℄ for a moredetailed study of the phenomena of spatial 
haos).Thus, embedding (5.22) shows that the spatial dynami
s on the attra
tor A isextremely 
haoti
. In parti
ular, this embedding allows to realize (up to a ho-meomorphism) every �nite dimensional dynami
s by restri
ting the group of shitftsfTh; h 2 Rng to the appropriate spatially invariant subset of A. To be more pre
ise,the following result holds.Corollary 5.3. Let the assumptions of Theorem 5.1 hold, let K � RN be anarbitray 
ompa
t set in RN , N 2 N, and let F1; � � � ; Fn : K ! K be arbitrarypairwise 
ommutative homeomorphisms, i.e.(5.24) Fi Æ Fj = Fj Æ Fi; i; j 2 f1; � � � ; ng:39



Then, there exist a positive number 
 = 
(N) > 0 and a homeomorphism(5.25) b� : K ! b�(K) � A;su
h that(5.26) T
lb�(k) = b� �F l11 Æ � � � Æ F lnn (k)� ; k 2 K; l 2 Zn;where F lii denotes the li-th iteration of the map Fi.Proof. Indeed, due to Theorem 5.3, it is suÆ
ient to 
onstru
t only the embedding�� : K ! M whi
h satis�es (5.26). Moroever, without loss of generality, we mayassume that K � DMn , for the appropriate M 2 N , and f(k)m1;��� ;mn 2 D ; mi =0; 1; � � � ;M � 1g is the 
orresponding 
oordinate system in it. We de�ne the map�� : K !M by the following formula:��(k)(l) := �F k11 Æ � � � Æ F knn (k)�r1;��� ;rn ; li = kiM+ri; ki 2 Z; ri 2 f0; � � � ;M�1g:Then, obviously, this map satis�es (5.26) with 
 =M and the 
ontinuity of this em-bedding follows immediately from the fa
t that Fi are homeomorphisms. Corollary5.3 is proved.In order to study the spatial 
omplexity of an individual point at the attra
tor,it is natural to introdu
e (following [43℄) the following quantity.De�nition 5.3. Let u0 2 A. Then, by de�nition, the (modi�ed) spatial entropyof u0 is the following number:(5.27) bhsp(u0) := bhsp(H(u0)); where H(u0) := [Thu0; h 2 Rn ℄L1lo
(Rn);where [�℄V denotes the 
losure in the spa
e V .Corollary 5.4. Let the assumptions of Theorem 5.1 hold. Then, for every pointu0 2 A, its spatial entropy is �nite. Moreover, there exist points u0 2 A the spatialentropy of whi
h is stri
tly positive:(5.28) 0 < bhsp(u0) <1:Indeed, the �rst assertion of the 
orollary follows immediately from Theorem 4.2and the se
ond one follows from Theorem 5.1 and from the obvious fa
t that thedynami
al system fM; Tlg is topologi
ally transitive (i.e. possesses dense orbits).Remark 5.3. It is proved in [43℄ that, under some natural assumptions on (2.1),spatial entropy (5.27) preserves under the temporal evolution:(5.29) bhsp(Stu0) = bhsp(u0); u0 2 A:40



x6 The spatial dynami
al system in the extended phase spa
e.Our next task is to extend Theorem 5.3 to the 
ase of temporal dynami
s. Tothis end, we 
onstru
t the auxiliary dynami
al system for whi
h the dire
tion twill be 'spatial' and, applying the algorithm of studying the spatial 
haos given inSe
tion 5 to that system, we obtain the des
ription of the temporal 
haos for initialsystem (2.1).As in Se
tions 4 and 5, we 
onsider only spatially homogeneous 
ase(6.1) 
 = Rn ; g � 0; L(x) := L 2 Rn ; f(0) = 0:Moreover, without loss of generality, we may assume that the ve
tor L has the form(6.2) L := Le1; e1 := (1; 0; � � � ; 0); L 2 R+(the general 
ase may be redu
ed to this one by the appropriate spatial rotation).We now introdu
e the following auxiliary paraboli
 boundary value problem inthe half-spa
e x = (x1; x0) 2 R+ � Rn�1 :(6.3) ( �tu = a(�2x1u+�x0u)� L�x1u� �0u� f(u); t 2 R; x0 2 Rn�1 ;u��x1=0 = u0; x1 � 0:We 
onsider this boundary problem as a (formal) evolution equation with respe
tto the variable x1. In order to indi
ate this idea in a more 
lear way, we introdu
enew variables(6.4) � := x1; y = (y1; � � � ; yn) = (y1; y0) := (t; x0):In these variables problem (6.3) has the following view:(6.5) ( a(�2�u+�y0u)� L��u� �0u� f(u) = �y1u; y 2 Rn ; � � 0;u���=0 = u0:The following theorem shows that problem (6.5) de�nes indeed a dynami
al systemwith respe
t to �, if L is large enough.Theorem 6.1. Let the assumptions of Theorem 2.1 hold and (6.2) be satis�ed. Wealso assume that there exists a nonnegative 
onstant �0 � 0 su
h that(6.6) L�0 � �a+ � 2a�(a+)�1a���20 �K > 0;where a+ := 1=2(a+ a�), a� := 1=2(a� a�) and K is the same as in (2.3). Then,for every u0 2 	b(R�Rn�1) := fu0; �tu0 2W (1�1=(2q);2�1=q);qb (Rn )g, problem (6.5)has a unique bounded solution u(�; y), i.e. the unique solution in the 
lass(6.7) u; �tu 2W (1;2);qb �Rt � �R+;x1 � Rn�1x0 �� :Proof. The existen
e of a solution for problem (6.5) follows from Theorems 2.1and 2.2 (even without assumption (6.6)). Indeed, it follows from these theoremsthat problem (6.5) with additional 
onditions y1 > �N and u��y1=�N = u0 (where41



