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x6 The spatial dynamial system in the extended phasespae.x7 The spatial dynamial system near the exponentially uns-table equilibrium.x8 Complexity of temporal dynamis in RDS in unboundeddomains and temporal haos.Introdution.In this paper, the following quasi-linear paraboli boundary problem:(0.1) � �tu = a�xu� (L;rx)u� �0u� f(u) + g; x 2 
;u���
 = 0; u��t=0 = u0in an unbounded domain 
 (whih is assumed to satisfy some natural regularityonditions formulated in x1) is onsidered. Here, u = (u1; � � � ; uk) is an unknownvetor-valued funtion, (L;rx) :=Pni=1 Li�xi , f and g are given funtions, �0 > 0is a positive onstant, a is a given k � k-matrix with a positive symmetri part:(0.2) a+ a� > 0and L = L(x) 2 C1b (
) is a given vetor �eld whih satis�es the assumption(0.3) k divLkL1(
) � �0=2:(We note that, in appliations, the vetor �eld L is often a solution of the stationaryNavier-Stokes equation and (0.3) is not a great restrition.)The longtime behavior of solutions of (0.1) is of a great reent interest. It iswell known that, under appropriate assumptions on the nonlinear term f(u), thisbehavior an be desribed in terms of attrators A of the orresponding dynamialsystem generated by (0.1) (see, e.g. [4℄, [5℄, [30℄, [34℄). One of the possible hoiesof these assumptions is the following:(0.4) 8><>: 1: f 2 C3(Rk ;Rk );2: f(u):u � �C;3: f 0(u) � �K;where u:v denotes a standard inner produt in Rk (see, e.g., [4℄, [19℄ and [23℄for other possibilities). We note that (0.4) is ful�lled for many interesting (fromthe physial point of view equations) suh as Chafee-Infante equation, FitzHugh-Nagumo system, generalized Ginsburg-Landau equations and others.In the ase where the domain 
 is bounded, the global attrators for (0.1) havebeen onstruted and studied under various assumptions on f , a and g (see [4℄,[24℄, [3℄ and the referenes therein). In partiular, the attrator's existene for (0.1)under assumptions (0.2) and (0.4) has been proved in [40℄. It is also proved therethat, if the nonlinearity f satis�es the additional growth restrition(0.5) jf(u)j � C(1 + jujp); p < 1 + 4=(n� 4);2



(for n � 4 the exponent p may be arbitrarily large), then the orresponding se-migroup is di�erentiable with respet to the initial value u0, possesses L1-boundsand the fratal dimension of the attrator is �nite.In the ase where the domain 
 is unbounded (e.g. 
 = Rn), the situationbeomes more ompliated. In this ase, even the hoie of the appropriate phasespae for (0.1) is a nontrivial problem. Indeed, the phase spae L2(
) (as in thease of bounded domains) does not seem to be adequate sine a number of natural(from the physial point of view) strutures (suh as spatially periodi solutions,travelling waves, et.) do not belong to that spae. As a result, the global attratorin L2(
) of (0.1) exists only for very partiular ases (see e.g. [5℄, [7℄, [17℄, [29℄).That is the reason why, following [21℄, [33℄, [39℄, we will onsider equation (0.1) inthe spaes(0.6) W l;pb (
) := fu0 2 D0(
) : ku0kW l;pb := supx02
 ku0kW l;p(
\B1x0 ) <1g;with an appropriate hoie of exponents l and p (here and below, BRx0 denotes theR-ball in Rn entered at x0 and W l;p(V ) is the Sobolev spae of funtions whosederivatives up to the order l belong to Lp(V )). Roughly speaking, spaes (0.6)onsist of all suÆiently regular funtions u0(x) whih remain bounded as jxj ! 1and ontain, therefore, all the strutures mentioned above.To the best of our knowledge, the existene of the global attrator of (0.1) in theunbounded domain 
 = Rn has been �rstly established in [1℄ and [5℄ (for a salarase k = 1 and under the very restritive growth assumption p < minf4=n; 2=(n�2)g). These growth restritions have been removed later in [20℄ and [29℄. The aseof systems (k � 2) with a salar di�usion matrix a has been onsidered in [7℄,[16℄, [17℄, [18℄, [39℄. The ase of systems of type (0.1) (without the transport term(L;rxu)) with general di�usion matries (satisfying (0.2)) has been onsidered in[43℄ under the assumptions on the nonlinear term whih are lose to (0.4) and (0.5).We mention also that, for the partiular ases of equations of the form (0.1), e.g.for omplex Ginsburg-Landau equations, more powerful results have been obtained(see [30℄ and the referenes therein).In the present paper (whih an be onsidered as a ontinuation of our previouspaper [43℄), we give a omprehensive study of spatio-temporal dynamis generatedby problem (0.1) on the orresponding attrator. To this end, we need to onsidermore general problems of type (0.1) with the nonhomogeneous and nonautonomousboundary ondition(0.7) u���
 = u0 = u0(t; x); t 2 R+ ; x 2 �
(instead of u���
 = 0) whih requires to impose the following additional regularityassumption to the nonlinear term:(0.8) jf 0(u)jp=(p�1) � C(jf(u)j+ juj+ 1); 8u 2 Rn ;where p is the same as in (0.5). As usual, we �rst prove that problem (0.1) posseses aunique solution in the appropriate funtional lass and derive a dissipative estimatefor that solution whih allows to establish the existene of the global attrator forthe semigroup assoiated with this problem.3



Theorem 1. Let assumptions (0.2){(0.8) hold, g 2 Lqb(
), for some q > n + 1,and the boundary data u0 belong to the orresponding spae 	b(R+ � �
) (whih isde�ned in Setion 2). Then, for every u0 2 �b(
) := W 2;qb (
) \ fu0���
 = u0(0)g,problem (0.1) possesses a unique solution u(t) 2 �b(
), for t � 0, whih satis�esthe following estimate:ku(t)k�b � Q(ku0k�b)e��t +Q(kgkLqb) +Q(ku0k	b);where � is a positive onstant and Q is an appropriate monotoni funtion whihare independent of u0 and, onsequently, the solving operators(0.9) St : �b(
)! �b(
); t � 0; Stu0 := u(t)are well de�ned for problem (0.1) and generate a semigroup in the phase spae �b,if the boundary data u0 = u0(x) is independent of t.Moreover, this semigroup possesses a loally ompat global attrator A in thephase spae �b(
) (see Setion 3 for the details).We note that, under the assumptions of Theorem 1, the Hausdor� and fra-tal dimensions of the attrator are usually in�nite (see, e.g. [5℄, [38℄ and Th. 2below). That is the reason why the onept of Kolmogorov's "-entropy is usuallyexploited in order to obtain some qualitive or/and quantitative information on suhattrators ("-entropy of in�nite-dimensional uniform attrators assoiated with no-nautonomous RDE in bounded domains is studied in [9℄; the ase of autonomousreation-di�usion equations in Rn is onsidered in [11℄ and [38℄; the "-entropy inthe ase of general unbounded domains are investigated in [18℄ and [39℄, for thease of autonomous and nonautonomous RDE, and in [13℄, [41℄ and [42℄, for thease of damped hyperboli equations).We reall that, if K is a preompat set in a metri spae M , then it an beovered (due to the Hausdor� riteria) by a �nite number of "-balls, for every" > 0. Let N"(K;M) be the minimal number of suh balls. Then, by de�nition,the Kolmogorov's "-entropy of K in M is the following number:(0.10) H "(K;M) := lnN"(K;M):It is worth to emphasize that, in ontrast to the fratal dimension, quantity (0.10)remains �nite, for every " > 0 and every preompat set K in M .Moreover, it is proved in [39℄, [42℄ and [43℄ that, for a large lass of equa-tions of mathematial physis in unbounded domains (inluding various types ofreation-di�usion equations, hyperboli problems, et.), the "-entropy of restritionsA��
\BRx0 of the orresponding attrators A to bounded domains 
 \ BRx0 possessthe following universal estimate:(0.11) H "(A��
\BRx0 ;�b) � C vol(
 \BR+K ln 1="x0 ) ln 1" ; " � "0 < 1;where the onstants C, K and "0 depend on the onrete form of the equation, butare independent of ", R, and x0. As shown in Setion 3, this lass of equationsinlude, in partiular, equations of type (0.1), if the assumptions formulated aboveare satis�ed.Moreover, following [39℄ and [43℄, we also obtain lower bounds for the entropy ofrestritions A��BRx0 in the ase where 
 = Rn , g � onst and L � onst and underthe natural assumption that (0.1) possesses at least one spatially homogeneousexponentially unstable equilibria point. 4



Theorem 2. Let the assumptions of Theorem 1 hold and let 
 = Rn , g � 0,L � onst and f(0) = 0. We also assume that(0.12) �(a�x � (L;rx)� f 0(0)� �0) \ fz 2 C : Re z > 0g 6= ?;where �(L) denotes the spetrum of the linear operator L. Then, the entropy of theattrator possesses the following estimates:(0.13) H "(A��BRx0 ;�b) � C1Rn ln 1" ; C1 > 0; " � "0 < 1:Moreover, for every � > 0, there exists a onstant C� > 0 suh that(0.14) H "(A��B1x0 ;�b) � C� �ln 1"�n+1�� :We note that, for the partiular ase 
 = Rn , (0.11) reads(0.15) H "(A��BRx0 ;�b) � C2�R+K ln 1"�n ln 1" :Therefore, Theorem 2 shows that estimate (0.11) is sharp, at least in the ase
 = Rn . On the other hand, in the ase where the domain 
 is bounded, estimate(0.11) yields H "(A;�) � C vol(
) ln 1" ;whih reets the well-known heuristi priniple that the equations of mathemati-al physis in bounded domains have the �nite fratal dimension (and, moreover,indiates in a right way the dependene of this dimension on the 'size' of 
). Thus,estimate (0.11) may be onsidered as a natural generalization of this priniple tothe ase of unbounded domains (see also [18℄ or [42℄).The main part of the paper is devoted to the more detailed study of the spatiallyhomogeneous ase of equation (0.1) (
 = Rn , g � onst, L � onst). In this ase,the attrator A possesses an additional struture, namely, it is invariant under thegroup fTh; h 2 Rng of spatial shifts:(0.16) Th : A ! A; ThA = A; h 2 Rn ; (Thu0)(x) := u0(x+ h)and, onsequently, it is invariant under the extended (n+1)-parametrial semigroupS(t;h) de�ned by the following expression:(0.17) S(t;h)u0 := ThStu0; S(t;h)A = A:In the present paper, we suggest to interpret this semigroup as a dynamial system(with multidimensional 'time') ating in the phase spae A. Thus, in order tostudy the spatio-temporal omplexity (and spatio-temporal haos) of A, we willbelow investigate the dynamial properties of system (0.17).5



Theorem 3. Let the assumption of Theorem 1 hold and let, in addition, equation(0.1) be spatially homogeneous. Then, the topologial entropy (see e.g. [25℄) ofsemigroup (0.17) is �nite(0.18) htop(A;S(t;h)) <1and oinides with the topologial entropy per unit volume introdued in [12℄.Thus, Theorem 3 gives a simple geometrial interpretation for the topologialentropy per unit volume.It is also reasonable to study the dynamial systems, generated by k-parametrialsubgroups of the extended semigroup (0.17), namely, let Vk be an arbitrary k-dimensional hyper-plane Vk � Rt � Rnx and let(0.19) SVk(t;h) := fS(t;h); t � 0; (t; h) 2 Vkgbe the k-parametrial dynamial system whih orresponds to the hyper-plane Vk.The most natural hoies of the plane Vk are the following: 1. k = n, Vn = Rnx ,then SVn(t;h) := Th, whih orresponds to the purely spatial dynamis on the attratorand 2. k = 1, V1 = Rt , then SV1(t;h) := St, whih orresponds to the purely temporalevolution restrited to the attrator; although intermediate hoies of Vk, whihdesribe the interation between the spatial and temporal modes are of independentinterest.We note that, in ontrast to the ase of k = n + 1, the topologial entropy fordynamial systems (0.19) may be in�nite (and is usually in�nite as shown below)if k < n+ 1. Consequently, new quantitative harateristis of the omplexity arerequired for these ases. We suggest to use in this situation the modi�ed topologialentropies whih di�er from the lassial one by presene of the fator (ln 1=")k�n�1(for k-dimensional subgroups) in their de�nition (see Setion 4). For instane, ifVn = Rnx , thenbhsp(A) := bhVnn (A) := lim sup"!0 �ln 1"��1 limR!1 1Rn H " (A; L1([0; R℄n))and, for V1 = Rt , we havebht(A) := bhV11 (A) := lim sup"!0 �ln 1"��n limT!1 1T H " �K; L1([0; T ℄; L1e�jxj(Rn ))� ;where K denotes the set of all the solutions u(t), t 2 R, of (0.1) whih belong toL1(R;�b) (see Setion 3) and L1e�jxj(
) is a weighted spae (see Setion 1).The following theorem, whih an be treated as a generalization of the well-known relation between the fratal dimension and topologial entropy (see e.g.[25℄) desribes the relations between bhVkk (A) omputed for di�erent hyperplanesVk.Theorem 4. Let the assumptions of Theorem 3 hold. Then, for every k, 0 � k �n+1 and for every hyperplane Vk, the orresponding (modi�ed) topologial entropyis �nite:(0.20) bhVkk (A) <1:6



Moreover, if Vk � Vl (k < l), then(0.21) bhVll (A) � Kl�kbhVkk (A);where the onstant K > 0 depends only on the equation.Thus, it folows from (0.21) that, if the topologial entropy of extended semigroup(0.17) is stritly positive, then the (modi�ed) topologial entropy of dynamial sys-tem (0.19) is also stritly positive for every hyperplane Vk. Unfortunately, theproblem of obtaining the lower bounds for quantity (0.17) for more or less onreteequations of mathematial physis is extremely diÆult, even in the ase n = 0(whih orresponds to the ODE of type (0.1), see [25℄ and the referenes therein),although several examples of equations of type (0.1), for whih the orrespondingspatio-temporal topologial entropy is stritly positive, has been reently onstru-ted (see [44℄).In ontrast to that, the ase of the dynamis assoiated with n-dimensional hy-perplanes Vn � Rt � Rnx is simpler and we give below some natural (and e�etive)suÆient onditions whih allow to verify that the orresponding modi�ed topolo-gial entropies are stritly positive for a large lass of equations of mathematialphysis.We start with the ase Vn = Rnx , whih desribes the purely spatial dynamis.The phenomena of spatial omplexity and spatial haos has been studied, e.g. in[2℄, [6℄, [14℄, [15℄, [43℄ (see also the referenes therein) for several partiular asesof equation (0.1). In our ase, estimate (0.13), obviously, implies that the modi�edtopologial entropy of spatial dynamial system (0.16) (Vn := Rnx ) is stritly positivebhsp(A) > C > 0and, onsequently, the lassial (non modi�ed) topologial entropy of that semi-group is in�nite, if the assumptions of Theorem 2 are satis�ed. Thus, the dynami-al behavior of (0.16) is extremely haoti. We also note that, in ontrast to thease of dynamial haos, generated by ODE or by PDE in bounded domains, thesymboli dynamis (Bernoulli shifts with �nite number of symbols, see e.g. [25℄) isnot an adequate model example for understanding the nature of the spatial haosin (0.16), sine the topologial entropy of suh symboli dynamis is �nite. Thatis the reason why (following [43℄), we use another model dynamial system whihgeneralizes the lassial Bernoulli shifts and is adopted to the ase of in�nite topo-logial entropy. Namely, let D be a unit dis in C and letM := D Zn endowed by theTikhonov's topology. Then, a disrete dynamial system Th with multidimensional'time' h 2 Zn on M an be de�ned in the following natural way:(0.22) Thv(l) := v(h+ l); h; l 2 Zn; v 2 M:(We reall that, as usual, M is interpreted as a spae of funtions v : Zn ! D ).Applying a general sheme of investigating the spatial omplexity of the attra-tors of equations of mathematial physis developed in [39℄, [42℄ and [43℄ to equation(0.1), we derive (in Setion 5) the following result whih lari�es the nature of thespatial haos in (0.16). 7



Theorem 5. Let the assumptions of Theorem 2 hold. Then, there exists a positivenumber � > 0, a losed subset K � A and a homeomorphism � :M! K suh that(0.23) T�hK = K and T�h�(v) = �(Thv); 8h 2 Zn; v 2 M:Moreover, this homeomorphism is Lipshitz ontinuous under the appropriate hoieof metris on A and M and preserves the modi�ed topologial entropy:0 < bhsp(M) = bhsp(K) � bhsp(A) <1:As an immediate orollary of this result, we obtain the fat that every �nitedimensional dynamis an be realized (up to a homeomorphism) by restritingspatial dynamial system (0.16) to appropriate losed subsets of A.Corollary 1. Let the assumptions of Theorem 5 hold, let K � RN be an arbitrayompat set in RN , N 2 N, and let F1; � � � ; Fn : K ! K be arbitrary pairwiseommutative homeomorphisms, i.e.Fi Æ Fj = Fj Æ Fi; i; j 2 f1; � � � ; ng:Then, there exist a positive number  = (N) < 0 and a homeomorphism(0.24) b� : K ! b�(K) � A;suh that(0.25) Tlb�(k) = b� �F l11 Æ � � � Æ F lnn k� ; k 2 K; l 2 Zn;where F lii denotes the li-th iteration of the map Fi.This result on�rms, from the alternative point of view, that spatial dynamis(0.16) is indeed extremely haoti.The main task of the rest of the paper is to obtain the analogue of Theorem 5 inthe ase where Vn ontains a temporal diretion and to inlude, thus, the temporaldynamis into onsideration. We note that the general sheme of investigating thephenomena of spatial haos mentioned above is based on the tehnique of in�nitedimensional unstable manifolds and gives no information on the temporal evolution(at least in a diret way). Nevertheless, we suggest below a trik whih allows toobtain suh an information based on this sheme. The main idea of this trik isto onstrut a new auxiliary dynamial system the attrator of whih oinides (ina sense) with the attrator of the initial system (0.1) and suh that the diretiont is oured to be 'spatial' for this dynamial system. Applying the sheme ofstudying the spatial omplexity to this auxiliary system, we obtain simultaneouslythe desription of the temporal evolution for the initial problem (sine the diretiont is 'spatial' for that auxiliary system!).In order to onstrut this auxiliary dynamial system, we assume that the vetor�eld L has the form L := L(1; 0; � � � ; 0), where L > 0 (a general ase an be easilyredued to this one by an appropriate rotation) and onsider the following boundaryvalue problem:(0.26) ( a(�2x1u+�x0u)� L�x1u� �0u� f(u) = �tu;u��x1=0 = u0; t 2 R; x1 2 R+ ; x0 2 Rn�1 ;8