u0 2W 2;qb (R+ � Rn ) su
h a fun
tion that u0 � 0, if � > 1, ku0kb;2;q � ku0k	b , andthe �rst 
ompatibility 
ondition at � = 0, y1 = �N is satis�ed) has a solution uN ,for every N 2 N . Moreover, estimate (2.9) implies that(6.8) kuN (t); B1x0k2;q + k�tuN (t); B1x0k0;q � Q(ku0k	b) +Q(kgkLqb);where the fun
tion Q is independent of N and x0. Passing now to the limit N !1and using uniform estimate (6.8), we easily derive the existen
e of a solution forproblem (6.6). We also note that estimate (2.9) implies the following estimate forthis solution:(6.9) ku(t); B1x0k2;q + k�tu(t); B1x0k0;q � Q(ku0k	b)e��� +Q(kgkLqb);where Q and � are independent of t and x0. We now re
all that 	b(Rn) is atra
e spa
e for spa
e (6.7) to the hyperplane x1 = 0 (see e.g. [28℄), 
onsequently,di�erentiating equation (6.5) with respe
t to t � y1 and applying the paraboli
Lq-regularity theorem to the obtained equation, we derive from (6.9) that(6.10) Z T+1T �ku(t); B1x0kq2;q + k�tu(t); B1x0kq2;q + k�2t u(t); B1x0kq0;q� dt �� Q(ku0k	b)e��x1 +Q(kgkLqb);where Q and � are independent of x0 and T . Thus, the existen
e of a solution of(6.5) in the 
lass (6.7) is veri�ed. Moreover, (due to the embedding theorem andthe fa
t that q > n+ 1), we have(6.11) kukC1b (R+�Rn) � Q(ku0k	b) +Q(kgkLqb);for the appropriate monotoni
 fun
tion Q.Let us verify now the uniqueness of a solution under assumption (6.6). Indeed,let u1(�) and u2(�) be two solutions of problem (6.5) and let v(�) := u1(�)�u2(�).Then, this fun
tion satis�es the following relation:(6.12) ( a(�2�v +�y0v)� L��v � �0v � l(�)v = �y1v; y 2 Rn ; � � 0;v���=0 = 0;where l(�) := R 10 f 0(su1(�) + (1� s)u2(�)) ds. Moroeover, due to (2.3) and (6.11),we have(6.13) l(�) � �K and klkC1b (R+�Rn) � Q(kui���=0k	b):Let us now introdu
e the variable �(�) := e��0�v(�), where �0 � 0 is the same asin (6.6). Then, we have the following equation:(6.14) a(�2�� +�y0�)� (L� 2a�0)��� � �L�0 � a�20 � l(�)� � � �0� = �y1�:Let us multiply equation (6.14) by e�"(j���0j+jy�y0j)�(�) :=  "(�; y)�, where �0 � 0,y0 2 Rn and " is a small parameter whi
h will be �xed below, and integrate over(�; y) 2 R+ � Rn (sin
e v is bounded and �0 � 0 then � is also bounded and,42




onsequently, all integrals obtained below have a sense). Then, we derive, after theintegration by parts, using inequality (2.11) and evident estimates, that(6.15) � ha+���:���;  "i�ha+ry0�:ry0�;  "i+2�0j ha����:�;  "i j��0 
j�j2;  "�� 
(L�0 � a+�20 �K)�:�;  "�+ C" 
j���j2 + jry0�j2 + j�j2;  "� � 0;here and below hu; vi denotes the standard inner produ
t in L2(R+ �Rn). Estima-ting the third term in (6.15) as follows:2�0j ha����:�;  "i j � �1=2 ha+���:���;  "i+ 2�20 
a�(a+)�1a��:�;  "� ;we obtain the inequality(6.16) 1=2 ha+���:���;  "i+ ha+ry0�:ry0�;  "i+ �0 
j�j2;  "�+
(L�0 � (a+ � 2a�(a+)�1a�)�20 �K)�:�;  "� �� C" 
j���j2 + jry0�j2 + j�j2;  "� :Due to 
ondition (6.6), the third term in (6.16) is nonnegative, 
onsequently, thereexists a positive 
onstant � > 0 (independent of ", �0 and y0) su
h that(6.17) (�� C") 
j���j2 + jry0�j2 + j�j2;  "� � 0;whi
h implies that � � 0 if " is small enough and �nishes the proof of Theorem 6.1.Corollary 6.1. Let the assumptions of Theorem 6.1 hold. Then, problem (6.5)de�nes a semigroup fS�; � � 0g in the phase spa
e 	b(Rn ):(6.18) S� : 	b ! 	b; � � 0; S�u0 := u(�);where u(�) is a solution of (6.5), with u(0) = u0. Moreover, this semigroup pos-sesses the following estimate:(6.19) kS�u0k	b � Q(ku0k	b)e��� +Q(kgkLqb);for the appropriate positive � > 0 and monotoini
 fun
tion Q.Indeed, estimate (6.19) is an immediate 
orollary of (6.10) and the de�nition ofthe tra
e spa
e 	b. The existen
e of the semigroup follows then from the mainassertion of Theorem 6.1.Our task now is to study dynami
al system (6.18). At the �rst step, we show thatthis system is Lips
hitz 
ontinuous in the spa
es 	�";y0 , where �";y0(y) := e�"jy�y0j(see De�nitions 1.2 and 1.5), if " > 0 is small enough.Corollary 6.2. Let the assumptions of Theorem 6.1 hold and let u1(�) and u2(�)be two bounded solutions of (6.5), with di�erent 'initial values'. Then, the followingestimate is valid:(6.20) ku1(�)� u2(�)k	�";y0 � Ce(�0�")�ku1(0)� u2(0)k	�";y0 ;43



where " > 0 is small enough and the 
onstant C depends only on " and kui(0)k�b,i = 1; 2 (but is independent of y0 2 Rn).Proof. Let, as in the proof of Theorem 6.1, �(�) := e��0�(u1(�) � u2(�)). Then,this fun
tion satis�es equation (6.14), with non-zero boundary 
onditions ����=0 =u1(0)� u2(0). Let us now introdu
e a fun
tion w(�; y) := �w(t; x) (the extention ofthe fun
tion u1(0) � u2(0) inside of the domain R+ � Rn) whi
h belongs to 
lass(6.7) and satis�es the following 
ondition:(6.21) �w(t; x) � 0; for x1 � 1and the following inequality:(6.22) k �wkW (1;2);q([T;T+1℄�(B1x0\
+)) + k�t �wkW (1;2);q([T;T+1℄�(B1x0\
+)) �� Cku1(0)� u2(0)k	([T�1;T+2℄�(B2x0\�
+));where 
+ := R+;x1 � Rn�1x0 , the 
onstant C is independent of T 2 R and x0 2 
+and the spa
e 	 is de�ned in (2.5). Su
h an extension exists sin
e 	b is the tra
espa
e for fun
tions of 
lass (6.7). Let �1(�) := �(�) � w(�). Then, this fun
tion,obviously, satis�es the non-homogeneous analogue of (6.14):(6.23) a(�2��1 +�y0�1)� (L� 2a�0)���1 � �L�0 � a�20 � l(�)� �1 � �0�1 == �y1�1 + h(�);where �1���=0 = 0 and, a