where x = (x1; x0). Boundary value problem (0.26) an be formally interpreted asan evolution equation with respet to x1 and 'spatial' diretions t; x0. Moreover, itis proved (in Setion 6) that this boundary value problem de�nes indeed a di�eren-tiable and dissipative dynamial system on the appropriate trae spae 	b, if L > 0is large enough (see Theorem 6.1 for the rigorous statement). Then, on the onehand, the sets of all omplete bounded solutions of equations (0.1) and (0.26) whihare de�ned for all (t; x) 2 Rn+1 oinide and, on the other hand, the hyperplaneVn := spanft; x2; � � � ; xng orresponds now to the spatial dynamis for this system.Applying the above general sheme to that auxiliary dynamial system, we obtain(in Setion 8) the following result.Theorem 6. Let the assumptions of Theorem 2 hold and let, in addition, thevetor �eld L have the form L = L(1; 0; � � � ; 0), where L > 0 is large enough (seeondition (6.6)). Then, the modi�ed topologial entropy of dynamial system (0.19)where Vn := spanft; x0g is stritly positive(0.27) bhVnn (A) > C > 0and, onsequently, thanks to Theorem 4, the modi�ed temporal topologial entropyis also stritly positive(0.28) bht(A) > C1 > 0and the lassial (nonmodi�ed) one equals in�nity.Thus, the temporal dynamis is also exteremely haoti under the assumptionsof Theorem 6. Moreover, analogously to Theorem 5, we obtain the following em-bedding.Theorem 7. Let the assumptions of Theorem 6 hold and let, in addition, thedi�usion matrix satisfy the tehnial assumption aa� = a�a. Then, there exist anumber � > 0 and a homeomorphi embedding(0.29) b� :M!A;suh that(0.30) S�lb�(v0) = b�(T x1l v0); T xi�l b�(v0) = b�(T xil v0) ; i = 2; � � � ; n;for every l 2 Z and every v0 2 M. Moreover,bhVnn (b�(M)) > 0;where Vn := spanft; x2; � � � ; xng.As in the ase of spatial dynamis, embedding (0.29) allows to prove that every�nite dimensional dynamis an be realized (up to a homeomorphism) by restritingthe temporal evolution semigroup St to the appropriate invariant subset of theattrator. 9



Corollary 2. Let the assumptions of Theorem 7 hold, K � RN be an arbitraryompat set in RN , N 2 N, and F1; � � � ; Fn : K ! K be arbitrary pairwise ommu-tative homeomorphisms, i.e.(0.31) Fi Æ Fj = Fj Æ Fi; i; j 2 f1; � � � ; ng:Then, there exist a positive number  = (N) > 0 and a homeomorphism(0.32) ~� : K ! ~�(K) � A;suh that(0.33) Sl1 Æ T x2l2 Æ � � � Æ T xnln~�(k) = ~� �F l11 Æ � � �F lnn k� ; k 2 K; l 2 Zn;where F lii denotes the li-th iteration of the map Fi.We illustrate the obtained results on the simplest example of one dimensionalChafee-Infante equation pertubed by the transport term(0.34) �tu = �2xu� L�xu+ u� u3; x 2 R1 :It an be easily veri�ed that all the assumptions of Theorem 7 are satis�ed for (0.34),if L > 2. Consequently, in this ase, (0.34) generates an extremely ompliatedtemporal dynamis. In partiular, this equation possesses a nonountable number ofessentially di�erent time periodi solutions (whih are parametrized by the periodiorbits of (generalized) Bernoulli shifts (M; Tl)). We also note that, for L = 0,(0.34) generates the so-alled extended gradient system and, onsequently (see [22℄),this system does not possess any time periodi solution (any uniformly reursivesolution and so on). Thus, simplest model (0.34) gives a good example illustratingthe inuene of transport terms to the reation-di�usion dynamis.The paper is organized as follows. De�nitions of funtional spaes, whih are offundamental signi�ane for our study equation (0.1), and their simple propertiesare given in Setion 1. Various a priori estimates for the solutions of (0.1) are ob-tained in Setion 2. Moreover, based on these estimates, we verify the existene ofa solution, its uniqueness and derive some estimates for the di�erenes of solutionswhih will be essentially used later. The existene of a global attrator A for system(0.1) is veri�ed in Setion 3. Moreover, the upper bounds of its Kolmogorov's "-entropy are obtained here. Quantitative harateristis for the (n+1)-parametrialextended dynamial system and for its k-parametrial subgroups are investigatedin Setion 4. In partiular, the proof of Theorem 4 is given here. In Setion 5,we dedue the lower bounds of "-entropy for equation (0.1) and give a topologialdesription of the phenomena of spatial omplexity and spatial haotisity (in parti-ular, Theorems 2 and 5 are proved here). General analyti properties of auxiliaryspatially dynamial system (0.26) (suh as existene of solutions, their uniqueness,smoothness and so on) are obtained in Setion 6. The behaviour of the auxiliaryspatial dynamial system near the exponentially unstable equilibria point is inves-tigated in Setion 7. The main result of this Setion is the existene of an in�nitedimensional unstable manifold of this dynamial system. The topologial desrip-tion of temporal omplexity of the dynamis generated by (0.1) (Theorems 6 and7) is obtained in Setion 8 based on the results of Setion 7.Aknowledgements. The author has greatly bene�ted from helpful omments ofM.Efendiev, A.Mielke, D.Turaev and M.Vishik.10



x1 Funtional spaes.In this Setion, we introdue several lasses of Sobolev spaes in unboundeddomains and reall shortly some of their properties whih will be essentially usedbelow. For the detailed study of these spaes, see [17℄ and [39℄.De�nition 1.1. A funtion � 2 Clo(Rn) is a weight funtion with (exponential)growth rate � � 0 if the ondition(1.1) �(x+ y) � C�e�jxj�(y); �(x) > 0is satis�ed, for every x; y 2 Rn . Analogously, a funtion � 2 Clo(Rn) is a weightfuntion with polynomial growth rate � if the following inequality is valid, for everyx; y 2 Rn :(1.2) �(x+ y) � C� �(1 + jy1j2)(1 + jy2j2) � � � (1 + jynj2)��=2 �(x); �(x) > 0:Remark 1.1. Obviously, every weight funtion whih satis�es (1.2), for some � �0, satis�es automatially (1.1), for every � > 0. Moreover, it is not diÆult todedue from (1.1) that(1.3) �(x+ y) � C�1� e��jxj�(y)is also satis�ed, for every x; y 2 Rn . Estimates (1.1) and (1.3) imply, in partiular,that(1.4) C�1� e��R�(x) � supjx0j�R �(x� x0) � C�e�R�(x):The following examples of weight funtions are of fundamental signi�ane forour purposes:(1.5) �";x0(x) = e�"jx�x0j; " 2 R; x0 2 Rn :Obviously, these weights have growth rate j"j and satisfy (1.1) uniformly with res-pet to x0 2 Rn (i.e., the onstant C�";x0 in (1.1) is independent of x0).Analogously, the model example of a weight funtion with polynomial growthrate is the following:(1.6) '�;x0(x) = �(1 + jx1 � x10j2) � � � (1 + jxn � xn0 j2)��=2 ; x0 2 Rn ; � 2 R:Obviously, weights (1.6) have polynomial growth rate j�j and also satisfy (1.2)uniformly with respet to x0 2 R.De�nition 1.2. Let 
 � Rn be some (unbounded) domain in Rn and let � be aweight funtion with growth rate �. We setLp�(
) = �u 2 D0(
) : ku;
kp�;0;p � Z
 �(x)ju(x)jp dx <1� :Analogously, the weighted Sobolev spae W l;p� (
), l 2 N , is de�ned as the spae ofdistributions whose derivatives up to the order l belong to Lp�(
).In order to simplify the notations, we will write below W s;pf"g instead of W s;pe�"jxj .We also de�ne another lass of weighted Sobolev spaes as follows:W l;pb;�(
) = �u 2 D0(
) : ku;
kpb;�;l;p = supx02
�(x0)ku;
 \ B1x0kpl;p <1� :Here and below, we denote by BRx0 the ball in Rn of radius R, entered at x0 andku; V kl;p stands for kukW l;p(V ).We will write W l;pb instead of W l;pb;1 . 11