ording to (6.13), (6.21) and (6.22), the fun
tion h(�) :=h(�; y) = �h(t; x) satis�es(6.24) k�hkLq([T;T+1℄�(B1x0\
+))k�t�hkLq([T;T+1℄�(B1x0\
+)) �� C1ku1(0)� u2(0)k	([T�1;T+2℄�(B2x0\�
+));where the 
onstant C1 depends on kui(0)k	b , but is independent of T 2 R andx0 := (�; x00) 2 
. We also note that the right-hand side of (6.24) vanishes if � � 2,sin
e, in this 
ase, B2x0 \ �
+ = ?.Multiplying now equation (6.23) by e�"j���0j�"jy�y0j�1 and arguing as in theproof of Theorem 6.1, we derive that, for suÆ
iently small " > 0 the followingestimate holds:(6.25) Dj���1j2 + jry0�1j2 + j�1j2; e�"j���0j�"jy�y0jE �� C 00 Djhj2; e�"j���0j�"jy�y0jE ;where the 
onstant C 00 is independent of �0 and y0. Estimates (6.24) and (6.25)imply that(6.26) k�1kL2([T;T+1℄�(B1x0\
+)) �� C2e�"�ku1(0)� u2(0)k	�";y0 ; y0 := (T; x00); x0 := (�; x00);where C2 depends on kui(0)k	b , but is independent of T 2 R and x0 2 
+.44



We now re
all that, due to the standard interior regularity theory applied toparaboli
 equation (6.23) (see e.g. [28℄), we have the following estimate:(6.27) k�1kW (1;2);q([T;T+1℄�(B1x0\
+)) + k�t�1kW (1;2);q([T;T+1℄�(B1x0\
+)) �� C3�k�1kL2([T�1;T+1℄�(B2x0\
+)) + khkLq([T�1;T+1℄�(B2x0\
+))++ k�thkLq([T�1;T+1℄�(B2x0\
+))�;where C3 is independent of T 2 R and x0 2 
+. Inserting estimates (6.26), (6.24)into the right-hand side of (6.27) and using the de�nition of the tra
e spa
e 	, weobtain, after simple 
al
ulations, thatk�1(�)k	(B1y0 ) � C4e�"�ku1(0)� u2(0)k	�";y0 (Rn)and, 
onsequently(6.28) ku1(�)� u2(�)k	(B1y0 ) � C5e(�0�")�ku1(0)� u2(0)k	�";y0 (Rn);where the 
onstants C4 and C5 depend on kui(0)k	b and ", but are independent ofy0 2 Rn . Multiplying this estimate by e�"1jy0�zj, "1 < ", integrating over y0 2 Rnand using estimate (1.7), we derive (6.20). Corollary 6.2 is proved.Corollary 6.3. Let the assumptions of Theorem 6.1 hold. Then, the semigroupfS�; � > 0g de�ned by expression (6.18) possesses a lo
ally 
ompa
t attra
tor Asp(i.e. (	b;	lo
)-attra
tor, see De�nition 3.1). Moreover, this attra
tor has thefollowing stru
ture:(6.29) Asp = K��x1=0;where K is the same as in Theorem 3.1.Proof. Indeed, a

ording to the attra
tors existen
e theorem for abstra
t semi-groups (see e.g. [4℄, [24℄ or [34℄), it is suÆ
ient to verify the following 
onditions:1. The semigroup (6.18) is 	lo
-
ontinuous on every 	b-bounded set.2. There exists an absorbing set B � 	b for this semigroup, whi
h is 
ompa
tin 	lo
-topology.We note that the �rst 
ondition is an immediate 
orollary of estimate (6.20).Let us verify the se
ond one. It follows from estimate (6.19) that the set(6.30) BR := fu0 : ku0k	b � Rgis an absorbing set for semigroup (6.18), if R is large enough (whi
h is not 
ompa
tin 	lo
). We 
laim, however, that the set B := S1BR is a desired absorbing setwhi
h is (pre)
ompa
t in 	lo
.Indeed, it follows from (6.10) and from the embedding theorem (q > n+1) thatkf(u)kC1b (R+�Rn) � C = C(R);if u(0) 2 BR. Consequently, due to the L2q-interior regularity theorem for theparaboli
 equations (see (6.27), where q is repla
ed by 2q) and due to the expli
itdes
ription of the 
orresponding tra
e spa
e at � = 0, we have(6.31) ku(1)kW (1�1=(4q);2�1=(2q)b (Rn) + k�y1u(1)kW (1�1=(4q);2�1=(2q)b (Rn) � Q1(R);45



if u(0) = u0 2 BR. There now remains to note that the spa
e in the left-hand sideof (6.31) is 
ompa
tly embedded to 	lo
.Thus, all the 
onditions of the attra
tors existen
e theorem are veri�ed for se-migroup (6.18) and, 
onsequently, it possesses a lo
ally 
ompa
t attra
tor Asp.Des
ription (6.29) also follows from this abstra
t theorem and from the evidentfa
t that the sets of all bounded traje
tories for semigroups (6.18) and (2.41) 
oin-side. Corollary 6.3 is proved.Our next task is to verify that the semigroup fS�; � > 0g is di�erentiable withrespe
t to the initial data u0. To this end, we need the solvability result for the
orresponding equation of variations.Corollary 6.4. Let the assumptions of Theorem 6.1 hold, u(�) := S�u0, u0 2 	b,be an arbitrary solution of (6.5), and a fun
tion h(�; y) be su
h that(6.32) e��0�h(�; y); e��0��y1h(�; y) 2 Lqb(R+ � Rn):Then, for every w0 2 	b, the following problem:(6.33) ( a(�2�w +�y0w)� L��w � �0w � f 0(u(�))w = �y1w + h;w���=0 = w0has a unique solution in the 
lass(6.34) w 2 L1e��0� (R+ ;	b(Rn ))and the following estimate is valid, for a suÆ
iently small " > 0 and for everyy0 2 Rn :(6.35) kw(�)kq	�";y0 � Ceq(�0�")�kw0kq	�";y0++ Ceq�0� Z 10 e�q"j���0j�q�0�0 �kh(�0)kqLq�";y0 + k�y1h(�0)kqLq�";y0� d�0;where the 
onstant C depends on ku0k	b and ", but is independent of y0.The proof of this Corollary is 
ompletely analogous to that of Theorem 6.1 andCorollary 6.2, so we omit it here.Remark 6.1. It is essential that we 
onsider only su
h solutions w of (6.33) whi
hgrow as � ! +1 not faster than e�0�. Usually, there exists a number of othersolutions of (6.33) whi
h grow faster than e�0�, but all these solutions are out ofthe 
onsideration, due to assumption (6.34).Theorem 6.2. Let the assumptions of Theorem 6.1 hold and let u(�) and u1(�) betwo arbitrary solutions of (6.5). We de�ne the fun
tion w(�) as a unique solution(in 
lass (6.34)) of problem (6.33), with h � 0 and w(0) = u(0) � u1(0). Then,the following estimate is valid, for suÆ
iently small " > 0, � > 0, and for everyy0 2 Rn :(6.36) ku(�)� u1(�)�w(�)k	�";y0 � Ce�0�ku(0)� u1(0)k�	bku(0)� u1(0)k	�";x0 ;46



where the 
onstant C depends on ku(0)k	b, ku1(0)k	b, ", and �, but is independentof y0 2 Rn .Proof. We set v(�) := u(�)� u1(�) and �(t) := v(t)�w(t). Then, the last fun
tionsatis�es the following equation:(6.37) ( a(�2�� +�y0�)� L��� � �0� � f 0(u(�))� = �y1� + h(�);����=0 = 0;where(6.38) h(�) := Z 10 [f 0(u(�)� sv(�))� f 0(u(�))℄ ds v(�):Applying estimate (6.35) to equation (6.37), we have(6.39) k�(�)kq	�";y0 �� Ceq�0� Z 10 e�q"j���0j�q�0�0 �kh(�)kqLq�";y0 (Rn) + k�y1h(�)kqLq�";y0 (Rn)� d�0:Thus, there remains to obtain the appropriate estimates for fun
tion (6.38) and itsy1-derivative. To this end, we re
all that f 0 2 C1 and, 
onsequently(6.40) jf 0(�1)� f 0(�2)j � Q�(j�1j+ j�2j)j�1 � �2j�;for every �i 2 Rk and every 0 � � � 1 (here Q� is a monotoni
 fun
tion dependingon � and f . Therefore, (due to the embedding 	b � C and Corollary 6.1)(6.41) kh(�)kLq�";y0 (Rn) � Ckv(�)k�	bkv(�)k	�";y0 ;where C depends on �, ku(0)k	b and ku1(0)k	b, but is independent of y0. Estima-ting the right-hand side of (6.41) by (6.20), we have(6.42) kh(�)kLq�";y0 (Rn) � C1e(1+�)(�0�")�kv(0)k�	bkv(0)k	�";y0 :Arguing analogously, but using the fa
t that f 00 2 C1 and C1 � 	, we have(6.43) k�y1h(�)kLq�";y0 (Rn) � C2e(1+�)(�0�")�kv(0)k�	bkv(0)k	�";y0 :Seting � > 0 in su
h way that (1 + �)(�0 � ") � �0 and inserting estimates (6.42)and (6.43) into the right-hand side of (6.39), we obtain estimate (6.36) after simple
al
ulations. Theorem 6.2 is proved.Corollary 6.5. Let the assumptions of Theorem 6.1 hold. Then, semigroup (6.18)is Fre
het di�erntiable in 	b, for every �xed � � 0 and its Fre
het derivativeDu0S�(u0)� := w�(�), where � 2 	b and w�(�) is a unique solution of (6.33),with h � 0 and w(0) = �. Moreover,(6.44) S� 2 C1+�(	b;	b)47



and the following estimates hold, for every u01; u02 2 	b:kS�(u01)� S�(u02)�Du0S�(u01)(u01 � u02)k	b � Ce�0�ku01 � u02k1+�	b(6.45) kDu0S�(u01)�Du0S�(u02)kL(	b;	b) � Ce�0�ku01 � u02k�	b ;(6.46)where � > 0 and the 
onstant C depends on ku0i k	b, i = 1; 2.Indeed, applying the supremum with respe
t to y0 2 Rn to the both sides of(6.36) and using (1.19), we obtain estimate (6.45). Estimate (6.46) is a standard
orollary of (6.45).Remark 6.2. In 
ontrast to the 
ase of semigroups, generated by the evolutionequations, we 
annot gurantee that S� 2 C2, even for the 
ase where f 2 C1.In a fa
t, in order to obtain the regularity CN , one should require, in addition,assumption (6.6) to be satis�ed not only for � = �0, but also for � = 2�0; � � � ;� =N�0. Fortunately, regularity (6.44) is enough for what follows.Remark 6.3. The method of introdu
ing the spatial dynami
al systems (and theso-
alled spatial redu
tion) was initiated in [26℄ in order to study the ellipti
 boun-dary problems in 
ylindri
al domains from the dynami
al point of view, see also [8℄,[36℄ and the referen
es therein for the further developement of this method and itsappli
ations to ellipti
 boundary problems. Nevertheless, to the best of our kno-ledge, this method has never been dire
tly aplied to study the spatial 'dynami
s'generated by paraboli
 equations.x7 The spatial dynami
al system nearthe exponentially unstable equilibrium.In this Se
tion, we 
onstru
t the in�nite dymensional unstable manifold of zeroequilibrium of the spatial dynami
al system fS�; � � 0g 
onstru
ted in the previousSe
tion. We re
all that, due to Corollary 6.5, this semigroup is of the 
lass C1+�,for some positive � > 0, and the linearized semigroup at u0 = 0(7.1) S0� := Du0S�(0)
an be determined by the following expression: S0�v0 := w(�), where the fun
tionw(�) is a unique (due to Corollary 6.4) solution of the following problem:(7.2) ( a(��w +�y0w)� L��w � �0w � f 0(0)w = �y1w;w���=0 = v0;whi
h belongs to 
lass (6.34). Moreover, estimate (6.35) allows to extend thissemigroup in a unique way to the semigroup, a
ting in the weight spa
e 	�, for everyweight fun
tion � with suÆ
iently small exponential growth rate, in parti
ular, forevery � with polynomial growth rate (see De�nition 1.1).The following proposition des
ribes the spe
trum of this linarized semigroup.Proposition 7.1. Let the assumptions of Theorem 6.1 hold. Then, the spe
trumof the operator S0� , � > 0, in 	b 
oinsides with its spe
trum in 	�, where � is an48