Proposition 1.1.1. Let u belong to Lp�(
), where � is a weight funtion with growth rate �. Then,for any 1 � q � 1, the following estimate is valid:(1.7) �Z
 �(x0)q �Z
 e�"jx�x0jju(x)jp dx�q dx0�1=q � C Z
 �(x)ju(x)jp dx;for every " > �, where the onstant C depends only on ", � and the onstant C�from (1.1) (and is independent of 
).2. Let u belong to L1� (
). Then, the following analogue of estimate (1.7) is valid:(1.8) supx02
��(x0) supx2
fe�"jx�x0jju(x)jg� � C supx2
f�(x)ju(x)jg:The proof of this proposition an be found in [17℄ or [39℄.In order to study nonlinear RDS (0.1), we need some regularity assumptions onthe domain 
 � Rn , whih are assumed to be valid throughout of the paper.We assume that there exists a positive number R0 > 0 suh that, for every pointx0 2 
, there exists a smooth domain Vx0 � 
 suh that(1.9) BR0x0 \ 
 � Vx0 � BR0+1x0 \ 
:Moreover, we also assume that there exists a di�eomorphism �x0 : B20 ! BR0+2x0suh that �x0(x) = x0 + px0(x), �x0(B10) = Vx0 and(1.10) kpx0kCN + kp�1x0 kCN � K;where the onstant K is independent of x0 2 
 and N is large enough. Forsimpliity, we assume from now on that (1.9) and (1.10) hold for R0 = 2.We note that, in ase 
 is bounded, onditions (1.9) and (1.10) are equivalentto the following: the boundary �
 is a smooth manifold. Now, for unboundeddomains, the sole smoothness of the boundary is not suÆient to obtain the regularstruture of 
 as jxj ! 1, sine some uniform with respet to x0 2 
 smoothnessonditions are required. It is however more onvenient to formulate these onditionsin the form (1.9) and (1.10).Proposition 1.2. Let the domain 
 satisfy onditions (1.9) and (1.10), the weightfuntion � satisfy ondition (1.1) and R be some positive number. Then, the follo-wing estimates are valid:(1.11)C2 Z
 �(x)ju(x)jp dx � Z
 �(x0) Z
\BRx0 ju(x)jp dx dx0 � C1 Z
 �(x)ju(x)jp dx:The proof of this proposition is given in [17℄ or [39℄.Corollary 1.1. Let (1.9) and (1.10) hold. Then, the following norm is equivalentto the usual norm in in W l;p� (
):(1.12) ku;
k�;l;p = �Z
 �(x0)ku;
 \BRx0kpl;p dx0�1=p :12



In partiular, norms (1.12) are equivalent, for R 2 R+ .To study equation (0.1), we also need weighted Sobolev spaes of frational orders 2 R+ (and not for s 2 Z only). We �rst reall (see [35℄ for details) that, if V isa bounded domain, a lassial norm in the spae W s;p(V ), s = [s℄ + l, 0 < l < 1,[s℄ 2 Z+, an be de�ned by(1.13) ku; V kps;p = ku; V kp[s℄;p + Xj�j=[s℄Zx2V Zy2V jD�u(x)�D�u(y)jpjx� yjn+lp dx dy:It is not diÆult to prove, arguing as in Proposition 1.2 (see [17℄) and using thisrepresentation, that, for any bounded domain V with a suÆiently smooth boun-dary(1.14) C1ku; V kps;p � Zx02V ku; V \ BRx0kps;p dx0 � C2ku; V kps;p:This justi�es the following de�nition.De�nition 1.3. We de�ne the spae W s;p� (
), for s 2 R+ , as the spae of distri-butions whose norm (1.12) is �nite.It is not diÆult to hek that these norms are also equivalent for di�erent R > 0.In order to onsider problem (0.1) with nonhomogeneous boundary onditions,we need the following proposition.Proposition 1.3. Let the domain 
 satisfy assumptions (1.9) and (1.10).Then,for every " > 0 and x0 2 Rn , the following estimate is valid:(1.15) Z�
 e�"jx�x0j dS � C";where the onstant C" is independent of x0.Proof. Let ~n(x) 2 W 1;1b (
) be an arbitrary extention of the normal vetor �eldfrom �
 inside of the domain 
 (the existene of suh an extention is guaranteedby onditions (1.9) and (1.10)). Then, due to the Gauss' formulaZ�
 �";x0 dS = Z
 div(�";x0~n(x)) dx � Ck~n;
kb;1;1k�";x0 ;
k1;1 � C"and Proposition 1.3 is provedCorollary 1.2. Let the assumptions of Proposition 1.3 hold. Then,(1.16) Z�
 e�"jx�x0j dS � C"e�"=2 dist(x0;�
);where dist(x0; �
) denotes the distanse from the point x0 to the boundary �
.Indeed,Z�
 e�"jx�x0j dS � supx2�
ne�"=2jx�x0joZ�
 e�"=2jx�x0j dS � C"e�"=2 dist(x0;�
):13



De�nition 1.4. Analogously to De�nition 1.2, we de�ne the weighted Sobolevspaes of funtions de�ned on the boundary �
. For instane, the weighted spaeW l;p� (�
) is determined by the following norm:ku0; �
kp�;l;p := Z�
 �(s)ku0; �
 \ B1skpl;p dS:The spaes W l;pb;�(�
) are de�ned analogously.We now note that the weight funtions (1.5) satisfy the onditions (1.1) uniformlywith respet to x0 2 Rn , onsequently, all the estimates obtained above for thearbitrary weights will be valid for family (1.5) uniformly with respet to x0 2 Rn .Sine these estimates are of fundamental signi�ane for what follows, we writethem expliitly in the following propositions.Proposition 1.4. Let u belong to LpfÆg(
), for 0 < Æ < ". Then, the followingestimate holds uniformly with respet to y 2 Rn :(1.17) �Z
 e�qÆjx0�yj �Z
 e�"jx�x0jju(x)jp dx�q dx0�1=q �� C";q Z
 e�Æjx�yjju(x)jp dx:Moreover, if u 2 L1fÆg(
), Æ < ", then(1.18) supx02
�e�Æjx0�yj supx2
fe�"jx�x0jju(x)jg� � C";Æ supx2
fe�Æjx�yjju(x)jg:Proposition 1.5. Let u belong to W l;pb;�(
) and � be a weight funtion with growthrate � < ". Then(1.19) C1ku;
kpb;�;l;p �� supx02
��(x0) Zx2
 e�"jx�x0jku;
 \B1xkpl;p dx� � C2ku;
kpb;�;l;p:For the proof of this orollary, see [39℄.The following analogue of Proposition 1.5 is valid for polinomial weights (1.6).Proposition 1.6. Let � be a weight funtion with polynomial growth rate � < N .Then, the following estimate is valid:(1.20) C1 supx02
�(x0)u(x0) �� supx2
��(x) supy2
 �(1 + jx1 � y1j2) � � � (1 + jxn � ynj2)��N=2 u(y)� �� C2 supx02
�(x0)u(x0):The proof of this proposition is ompletely analogous to that of Proposition 1.5(see e.g. [43℄). 14



In onlusion of this Setion, we inrodue the anysotropi Sobolev spaes offuntions de�ned on R+ � 
 or R+ � �
.De�nition 1.5. We denote by W (l1;l2);q([T; T + 1℄ � 
) the lassial Sobolev-Slobodetskij spae of funtions whih have t-derivatives up to the order l1 andx-derivatives up to the order l2 belonging to Lq (see e.g. [28℄). We reall that, forinteger li � 0, the norm in this spae is de�ned bykukqW (l1;l2);q([T;T+1℄�
) := k�l1t ukqLqb([T;T+1℄�
)++ kDl2x ukqLqb([T;T+1℄�
) + kukqLqb([T;T+1℄�
);where Dl2x denotes a olletion of all x-derivatives of the order l2, and, for thenoninteger li, an be de�ned by the interpolation, analogously to (1.13) (see [28℄ or[35℄).We now de�ne, analogously to De�nition 1.2, the spaes W (l1;l2);qb (R+ � 
),W (l1;l2);qb (R+ � �
), and the orresponding spaes of funtions on R � 
. Forinstane, the norm in the spae W (l1;l2);qb (R+ � �
) is de�ned by the followingexpression: kukW (l1;l2);qb (R+��
) := supT2R+;x02�
 kukW (l1;l2);q([T;T+1℄�(�
\B1x0):Moreover, let � = �(t; x) be a weight funtion of variables (t; x) with exponentialgrowth rate � (see De�nition 1.1). Then, we de�ne the spaes W (l1;l2);q� (R+ � 
)and W (l1;l2);q� (R+ � �
) in a standard way. For instane,kukqW (l1;l2);q� (R+��
) := Z(T;s)2R+��
 �(T; s)kukqW (l1;l2);q([T;T+1℄�(�
\B1s) dS dT:x2 A priori estimates, existene of solutions, uniqueness.In this Setion, we derive several a priori estimates for the solutions of reation-di�usion system (0.1) with nonhomogeneous boundary onditions(2.1) � �tu = a�xu� (L(x);rx)u� �0u� f(u) + g(x); x 2 
;u���
 = u0(t; x); u��t=0 = u0(x)in the unbounded domain 
 � Rn satisfying the assumptions of the previous Se-tion. Moreover, based on these estimates, we derive the existene of a solution u(t)for (2.1), its uniqueness and obtain several estimates for di�erenes of solutions of(2.1) whih will be used below for studying the attrator of this system.We reall, that u(t) = (u1(t; x); � � � ; uk(t; x)) is the vetor-valued funtion, a isthe onstant k � k-matrix satisfying the ondition a + a� > 0, �0 > 0, the vetor�eld L 2 C1b (Rn ;Rn) satis�es the inequality(2.2) k divLk0;1 � �0=2and the nonlinear term f(u) satis�es the assumptions(2.3) 8><>: 1: f 2 C3(Rk ;Rk );2: f(u):u � �C;3: f 0(u) � �K:15