arbitrary weight fun
tion with polynomial growth rate and 
an be found from thefollowing expression:(7.3) �(S0�) = f0g [ f� = e�� : 9� 2 C ; Re � � �0; 9� 2 Rn ; su
h thatdet �a(�2 � j�0j2)� L� � �0 � f 0(0)� i�1� = 0g:The assertion of this Proposition is more or less standard and 
an be veri�edusing the Fourier transform and the 
lassi
al theorems on multipli
ators in Lq(Rn)(see, e.g. [35℄).Our next task is to verify that linearized semigroup (7.1) is exponentially uns-table, if (5.2) is ful�lled.Proposition 7.2. Let the assumption of Theorem 6.1 hold and let, in addition,
ondition (5.2) is also ful�lled, i.e.(7.4) � �a(�2� +�y0)� L�� � �0 � f 0(0)� \ fRe� > 0g 6= ?:Then, linearized semigroup (7.1) is exponentially unstable, i.e(7.5) �(S0�) \ fj�j = �g 6= ?:Proof. Indeed, it follows from (7.4) that there exist a point �0 2 iR, a point �0 2Rn�1 and a point �00, Re�00 > 0 su
h that(7.6) det �a(�20 � j�0j2)� L�0 � �0 � f 0(0)� �00� = 0:On the other hand, 
ondition (6.6) obviously implies that(7.7) Re� �a(�20 � j�0j2)� L�0 � �0 � f 0(0)� < 0:It now follows from (7.6), (7.7) and the 
ontinuity arguments that there exists apoint � 2 C , 0 < Re � < �0, su
h that(7.8) � �a(�2 � j�0j2)� L�0 � �0 � f 0(0)� \ fiRg 6= ?:Consequently, there exists �1 2 R su
h that(7.9) det �a(�2 � j�0j2)� L� � �0 � f 0(0)� i�1� = 0:The assertion of the proposition is an immediate 
orollary of (7.9) and (7.3).We are now ready to formulate the main result of this Se
tion whi
h is theanalogue of Theorem 5.1 for the spatial dynami
al system.Theorem 7.1. Let the assumptions of Theorem 6.1 hold and assumption (5.2) besatis�ed. Then, for every N >> 1, there exist a positive number � > 0, a ve
tor�0 2 Rn , � < j�0j, a positive number r0 = r0(N) > 0 and a 
ommuting with thegroup fT yh ; h 2 Rng of 'spatial' shifts map(7.10) V0 : B(r; 0; B �0 ;�)! Asp; T yh Æ V0 = V0 Æ T yh ;49



su
h that, for every y0 2 Rn , the following estimates hold:(7.11) 8<: kV0(u1)� V0(u2); B1y0k	 � CN supy2Rn ku1�u2;B1yk0;1(1+jy�y0j2N)1=2 ;ku1 � u2; B1y0k0;1 � CN supy2Rn kV0(u1)�V0(u2);B1yk	(1+jy�y0j2N)1=2 ;where the 
onstant CN depends only on N and independednt of y0.Moreover, there exist a ve
tor ~l 2 Rk and a linear operator S0 : B �0 ;�(Rn) !	b(Rn)k su
h that(7.12) S0(u0):~l � Reu0; for every u0 2 B �0 ;�(Rn)and, for every u0 2 B(r; 0; B �0 ;�), the following estimate holds:(7.13) kV0(u0)� S0(u0)k	b(Rn) � Cku0k1+�L1b (Rn);where 1 � � > 0 is the same as in (6.44).Proof. Let L := S1, L0 := S01 , and P := L� L0. Then, due to Corollary 6.5(7.14) kPv0k	�";y0 � C(kv0k	b)kv0k�	bkv0k	�";y0 ;where C is independent of y0.A

ording to des
ription (6.29), it is suÆ
ient 
onstru
t a suÆ
iently large setof bounded ba
kward solutions (i.e. de�ned for � < 0) for problem (6.5) (whi
h
an be parametrized by the points from B(r; 0; B �0 ;�)). Instead of 
onsidering the
ontinuous dynami
s generated by (6.5), we 
onsider the 'equivalent' dis
rete one(7.15) v(m+ 1) = L0v(m) + Pv(m); m 2 Z�;whi
h a
ts on the spa
e of sequen
es fv(m)g 2 L1(Z�;	b). Our plan now is tosolve (7.15) near zero equilibrium using the impli
it fun
tion theorem. To this end,we �rst study the linear non-homogeneous analogue of (7.15)(7.16) w(m+ 1)� L0w(m) = h(m):Lemma 7.1. Let the above assumptions hold. Then, for every � > r(L0) :=j�(L0)j > 1 and for every h 2 L1��m(Z�;	b), there exists a unique solution w 2L1��m(Z�;	b) su
h that(7.17) kwkL1��m (Z�;	b) � CkhkL1��m (Z�;	b)and, 
onsequently, the linear operatorT� : L1��m(Z�;	b)! L1��m(Z�;	b)is well de�ned by the expression (T�h)(l) := w(l). Moreover, for every N 2 N andy0 2 Rn(7.18) kwkL1��m (Z�;	'N;y0 ) � CNkhkL1��m (Z�;	'N;y0 );50



where the weight 'N;y0 is de�ned by (1.6) and the 
onstant CN is independent ofy0 2 Rn .Indeed, the operator T� is given by the following expression:(7.19) (T�h)(l) := lXm=�1Ll�m0 h(m):The fa
t that de�nition (7.19) is 
orre
t, together with estimate (7.17), follows fromthe assumption � > j�(L0)j and from the standard formula for the spe
tral radiusof L0. The fa
t that the fun
tion w := T�h satis�es (7.16) 
an be easily veri�ed ina dire
t way. Estimate (7.18) 
an be obtained in the same way as (7.17) using, inaddition, the fa
t that the spe
tra of L0 in 	b and 	'N;y0 
oinside (a

ording toProposition 7.1).Let us 
onsider now homogeneous problem (7.16) (h � 0).Lemma 7.2. Let the above assumptions hold. Then, there exist a positive num-ber �0, r(L0) > �0 > 1, satisfying �1+�0 > r(L0), a ve
tor �0 2 Rn , a number� > 0, � < j�0j, a ve
tor ~l 2 Rk and a linear operatorS : B �0 ;�(Rn )! L1��m0 (Z�;	b(Rn))k;su
h that1. w(m) := (Su0)(m) is a solution of (7.16) with h � 0, for every u0 2 B �0 ;�.2. (S0u0):~l � Reu0, for every u0 2 B �0 ;�, where S0u0 := (Su0)(0).3. For every N 2 N, every y0 2 Rn and every u0 2 B �0 ;�, the following estimateis valid:(7.20) kSu0kL1��m0 (Z�;	'qN;y0 ) � CNku0kL1'N;y0 (Rn);where the 
onstant CN is independent of y0 and, 
onsequently(7.21) kSu0kL1��m0 (Z�;	b) � Cku0kL1(Rn):Proof. A

ording to Proposition 7.2, there exist a point �0 2 Rn and a point �0 =�(�0): 0 < Re �0 < �0 su
h that(7.22) det �a(�(�0)2 � j�00j2)� L�(�0)� �0 � f 0(0)� i�10� = 0:We note that equation (7.22) de�nes an algebrai
 (2n-sheeted) fun
tion b�(�). Con-sequently, without loss of generality, we may assume that (�0; �0(�0)) is not a bran
hpoint of this fun
tion. Moreover, without loss of generality, we may assume alsothat �0 6= 0 and (1 + �) Re �0 > ln r(L0), where r(L0) is a spe
tral radius of L0whi
h, due to Proposition 7.1, 
an be 
al
ulated as follows:(7.23) ln r(L0) = maxfRe b�(�) : � 2 Rn ;Re b�(�) � �0g:51



Thus, there exist a neighbourhood Br0�0 and smooth fun
tions � : Br0�0 ! Br00�0 ande : Br0�0 ! C k su
h that �(�0) = �0 and(7.24) �a(�(�)2 � j�0j2)� L�(�)� �0 � f 0(0)� i�1� e(�) = 0; for every � 2 Br0�0 :Moreover, we may assume (see e.g. [43℄) that the eigenvalue e(�) is normalized insu
h way that(7.25) e(�):~l = 1; for every � 2 Br0�0 ;for the appropriate 
onstant ve
tor ~l 2 Rk .We also assume that r0 > 0 is small enough that (1 + �)(Re �0 � r00) > ln r(L0)and de�ne �0 := eRe �0�r00 . Moreover, we de�ne the exponent � > 0 in su
h waythat(7.26) supp bu0 � Br0=2�0 ; for every u0 2 B �0 ;�(Rn);where bu0 denotes the Fourier transform of the fun
tion u0.There now remains to de�ne the operator S0 : B �0 ;� ! L1��m0 (Z�;	b(Rn ; C ))kby the expression:(7.27) \S0(u0)(m)(�) := em�(�)
u0(�)e(�); u0 2 B �0 ;�and to de�ne �nally S(u0) := ReS0(u0). Then, it is not diÆ
ult to verify (analo-gously to [43℄) that the operator thus obtained satis�es all the assumptions of thelemma. Lemma 7.2 is proved.Lemma 7.3. Let the above assumptions hold and let S0 be the same as in Lemma7.2. Then, the following estimates hold:(7.28) C�1N ku0kL1'N;y0 (Rn) � kS0u0kL1'N;y0 (Rn) � CNku0kL1'N;y0 (Rn);where the 
onstant CN is independent of y0.Indeed, the right inequality of (7.28) is an immediate 
orollary of Lemma 7.2and the proof of the left one is based on the formula S0u0 = Reu0 and on the fa
tthat every fun
tion from B �0 ;�, with � < j�0j, is determined in a unique way by itsreal part (see [43℄ for the details).Let us verify some important properties of the operator P a
ting on the spa
eof sequen
es.Lemma 7.4. Let the above assumptions hold. Then, the operator P, determinedby the expression(7.29) (Pv)(m) := Pv(m);is of the 
lass(7.30) P 2 C1+�(L1��m(Z�;	b); L1��m(1+�)(Z�;	b));52



for every � > 1 and the following estimate holds, for every N and y0:(7.31) kPvkL1��m(1+�) (Z�;	'N;y0 ) � CNkvk�L1��m(Z�;	b)kvkL1��m (Z�;	'N;y0 );where the 
onstant CN is independent of y0 2 Rn .Proof. Estimate (7.31) is an immediate 
orollary of (7.14) and (1.7). Let us nowverify the di�erentiability. Let v1; v2 2 L1��m(Z�;	b). Then, due to Corollary 6.5(7.32) kP (v1(m))� P (v2(m))�Du0P (v1(m))(v1(m)� v2(m))k	b =kL(v1(m))�L(v2(m))�Du0L(v1(m))(v1(m)�v2(m))k	b�Ckv1(m)�v2(m)k1+�	b :Multiplying (7.32) by ��(1+�)m and taking the supremum over m 2 Z�, we obtainthat the map P is di�erentiable (and verify the evident formula for its derivative).There remains to verify that the derivative is H�older 
ontinuous. Let, in addition,� 2 L1��m(Z�;	b) be an arbitrary sequen
e. Then, due to (6.46)(7.33) k[Du0P (v1(m))�Du0P (v2(m))℄�(m)k	b == k[Du0L(v1(m))�Du0L(v2(m))℄�(m)k	b � Ckv1 � v2k�	bk�(m)k	b:Multiplying now this relation by ��(1+�)m and taking the supremum over m 2 Z�,we verify that the derivative is indeed H�older 
ontinuous and �nish the proof ofLemma 7.4.We are now ready to 
omplete the proof of the theorem. To this end, we rewriteequation (7.15) as follows:(7.34) v = Su0+ T�1+�0 Pv;where �0 > 1 is the same as in Lemma 7.2, u0 2 B �0 ;� and v 2 L1��m0 (Z�;	b) andsolve it near 0 using the impli
it fun
tion theorem. Indeed, let us de�ne the map(7.35) F : L1��m0 (Z�;	b)� B �0 ;�(Rn)! L1��m0 (Z�;	b)by the following expression(7.36) F(v; u0) := v � Su0� T�1+�0 Pv;A

ording to our 
onstru
tion, �1+�0 > r(L0) and, 
onsequently (due to Lemmata7.1 and 7.4), fun
tion (7.36) is well de�ned. Moreover, it follows from Lemma7.4 that this fun
tion is of the 
lass C1+� and DvF(0; 0) = Id. Thus, due to theimpli
it fun
tion theorem, there exist r0 > 0 and a C1-map V : B(r0; 0; B �0 ;�) !L1��m0 (Z�;	b) su
h that(7.37) F(V(u0); u0) = 0and, 
onsequently, the fun
tion v := V(u0) solves (7.15). We now set V0(u0) :=V(u0)(0). We 
laim that this map satis�es all the assertions of Theorem 7.1. Indeed,sin
e Du0V(0) = 0, then(7.38) kV(u0)kL1��m0 (Z�;	b) � Cku0kL1 � Cr0:53