Moreover, we impose the additional growth restritions for the nonlinearity f(u):(2.4) � 1: jf(u)j � C(1 + jujp);2: jf 0(u)jp=(p�1) � C(1 + jf(u)j+ juj);where the exponent p > 1 is arbitrary, for n � 4, and p < 1 + 4n�4 , for n � 5.We also assume that the external fore g belongs to the spae Lqb(
), for someq > n+1, the initial data u0 belongs to the spae W 2;qb (
) and the boundary datau0 belongs to the following trae spae:(2.5) 	b(R+ � �
) := Tr ���
 nu; �tu 2W (1;2);qb (R+ � 
)o �� nu0; �tu0 2W (1�1=(2q);2�1=q);qb (R+ � �
)o(see De�nition 1.5 and [28℄). Moreover, we assume that the �rst ompatibilityondition(2.6) u0���
 = u0��t=0is satis�ed.By de�nition, a solution of (2.1) is a funtion(2.7) u 2 L1(R+ ;W 2;qb (
)) \ C([0;1); Lqb(
))whih satis�es equation (2.1) in the sense of distributions.Remark 2.1. It follows from the Sobolev's embedding theorem and from ourhoie of the exponent q (q > n=2) that the solution u belongs to L1(R+ � 
),onsequently, the nonlinear term in (2.1) is well-de�ned and belongs to L1. The-refore, it follows from (2.7) and from equation (2.1) that�tu 2 L1(R+ ; Lqb(
)):Moreover, it an be shown by standard arguments (see e.g. [39℄) that(2.8) u 2 C([0; T ℄;W 2;qe�"jxj(
)) \ C1([0; T ℄; Lqe�"jxj(
));for every T > 0 and every " > 0. We, however, note that, in ontrast to the aseof bounded domains, for generi u0 2 �, the orresponding solution u(t) is notontinuous at t = 0 as a funtion with values in W 2;qb (
) (see e.g. [33℄ for theonditions on u0 whih guarantee this ontinuity).The main result of this Setion is the following theorem.Theorem 2.1. Let the above assumptions hold and let u(t) be a solution of (2.1).Then, the following estimate is valid:(2.9) ku(t);
 \ B1x0k2;q � Q�ku(0)kW 2;qb (
)� e��t++Q �ku���
k	b(R+��
)� e�� dist(x0;�
) +Q�kgkLqb(
)� ;where � is a positive onstant whih depends only on the equation and Q is amonotoni funtion whih also depends only on the equation (and is independent ofu, u0 and u0).Proof. Estimate (2.9) has been proved in [43℄, for the partiular ase of u0 = 0 andL = 0. In general ase, although the presene of nonzero drift term (L;rx)u is notessential for that proof (due to assumption (2.2)), but the nonhomogeneous boun-dary onditions require the additional auray and the additional tehnialitieswhih will be indiated below. 16



Lemma 2.1. Let the above assumptions hold. Then, the following estimate isvalid, for every x0 2 
, � > 0 and for " > 0 small enough:(2.10) �ju(T )j2; �";x0�+ Z T+1T �jrxu(t)j2; �";x0� dt �� Ce��T �ju(0)j2; �";x0�+ C �jgj2; �";x0�+ C++ � Z T0 e��(T�t) ��";x0 ; jrxu(t)j2��
 dt+ C�e�" dist(x0;�
)ku0k2	b ;where the positive onstants C;�; " are independent of x0, C� depends only on� > 0, and (u; v) and (u; v)�
 stand for the inner produt in L2(
) and in L2(�
)respetively.Proof. Multiplying equation (2.1) by u(t)e�"jx�x0j (with " > 0 small enough), in-tegrating by parts and using the dissipativity assumption f(u):u � �C, the positi-veness of a, assumption (2.2) and the obvious estimate(2.11) krx �e�"jx�x0j� k � "e�"jx�x0j;we derive that(2.12) �t �ju(t)j2; �";x0�+ � �ju(t)j2; �";x0�+ � �jrxu(t)j2; �";x0� �� C �1 + �jgj2; �";x0�+ �ju0(t)j2; �";x0��
 + �ju0(t)j � jrnu(t)j; �";x0��
� ;where � > 0 is an appropriate positive onstant whih is independent of x0 (seee.g. [17℄ or [43℄ for details). Applying the H�older inequality to the last term in theright-hand side of (2.12) and using inequality (1.16), together with the Gronwallinequality, we obtain the assertion of the lemma.Lemma 2.2. Let the above assumptions hold. Then, the following estimate isvalid, for suÆiently small " > 0:(2.13) �ju(T )j2 + jrxu(T )j2; �";x0�+ Z T+1T �j�xu(t)j2; �";x0� dt � C++Ce��T �ju(0)j2 + jrxu(0)j2; �";x0�+C �jgj2; �";x0�+Ce�� dist(x0;�
)Q(ku0k	b);where the positive onstants C;� and the monotoni funtion Q are independentof x0.Proof. Multiplying equation (2.1) by the expression(2.14) nXi=1 �xi (�";x0(x)�xiu(t)) := �";x0�xu(t) +rx�";x0 :rxu(t)and setting " > 0 small enough, we obtain, after the standard integration by partsand using the monotoniity assumption f 0(u) � �K and the inequality (2.11), that(2.15) �t �jrxu(t)j2; �";x0�+ � �jrxu(t)j2; �";x0�+ � �j�xu(t)j2; �";x0� �� (2K + CkLk20;1) �jrxu(t)j2; �";x0�+ C �jgj2; �";x0�++ C �(j�tu0(t)j+ jf(u0(t))j) � jrnu(t)j; �";x0��
 :17



We now reall that, due to our hoie of the exponent q, u0 2 Cb(R+ � 
) and,onsequently, the last term in the right-hand side of (2.15) an be estimated asfollows:(2.16) C �(j�tu0(t)j+ jf(u0(t))j) � jrnu(t)j; �";x0��
 �� C�e�"=2 dist(x0;�
)Q(ku0k	b) + � �jrnu(t)j2; �";x0��
 ;where the onstant � > 0 an be hosen arbitrarily small.Applying the Gronwall inequality to relation (2.15) and estimating the last twoterms in the right-hand side of it by (2.10) and (2.16), we have, after simple om-putations(2.17) �ju(T )j2 + jrxu(T )j2; �";x0�+ Z T+1T �j�xu(t)j2; �";x0� dt �� C �e��t �ju(0)j2 + jrxu(0)j2; �";x0�+ 1 + �jgj2; �";x0��++ C�e�� dist(x0;�
)Q(ku0k	b) + � supt2[0;T ℄ e��(T�t) Z t+1t �jrnu(s)j2; �";x0��
 ds;where Q is an appropriate monotoni funtion, � > 0 is a ertain positive onstantand � > 0 is arbitrary.Due to the regularity theorem for the Laplae operator in weighted Sobolevspases (see, e.g. [35℄), we have(2.18) ku(t)kW 2;2�";x0 (
) � C(k�xu(t)kL2�";x0 (
)+ku(t)kL2�";x0 (
)+ku(t)kW 3=2;2�";x0 (�
))and, onsequently, the last term in (2.17) an be estimated as follows:(2.19) �jrnu(s)j2; �";x0��
 � C �j�xu(s)j2; �";x0�+ C �ju(s)j2; �";x0�++ Ce�"=2 dist(x0;�
)ku0k2	b :Inserting this estimate to the right-hant of (2.17) and using (2.10), we derive(2.20) �ju(T )j2 + jrxu(T )j2; �";x0�+ Z T+1T �j�xu(t)j2; �";x0� dt �� C1 �e��t �ju(0)j2 + jrxu(0)j2; �";x0�+ 1 + �jgj2; �";x0��++ C 0�e�� dist(x0;�
)Q(ku0k	b) + C� supt2[0;T ℄ e��(T�t) Z t+1t �j�xu(s)j2; �";x0� ds:There remains to note that estimate (2.20) implies (2.13) in a standard way, ifC� < 1=2 (see [17℄ or [42℄) and Lemma 2.2 is proved.Our next task is to obtain the analogous to (2.13) estimate for the W 2;2�";x0 -norm.To this end, we introdue the following 'norm', whih depends on " > 0 and x0 2 
:(2.21) kvk2D";x0 := kvk2W 2;2�";x0 (
) + kf(v)k2L2�";x0 (
):18