It follows from (7.31), (7.37), and (7.38) that(7.39) kV(u0)� Su0kL1��m0 (Z�;	b) � Cku0k1+�L1 :Restri
ting (7.39) to m = 0, we obtain (7.13). Let us verify estimates (7.11). Letu1; u2 2 B(r0; 0; B �0 ;�). Then, it follows from (7.37), (7.17), and from (6.45) that(7.40) kV(u1)� V(u2)� S(u1� u2)kL1��m0 (Z�;	'N;y0 ) �� CN 2Xi=1 kV(ui)k�L1��m0 (Z�;	b)kV(u1)� V(u2)kL1��m0 (Z�;	'N;y0 ):Using now estimates (7.38), (7.20) and de
reasing r0 > 0, if ne
erssary, we derivefrom (7.40) that(7.41) kV(u1)� V(u2)kL1��m0 (Z�;	'qN;y0 ) � CNku1 � u2kL1'N;y0 ;for all u1; u2 2 B(r0(N); 0; B �0 ;�) and for suÆ
iently small positive r0(N) > 0. The�rst estimate of (7.13) is an immediate 
orollary of this estimate (with N repla
edby N �n�1). Let us now verify the se
ond one. To this end, we derive from (7.40)and from (7.28) that(7.42) C�1N ku1 � u2kL1'N;x0 � kV0(u1)� V0(u2)kL1'N;x0++ C 0N 2Xi=1 kV(ui)k�L1��m0 (Z�;	b)kV(u1)� V(u2)kL1��m0 (Z�;	'N;y0 ):Inserting estimates (7.38) and (7.41) into the right-hand side of (7.42), we have(7.43) ku1 � u2kL1'N;x0 � CkV0(u1)� V0(u2)kL1'N;x0 + C 00Nr�0 ku1 � u2kL1'N;x0 :Setting now r0 = r0(N) small enough, we obtain from (7.43) that(7.44) ku1 � u2kL1'N;x0 � C1kV0(u1)� V0(u2)kL1'N;x0 ;for every u1; u2 2 B(r0(N); 0; B �0 ;�). Thus, the se
ond estimate of (7.13) is alsoveri�ed. We also note that the fa
t that V0 
ommutes with 'spatial' shifts followsfrom the fa
t that all operators involving in equation (7.34) 
ommute with theseshifts and from the uniqueness part of the impli
it fun
tion theorem.Thus, there remains to verify embedding (7.10). Let u0 2 B(r0; 0; B �0 ;�). Thenv(m) := � V(u0)(m) if m 2 Z�;Lm(u0) if m 2 Nis a 
omplete bounded traje
tory of the dis
rete semigroup generated by the ope-rator L. Moreover, it is also follows from Theorem 6.1 that the fun
tion v(�) :=S�v(m), where � = � +m, m 2 Z and 0 � � < 1, is a 
omplete bounded traje
tory54



of the 
ontinuous semigroup S�. Therefore, due to (6.29), v(0) = V(u0) 2 Asp andTheorem 7.1 is proved.Remark 7.1. We have proved a little more: namely, that there exists a Lipts
hitz
ontinuous embedding:(7.45) ~V : (B(r0; 0; B �0 ;�); T yh )! (K; T yh ) ;su
h that(7.46) C�1ku1 � u2kL1'N;y0 �� k~V(u1)� ~V(u2)kCe��0j�j(R;�'qN;y0 ) � Cku1 � u2kL1'N;y0 ;for the appropriate 
onstant C whi
h is independent of y0. Indeed, this embeddingis given by formula(7.47) ~V(u0)(�) := � S�V(m); � = f�g; m = [�℄ if � < 0,S�V0(u0) if � > 0.Corollary 7.1. Let the assumptions of Theorem 7.1 hold. Then, for " < "0 < 1,the follwowing estimate holds:(7.48) H " �Asp; L1(y 2 BR0 )� � CRn ln 1" :Moreover, for R = 1 and for every Æ > 0, there exists CÆ > 0 su
h that(7.49) H " �Asp; L1(B10)� � CÆ �ln 1"�n+1�Æ :The proof of estimates (7.48) and (7.49) is 
ompletely analogous to that givenin Theorem 5.2 (only instead of (5.8) one should use (7.13)).Corollary 7.2. Let the above assumptions hold. Then, the 'spatial' topologi
alentropy (i.e. the entropy, whi
h 
orresponds to the 'spatial' shifts T yh ) is stri
tlypositive:(7.50) bh0sp0(Asp) > 0(see Se
tion 4).Indeed, (7.50) is an immediate 
orollary of (7.48).x8 Complexity of temporal dynami
s in RDSin unbounded domains and temporal 
haos.In this Se
tion, we return to study the dynami
al system fSt; t � 0g and for-mulate several statements whi
h are 
orollaries of the results obtained in Se
tion 7for the 
ase of spatial dynami
al system fS�; � � 0g. We start our 
onsiderationwith the proof that the temporal (modi�ed) topologi
al entropy for the semigroupSt generated by equation (2.1) may be stri
tly positive.55



Theorem 8.1. Assume that equation (2.1) has form (6.3), the assumptions ofTheorem 2.1 are satis�ed and 
onditions (6.6) and (5.2) are ful�lled. Then, the(modi�ed) topolgi
al entropy whi
h 
orresponds to Vn := spanft; x2; � � � ; xng (seeDe�nition 4.2) is stri
tly positive for the attra
tor A of this equation:(8.1) bhVnn (A) > 0:Proof. A

ording to Corollary 7.2(8.2) bhVnn (Asp) � bh0sp0(Asp) > 0:Then, analogously to Remark 4.5 (see also (7.46)), we have(8.3) bhVnn (K) > 0:(Here we have impli
itly used the fa
t that the sets of all bounded solutions for Stand S� 
oinsides). Estimate (8.1) is an immediate 
orollary of (8.3) and (4.40) andTheorem 8.1 is proved.Corollary 8.1. Let the assumptions of Theorem 8.1 hold. Then, the temporal(modi�ed) topologi
al entropy of the attra
tor A is stri
tly positive:(8.4) bht(A) := lim sup"!0 �ln 1"��n limT!+1 1T H " �K; L1e�jxj([0; T ℄� Rnx )� > 0:Indeed, (8.4) is an immediate 
orollary of (8.1) and Theorem 4.3.Remark 8.1. Estimate (8.4) shows, in parti
ular, that the 
lassi
al topologi
alentropy of the semigroup St on A (whi
h is de�ned analogously to (8.4), but withoutthe fa
tor �ln 1"��n) is in�nite.We also note that Theorem 8.1 hold not only for the transport term (~L;rx) �L�x1 , but for all ve
tors ~L the norm j~Lj of whi
h is large enough. Indeed, up tothe appropriate rotation, the general transport term is equivalent to j~Lj�x1 .Let us obtain now the analogue of Theorems 5.2 and 5.3 for the 
ase of temporaldynami
s. To this end, we need the following proposition.Proposition 8.1. Let the assumptions of Theorem 4.1 hold and let, in addition,the di�usion matrix a satisfy(8.5) aa� = a�a:Then, the map �0 : K ! A, �0u := u(0) realizes a homeomorphism(8.6) �0 : K ! A;where the sets K and A are endowed by the lo
al topology of the spa
es Clo
(Rn+1)and Clo
(Rn) respe
tively.Proof. Indeed, sin
e the sets K and A are 
ompa
t and �0(K) = A, then it issuÆ
ient to verify that map (8.6) is inje
tive. In other words, it is suÆ
ient to verifythat equation (2.1) possesses the property of ba
kward uniqueness on the attra
tor.This fa
t is veri�ed in [43℄ based on the results of [3℄, under the additional te
hni
alassumption (8.5) (to be more pre
ise, it is veri�ed in [43℄, for the 
ase L = 0, butthe genaral 
ase L 6= 0 is 
ompletely analogous). Proposition 8.1 is proved.56



Theorem 8.2. Let the assumptions of Theorem 8.1 and Proposition 8.1 hold.Then, there exists a homeomorphi
 embedding:(8.7) V : B(r0; 0; B �0 ;�)!A;where �, �0 and r0 are the same as in Theorem 7.1 (for a some �xed N � 1) andall topologies are 'lo
al' (Clo
(Rn)), su
h that(8.8) StV(u0) = V(T x1t u0); T xih V(u0) = V(T xih u0) ; i = 2; � � � ; n;for every u0 2 B(r0; 0; B �0 ;�), t � 0 and h 2 R (here and below T xih := Thei is aspatial shift along the xi). Moreover,bhVnn (V(B(r0 ; 0; B �0 ;�)) > 0:Proof. Indeed, a

ording to estimate (7.46), we have a homeomorphi
 embedding ~Vof the set B(r0; 0; B �0 ;�) to K endowed by the topology of L1lo
(R+ ;	lo
(Rn)). Butit is not diÆ
ult to show, using the standard interior estimates and the fa
t thatK is bounded in L1(Rn ), that the topologies, endowed on K by the embeddingsto Clo
(Rn+1) and to Clo
(R;	lo
(Rny )), 
oinside. Consequently, (7.45) is a homeo-morphi
 embedding of B(r0; 0; B �0 ;�) to the spa
e K endowed by the topology ofClo
(Rn+1) as well.We now de�ne map (8.7) by the following expression:(8.9) V := �0 Æ ~V;where �0 is de�ned in Proposition 8.1. It is not diÆ
ult to verify that the mapthus obtained satisies all the assertions of Theorem 8.2.Combining Theorem 8.2 and Proposition 5.1, we obtain the following result(whi
h is analogous to Theorem 5.3).Theorem 8.3. Let the assumptions of Theorem 8.2 hold. Then, there exist anumber � > 0 and a homeomorphi
 embedding(8.10) b� :M!A;su
h that(8.11) S�lb�(v0) = b�(T x1l v0); T xi�l b�(v0) = b�(T xil v0) ; i = 2; � � � ; n;for every l 2 Z and every v0 2 M. Moreover,bhVnn (b�(M)) > 0;where Vn := spanft; x2; � � � ; xng.Indeed, it is suÆ
ient to take b� := V Æ �, where � is de�ned in Proposition 5.1.Thus, embedding (8.10) shows that the spatio-temporal dynami
s on the attra
-tor A is also may be extremely 
haoti
. In parti
ular, this embedding allows torealize (up to a homeomorphism) every �nite dymensional dynami
s by restri
tingthe (semi)group St to the appropriate spatially invariant subset of A. To be morepre
ies, the following result holds (
ompare with Corollary 5.3).57



Corollary 8.2. Let the assumptions of Theorem 8.2 hold, K � RN be an arbi-tray 
ompa
t set in RN , N 2 N, and F1; � � � ; Fn : K ! K be arbitrary pairwise
ommutative homeomorphisms, i.e.(8.12) Fi Æ Fj = Fj Æ Fi; i; j 2 f1; � � � ; ng:Then, there exist a positive number 
 = 
(N) > 0 and a homeomorphism(8.13) ~� : K ! ~�(K) � Asu
h that(8.14) S
l1 Æ T x2
l2 Æ � � � Æ T xn
ln~�(k) = ~� �F l11 Æ � � � Æ F lnn k� ; k 2 K; l 2 Zn;where F lii denotes the li-th iteration of the map Fi.The proof of this 
orollary is 
ompletely analogous to that of Corollary 5.3, sowe omit it here.In order to study the temporal 
omplexity of individual point on the attra
tor,it is natural to introdu
e (analogously to De�nition 5.3) the following quantity.De�nition 8.1. Let u0 2 A. Then, by de�nition, the (modi�ed) temporal entropyof u0 is the following number:(8.15) bht(u0) := bht(Ht(u0)); where Ht(u0) := [Stu0; t 2 R+ ℄L1lo
(Rn);where [�℄V denotes the 
losure in the spa
e V .Corollary 8.3. Let the assumptions of Theorem 8.2 hold. Then, for every pointu0 2 A its (modi�ed) temporal entropy is �nite. Moreover, there exist points u0 2 Athe temporal entropy of whi
h is stri
tly positive:(8.16) 0 < bht(u0) <1:Indeed, the �rst assertion of the 
orollary follows immediately from Theorem 4.2and the se
ond one follows from Theorem 8.2 and from the evident fa
t that thedynami
al system fT x1l ;Mg, l 2 N , is topologi
ally transitive (i.e. possesses denseorbits).Let us 
onsider, in 
on
lusion, the simplest example of equation of type (2.1),for whi
h our theory works.Example 8.1. Let 
 = Rn . We 
onsider the following analogue of the s
alar k = 1Chafee-Infante equation with the transport term:(8.17) �tu = �xu� L�x1u+ u� u3; x 2 Rn :Then, as it is not diÆ
ult to verify, the assumptions of Theorem 8.2 are satis�ed,if L > 2 and n < 6. Thus, we have an exetremely 
haoti
 temporal dynami
s onthe attra
tor (Theorems 8.1{8.3 and Corollaries 8.1{8.3 hold for equation (8.17),if L > 2). In parti
ular, there exists a great (un
ountable) number of di�erenttime periodi
 solutions of this equation parametrized by the 
orresponding periodi
traje
tories of (T x1l ;M), l 2 Z.We also note that the above results are not true without the transport termL�xu(!). Indeed, for L = 0 (8.17) generates the so 
alled extended gradient systemand, 
onsequently (see [22℄), does not possess any time periodi
 solutions (at leastin 
ase n < 3). This example gives a good illustration for the in
uen
e of thetransport terms on the rea
tion-di�usion dynami
s.58
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