Lemma 2.3. Let the above assumptions hold and let " > 0 be small enough. Then,the following estimate is valid for the solutions of equation (2.1):(2.22) ku(t)k2D";x0 �� Ce(2K+1)t �ku(0)k2D";x0 + 1 + kgk2L2�";x0 (
) + e�� dist(x0;�
)Q(ku0k	b)� ;where the onstant K is the same as in (2.3), � > 0 and the onstant C and thefuntion Q are independent of x0 and ".Proof. We give below only the formal deduing of estimate (2.22) whih an bejusti�ed in a the standard way (using, e.g. the uniqueness of a solution of (2.1) inthe lass (2.7) whih is veri�ed in Theorem 2.2).We di�erentiate equation (2.1) with respet to t and denote �(t) := �tu(t). Then,this funtion satis�es the following equation:(2.23) � �t� = a�x� � (L;rx)� � �0� � f 0(u)�;�(0) = a�xu0 � (L;rx)u0 � �0u0 � f(u0) + g; ����
 = �tu0:Let us now �x the extention w(t) (w(t); �tw(t) 2W (1;2);qb (R+�
)) of the boundaryondition u0 2 	b inside of the domain 
 suh that(2.24) ( 1: kwkW (1;2);qb (R+�
) + k�twkW (1;2);qb (R+�
) � Cku0k	b ;2: w(t; x) � 0; if dist(x0;
) � 1:The existene of suh an extention is and immediate orollary of the de�nition of	b (see (2.5)). Then, the funtion �1(t) := �(t) � �tw(t) satis�es the followingequation:(2.25) � �t�1 = a�x�1 � (L;rx)�1 � f 0(u)�1 + hw(t)� f 0(u)�tw;�1��t=0 = ���t=0 � �tw��t=0; �1���
 = 0;where hw(t) := �2tw(t)�a�x�tw(t)� (L;rx)�tw(t)��0�tw(t). Multiplying (2.25)by �1(t)�";x0 , integrating over 
 and using that " > 0 is small enough and assump-tion f 0(u) � K, we derive, after the standard estimates, that(2.26) 12 �j�1(t)j2; �";x0�+ �04 �j�1(t)j2; �";x0� �� K �j�1(t)j2; �";x0�+ C �jhw(t)j2; �";x0�� (f 0(u(t))�tw(t):�1(t); �";x0) ;where the onstant C > 0 is independent of x0. Estimating the last term in (2.26) byH�older inequality and using assumption (2.4)(2), the embeddingW (1;2);qb (R+�
) �C(R+ � 
) and estimates (2.24), we have(2.27) (f 0(u)�tw:�1; �";x0) � ��jf 0(u)j2p=(p�1); �";x0�+ �0=4 �j�1j2; �";x0�++ C� �j�twj2p; �";x0� � � �jf(u)j2; �";x0�+ C �1 + �juj2; �";x0��++ �0=4 �j�1j2; �";x0�+ C�e�� dist(x0;�
)ku0k2p	b ;19



where the onstant � > 0 an be hosen arbitrarily small.Inserting estimate (2.27) to the right-hand side of (2.26), applying the Gronwallinequality to the obtained relation and using (2.13) and (2.24) (in order to estimatethe funtion �thw(t)), we derive that(2.28) �j�tu(T )j2; �";x0� � Ce2KT �ku(0)k2D";x0 + 1 + �jgj2; �";x0��++ C�e2KT�� dist(x0;�
)Q(ku0k	b) + � Z T0 e2K(T�t) �jf(u(t))j2; �";x0� dt;where the onstant � an be hosen arbitrarily small.After obtaining estimate (2.28) for the L2-norm of the t-derivative, we mayonsider paraboli equation (2.1) as an ellipti boundary value problem at a �xedpoint T :(2.29) a�xu(T )� (L;rx)u(T )� f(u(T )) = hu := �tu(T )� g; u(T )���
 = u0(T );with the right-hand side hu belonging to the spae L2�";x0 (
). Arguing as in theproof of Lemma 2.2 (multiplying the equation by expression (2.14) and using esti-mate (2.18)), we derive the following estimate:(2.30) ku(T )k2W 2;2�";x0 (
) � C �1 + khuk2L2�";x0 (
) + e�� dist(x0;�
)Q(ku0k	b)� :Estimates (2.28) and (2.30) and equation (2.1) imply now that(2.31) �jf(u(T ))j2; �";x0� � C1e2KT �ku(0)k2D";x0 + 1 + �jgj2; �";x0��++ C 0�e2KT��dist(x0;�
)Q(ku0k	b) + C2� Z T0 e2K(T�t) �jf(u(t))j2; �";x0� dt:Setting � = 1=C2 and applying the Gronwall inequality to relation (2.31), we �nallyhave�jf(u(T ))j2; �";x0� � C3e(2K+1)T �ku(0)k2D";x0 + 1 + �jgj2; �";x0��++ C4e(2K+1)T e�� dist(x0;�
)Q(ku0k	b):Combining this estimate with (2.28) and (2.30), we obtain estimate (2.22) whihproves Lemma 2.3.We now note that the obtained estimate of the W 2;2�";x0 -norm diverges exponen-tially with respet to t ! 1 whih is not good from the attrators point of view.In order to remove this divergene, we need the following smoothing property.Lemma 2.4. Let the above assumptions hold. Then, the following estimate isvalid, for any solution u(t) of problem (2.1):(2.32) ku(1)k2W 2;2�p";x0 (
) �� C �1 + ku(0)k2pW 1;2�";x0 (
) + kgk2pL2�";x0 (
) + e�� dist(x0;�
)Q(ku0k	b)� ;20



for a ertain monotoni funtion Q, positive onstant � > 0 and for a suÆientlysmall positive " > 0.Proof. Let us �x an arbitrary x0 2 
 and a suÆiently small " > 0. Then, it followsfrom estimates (2.13) and (2.18) that(2.33) Z 10 ku(t)k2W 2;2�";x0 (
) dt �� C �1 + ku(0)k2W 1;2�";x0 (
) + kgk2L2�";x0 (
) + e�� dist(x0;�
)Q(ku0k	b)� :It follows from (2.33) that there exists a point T = T (x0) 2 [0; 1℄ suh that(2.34) ku(T )k2W 2;2�";x0 (
) �� C �1 + ku(0)k2W 1;2�";x0 (
) + kgk2L2�";x0 (
) + e�� dist(x0;�
)Q(ku0k	b)� :Moroeover, it is proved in [43℄ that the �rst growth restrition of (2.4), togetherwith Sobolev embedding theorem, imply the following estimate:(2.35) kf(u(T ))k2L2�p";x0 (
) � C �1 + ku(T )k2pW 2;2�";x0 (
)� :Estimates (2.34) and (2.35) imply that(2.36) ku(T )k2Dp";x0 �� C1 �1 + ku(0)k2pW 1;2�";x0 (
) + kgk2pL2�";x0 (
) + e�� dist(x0;�
)Q(ku0k	b)� :Applying now estimate (2.22) (where " is replaed by p") at the initial momentt = T instead of t = 0 and using (2.36), we derive estimate (2.32). Lemma 2.4 isproved.Thus, we have proved the analogue of estimate (2.9) for q = 2.Lemma 2.5. Let the above assumptions hold. Then(2.37) ku(t);
 \B1x0k2;2 �� Q(ku0kW 2;2b (
))e��t +Q(kgkL2b(
)) + e�� dist(x0;
)Q(ku0k	b);for some positive � and ertain monotoni funtion Q.Indeed, this lemma is a simple orollary of estimates (2.13), (2.22) and (2.32).Estimate (2.9) of the W 2;q-norm of the solution u an be now dedued from(2.37) in a standard way, using the regularity theorems for the linear paraboliequation and the �rst growth ondition of (2.4) for improving steps by steps theregularity of solution u(t) (see [43℄). Theorem 2.1 is proved.21



Corollary 2.1. Let the assumptions of Theorem 2.1 hold. Then, the followingestimate is valid:(2.38) ku(t)kW 2;qb (
) � Q(ku(0)kW 2;qb (
))e��t +Q(ku0k	b) +Q(kgkLqb(
));for the appropriate monotoni funtion Q and positive onstant � > 0.Indeed, estimate (2.38) is an immediate orollary of estimate (2.9).As usual, after obtaining a priori estimate (2.9), one an easily verify the exis-tene of a solution for problem (2.1).Theorem 2.2. Let the above assumptions hold. Then, for every u0 2 W 2;qb (
)whih satis�es the ompatibility ondition (2.6), equation (2.1) possesses a uniquesolution u(t). Moreover, the following estimate holds, for every two solutions u1(t)and u2(t) of equation (2.1):(2.39) ku1(T )� u2(T )k2L2�";x0 (
) + Z T+1T ku1(t)� u2(t)k2W 1;2�";x0 (
) dt �� Ce2KT ku1(0)� u2(0)k2L2�";x0 (
);where the onstant K is the same as in (2.3), " > 0 is a small parameter, and theonstant C depends only on the equation.Proof. The existene of a solution of (2.1), in ase 
 is bounded, an be deduedfrom a priori estimate (2.38) using the Leray-Shauder �xed point priniple (seee.g. [37℄). The existene of a solution in the unbounded domain 
 an be provedafter that, approximating the unbounded domain 
 by the bounded ones 
N andpassing to the limit N !1 (see e.g. [17℄ or [43℄ for the details).Let us now prove estimate (2.39) whih immediately implies the uniqueness. Letu1(t) and u2(t) be two solutions of (2.1) and let v(t) = u1(t) � u2(t). Then, thisfuntion satis�es the equation(2.40) �tv = a�xv � (L;rx)v � �0v � l(t)v; v���
 = 0; v��t=0 = u1(0)� u2(0);where l(t) := R 10 f 0(su1(t) + (1 � s)u2(t)) ds. We note that, aording to our as-sumptions on f , we have l(t) � �K, onsequently, multiplying equation (2.40) byv(t)�";x0 , integrating over the x 2 
 and arguing as in the proof of Lemma 2.1, wederive estimate (2.39) and �nishes the proof of Theorem 2.2.Corollary 2.2. Let the above assumptions hold and let the boundary onditionu0 2 	b(R+ � 
) be independent of t (i.e. u0(t; x) � u0(x) 2 W 2�1=q;qb (�
)).Then, problem (2.1) generates a semigroup fSt; t � 0g in the phase spae �b(
) :=W 2;qb (
) \ fu0���
 = u0g:(2.41) St : �b(
)! �b(
); u(t) = Stu0;where u(t) is the solution of (2.1) with u(0) = u0.22



Theorem 2.3. Let the assumptions of Theorem 2.1 hold. Then, for every twosolutions u1(t); u2(t) 2 �b and for every " > 0, the following estimate is valid:(2.42) ku1(t)� u2(t)kW 2;q�";x0 (
) � CeKtku1(0)� u2(0)kW 2;q�";x0 (
);where the onstants C;K depend on kuikW 2;qb , ku0k	b and ", but are independentof x0 2 
.Moreover, the following version of smoothing property is valid for solutions ui(t):(2.43) ku1(1)� u2(1)kW 2;q�";x0 (
) � C1ku1(0)� u2(0)kLq�";x0 (
);where C1 is also independent of x0 2 
.Proof. The proof of these estimates is based on a standard analysis of linear equa-tion (2.40) and an be obtained in the spirit of the proof of Theorem 2.1, butessentially simpler, sine equation (2.40) is linear and the oeÆient l(t) is smoothenough:(2.44) kl(t)kW 1;qb \Cb(
) � Q(kui(0)kW 2;qb ; ku0k	b)(thanks to (2.9) and due to the fats that f 2 C2 and W 2;qb � C, see e.g. [17℄ or[43℄ for the details). x3 The global attrator and upperbounds of its Kolmogorov's "-entropy.In this Setion, we will only onsider the autonomous ase of equation (2.1), i.e.we assume that(3.1) u0(t; x) � u0(x) 2 W 2�1=q;qb (�
):Then, aording to Corollary 2.2, this equation generates a semigroup fSt; t � 0g inthe phase spae �b(
) by expression (2.41). Moreover, aording to estimate (2.38),this semigroup possesses a bounded absorbing set B in the phase spae �b(
), i.e.,for any other bounded subset B � �b(
), there exists T = T (B) suh thatStB � B if t � T;but, nevertheless, in ontrast of the ase of bounded domains, the ompat attratorin �b(
) for equation (2.1) may not exist in the ase of unbounded domains, e.g.the Chafee-Infante equation in Rn (k = 1, f(u) = u3��u, � > �0) does not possessa ompat attrator in the topology of W 2;qb (Rn) (see, e.g. [39℄).That is the reason why (following [20℄, [21℄, [31℄, [32℄, [33℄), we onsider belowthe attrator A of semigroup (2.41) whih attrats bounded subsets of �b(
) onlyin a loal topology of the spae �lo = W 2;qlo (
) (i.e., A is the (�b;�lo)-attratorof (2.41) in notations of [4℄).We reall that the spae �lo(
) is reexive metrizable F-spae whih is genera-ted by semi-norms k � ;
 \ B1x0k2;q, x0 2 
.23



De�nition 3.1. A set A � �b(
) is the attrator of the semigroup St if the follo-wing assumptions hold:1. The set A is ompat in �lo(
).2. The set A is stritly invariant with respet to St, i.e.StA = A; for t � 0:3. The set A is an attrating set for St in loal topology, i.e., for every neigh-borhood O(A) of A in the topology of the spae �lo(
) and for every bounded inuniform topology subset B � �b(
), there exists T = T (O; B) suh thatStB � O(A) if t � T:We also reall that the �rst ondition means that the restrition A��
1 is ompatin the spae W 2;q(
1), for every bounded 
1 � 
.Analogously, the third ondition means that, for every bounded 
1 � 
, everybounded B in �b(
) and every W 2;q(
1)-neighborhood O(A��
1) of the restritionA��
1 , there exists T = T (
1;O; B) suh that(StB)��
1 � O(A��
1) if t � T:Theorem 3.1. Let the assumptions of Theorem 2.1 hold and let, in addition, (3.1)be satis�ed. Then, the semigroup St, de�ned by (2.41), possesses an attrator A,in the sense of De�nition 3.1, whih has the following struture:(3.2) A = K��t=0;where we denote by K the set of all solutions u of (2.1), de�ned and bounded for allt 2 R (supt2R ku(t)k�b(
) <1).The proof of this theorem is more or less standard and given, e.g. in [43℄ for thepartiular ase L(x) � 0 and u0(x) � 0. The proof in general ase is ompletelyanalogous, so we omit it here.We reall that the attrator A, onstruted in Theorem 3.1, is not ompat in thephase spae �b(
), but only its restritions A��
\BRx0 are ompat inW 2;q(
\BRx0),for every R > 0 and x0 2 
. Moreover, in ontrast to the ase of bounded domains,the fratal dimension of these restritions may be in�nite in many physially re-levant examples (it will be the ase, e.g. for the Chafee-Infante equation in Rnmentioned above (see e.g. [39℄)). That is the reason why, following [38℄, [39℄ and[41℄, we study the Kolmogorov's "-entropy of these restritions and its dependeneon three parameters ", R and x0.For the onveniene of the reader, we reall below the de�nition of Kolmogorov's"-entropy. For the detailed study of this onept, see [27℄ and [35℄.De�nition 3.1. Let M be a metri spae and let K be a preompat subset in it.For a given " > 0, let N"(K) = N"(K; M ) be the minimal number of "-balls in Mwhih over the set K (this number is, obviously, �nite by Hausdor� riteria). Byde�nition, Kolmogorov's "-entropy of K in M is the following number:(3.3) H "(K) = H "(K; M ) := lnN"(K):24



The fratal dimension dimF (K; M ) an be de�ned as follows:(3.4) dimF (K) = dimF (K; M ) := lim sup"!0 H "(K)ln 1" :Remark 3.1. We note that the fratal dimension dimF (K) may be in�nite forsuÆiently large ompats K, but the Kolmogorov's "-entropy is �nite, for every" > 0 (due to the Hausdor� riteria). In partiular, it is �nite for the restritionsA��
\BRx0 of the attrator A onstruted in Theorem 3.1.The following theorem gives the universal upper bounds of the "-entropy forthese restritions.Theorem 3.2. Let the assumptions Theorem 3.1 be valid and let(3.5) vol
;x0(R) = vol(
 \ BRx0):Then, for every R 2 R+ , x0 2 
, and " � "0 < 1(3.6) H " �A��
\BRx0 ;W 2;qb (
 \ BRx0)� � C vol
;x0(R+K ln 1" ) ln 1" ;where the onstants C, K and "0 are independent of R and x0 2 
.Estimate (3.6) is, in fat, a orollary of the smoothing property (2.43) for di�e-rees of solutions belonging to the attrator A (see e.g. [39℄ or [42℄ for the detailedproof).Let us formulate now several orollaries of estimate (3.6) (see also [39℄ or [42℄).Corollary 3.1. Sine Cb(
) �W 2;qb (
), then(3.7) H " �A; C(
 \ BRx0)� � C vol
;x0(R+K ln 1" ) ln 1" :Corollary 3.2. Let 
 = Rn . Then, vol
;x0(r) = rn and, onsequently(3.8) H " �A;W 2;qb (BRx0)� � ~C �R+K ln 1"�n ln 1" :Setting R :=M ln 1" , M > 0, we have(3.9) H " �A;W 2;qb (BM ln 1"x0 )� � CM �ln 1"�n+1 :We note that estimate (3.8) gives the same type of upper bounds for R = 1 andR =M ln 1" .Corollary 3.3. Let 
 be a bounded domain. Then, Theorem 3.1 implies thefollowing estimate:(3.10) H " �A;W 2;qb (
)� � C vol(
) ln 1" ;25



whih reets the well-known fat that, in this ase, the attrator A has the �nitefratal dimension.Corollary 3.4. Let 
 = Rk �!n�k be a ylindrial domain (! is bounded). Then,estimate (3.6) gives the following bound of the "-entropy of the attrator A:(3.11) H " �A;W 2;qb (
 \ BRx0)� � C �R+K ln 1"�k ln 1" :Corollary 3.5. Let the assumptions of Theorem 3.1 hold, 
 = Rn , and letM > 0.Then(3.12) H " �A;W 2;qe�Mjxj(
)� � C(M)�ln 1"�n+1 :Proof. Sine the attrator A is bounded in W 2;qb (
), then there exists a numberR = R(M) suh that(3.13) kA; fjxj > R ln 1="gke�Mjxj;2;q � "=2and, onsequently(3.14) H " �A;W 2;qe�Mjxj(
)� � H "=2 �A��BR ln 1="0 ;W 2;q(BR ln 1="0 )� :Thus, there remains to estimate the entropy in the right-hand side of (3.14). Tothis end, we note that(3.15) kv;BR ln 1="0 k2;q � (CR ln 1=")n=q kv;BR ln 1="0 kb;2;q:Thus, estimate (3.9) implies that(3.16) H " �A��BR ln 1="0 ;W 2;q(BR ln 1="0 )� �� H "=(CR ln 1=")n=q �A;W 2;qb (BR ln 1="0 )� � C(R)�ln 1"�n+1 ;where ln ln 1=" is majoranted by ln 1=". Corollary 3.5 is proved.Corollary 3.6. Let the assumptions of previous orollary hold and let K be thesame as in Theorem 3.1. Then, the following estimate is valid, for every R > 0:(3.17) H " �K; L1([0; R ln 1="℄;W 2;qb (BR ln 1="0 )� � C(R)�ln 1"�n+1 :Proof. Indeed, estimate (2.42), together with desription (3.2), imply that, for everyT � 0(3.18) H " �K; L1([0; T ℄;W 2;qe�jxj)� � H "=(CeKT ) �A;W 2;qe�jxj� :26



Inserting estimate (3.12) to this estimate and using obvious embedding W 2;qb;e�2jxj �W 2;qe�jxj , we have(3.19) H " �K; L1([0; R ln 1="℄;W 2;qb;e�2jxj(BR ln 1="0 )� � CR �ln 1"�n+1 :We now note thatkv;BR ln 1="0 kb;2;q � e2R ln 1="kv;BR ln 1="0 kb;e�2jxj;2;q = "�2Rkv;BR ln 1="0 kb;e�2jxj;2;qand, onsequentlyH " �K; L1([0; R ln 1="℄;W 2;qb (BR ln 1="0 )� �� H "2R+1 �K; L1([0; R ln 1="℄;W 2;qb;e�2jxj(BR ln 1="0 )� � C 0R �ln 1"�n+1 :Corollary 3.6 is proved.Remark 3.2. Sine L1 � W 2;qb (Rn), then estimate (3.17) implies, in partiular,the following estimate:(3.20) H " �K; L1([0; R ln 1="℄� BR ln 1="0 )� � CR �ln 1"�n+1 :Moreover, arguing as in the proof of Corollary 3.5 and using the invariantness ofK, we have(3.21) H " �K; L1e�Mjtj�Mjxj(R � Rn )� � CM �ln 1"�n+1 :x4 Quantiatative harateristis forthe spatial and temporal dynamis.In this Setion, we introdue several harateristis for the dynamial system,generated by equation (2.1) whih generalize the onept of topologial entropy tothe ase of unbounded domains. For simpliity, we restrit ourselves to onsideronly the ase of spatially homogeneous equation (2.1) in 
 = Rn , i.e. we assumethat(4.1) L(x) � L 2 Rn ; g(x) � g 2 Rn :In this ase, the attrator A of equation (2.1) possesses an additional struture,namely, the group fTh; h 2 Rng of spatial shifts ats on it:(4.2) ThA = A; (Thu0)(x) := u0(x+ h); h 2 Rn :We reall that, by the de�nition of the attrator, the dynamial semigroup fSt; t �0g de�ned by (2.41) also ats on the attrator. Moreover, this semigroup evidentlyommutes with group (4.2) of spatial shifts:(4.3) StA = A; ThSt = StTh; 8t 2 R+ ; h 2 Rn :27



Thus, the extended (n + 1)-parametrial semigroup fS(t;h); t 2 R+ ; h 2 Rng atson the attrator:(4.4) S(t;h)A = A; (S(t;h)u0)(x) := Stu0(x+ h); t 2 R+ ; h 2 Rn :Extended semigroup (4.4) an be interpreted as a dynamial system (with multidy-mensional 'time') ating on the phae spae A, and, onsequently, an be studiedfrom the dynamial point of view.We �rst reall the de�nition of the topologial entropy (see e.g. [25℄) adopted tothe ase of multidimensional 'time'. To this end, we endow our attrator A by themetri of the spae L1� (Rn), where the weight � has exponential growth rate (seeSetion 1) and satis�es the following assumption:(4.5) limjxj!1�(x) = 0:It is not diÆult to verify that, due to the fat that A is bounded in L1(Rn),the topologies indued on A by the embeddings A � L1� (Rn ) and A � L1lo(Rn)oinside (see e.g. [43℄). In partiular, this topology is independent of the partiularhoie of the weight �. For every R > 0, we de�ne a new metri on the attratorA by the following expression:(4.6) dR;�(u0; v0) := sup(t;h)2[0;R℄n+1 kS(t;h)u0 � S(t;h)v0kL1� :De�nition 4.1. The topologial entropy of semigroup (4.4) is the following num-ber:(4.7) bhn+1(A) := lim"!0 lim supR!1 1Rn+1 H " (A; dR;�) ;where the symbol H "(A; dR;�) denotes the Kolmogorov's "-entropy of the set A inthe spae generated by the metri dR;� (obviously, H "(A; dR;�) is a nondereasingfuntion of ", so limit (4.7) exists).It is well known (see e.g. [25℄), that topologial entropy (4.7) depends only onthe topology in A and independent of the partiular hoie of the metri on it. Inpartiular, quantity (4.7) is independent of �. Moreover, it is not diÆult to verify(analogously to [43℄) that(4.8) bhn+1(A) = lim"!0 lim supR!1 1Rn+1 H " �K; L1([0; R℄n+1)� ;where the set K is de�ned in Theorem 3.1.Proposition 4.1. The following limit exists, for every " > 0:(4.9) H "(K) := limRi!+1i=1;::;n+1 1R1 � � �Rn+1 H " (K; L1([0; R1℄� � � � � [0; Rn+1℄)) :Proof. Indeed, let(4.10) �(R1; � � � ; Rn+1) := H " (K; L1([0; R1℄� � � � � [0; Rn+1℄)) :28



Then, it follows from the invariantness of K under the spatial and temporal shiftsthat this funtion is subadditive with respet to every arguments:(4.11) �(R1; � � � ; R0i + R00i ; � � � ; Rn+1) � �(R1; � � � ; R0i; � � � ; Rn+1)++ �(R1; � � � ; R00i ; � � � ; Rn+1)and, osequentlylimRi!+1i=1;::;n+1 �(R1; � � � ; Rn+1) = infRi>0i=1;::;n+1 �(R1; � � � ; Rn+1);whih �nishes the proof of Proposition 4.1.Corollary 4.1. The following expressions an be onsidered as the equivalent de-�nitions of the topologial entropy bhn+1(A):(4.12) bhn+1(A) = lim"!0 limR!+1 1Rn+1 H " �K; L1([0; R℄n+1)� == lim"!0 limR!+1 1(2R)n limT!+1 1T H " (K; L1([0; T ℄; L1([�R;R℄n))) :We note that the expression in the right-hand side of (4.12) is equivalent to the soalled topologial entropy per unit volume introdued in [12℄. Thus, relation (4.12)gives, in partiular, the dynamial and geometrial interpretation of the topologialentropy per unit volume.We note that, a priori, expression (4.7) may be in�nite. The following theoremshows that it is not the ase in our situation.Theorem 4.1. Let the assumptions of Theorem 3.1 hold and let 
 = Rn and (4.1)be satis�ed. Then, the topologial entropy de�ned by (4.7) is �nite:(4.130.) bhn+1(A) � C <1:Proof. Indeed, due to subadditivity (4.11) and due to (3.20), for every R > ln 1=",we haveH " �K; L1([0; R℄n+1)� � � Rln 1=" + 1�n+1 H " �K; L1([0; ln 1="℄n+1)� �� C1Rn+1 + C2Rn (ln 1=")n+1and, onsequently bhn+1(A) � C1:Theorem 4.1 is proved.Let us study now the analogues of the quantities bhn+1(A) for the k-parametri-al subsemigroups of the extended dynamial system fS(t;h); t � 0; h 2 Rng. LetVk � Rt � Rnx be an arbitrary k-dimensional hyperplane, then we onsider thefollowing subsemigroup of extended dynamial system (4.4):(4.13) SVk(t;h) := fS(t;h); (t; h) 2 Vk \ (R+ � Rn)g:29



It is evident, that SRt(t;h) = St and SRnx(t;h) = Th:Let us �x now the orthonormal basis fe1; � � � ; ekg in Vk in suh way that ei � Rnx ,for i = 2; � � � ; k, and the semiaxis fhe1; h 2 R+g 2 R+ � Rn and, analogously to(4.6), de�ne a new metri on A:(4.14) dR;Vk(u0; v0) := sup0�li�Ri=1;��� ;k kSPi lieiu0 � SPi lieiv0kL1e�jxj(Rn):De�nition 4.2. The (modi�ed) toplogial entropy of semigroup (4.12) is the fol-lowing number:(4.15) bhVkk (A) := lim sup"!0 �ln 1"�k�n�1 lim supR!1 1Rk H " (A; dR;Vk) :Remark 4.2. We note that, in the ase k = n+ 1, quantity (4.15), oinsides withexpression (4.7) and, for k 6= n + 1, it di�ers from the standard De�nition 4.1 ofthe topologial entropy by the fator (ln 1=")k�n�1, whih is introdued in order toprovide the �niteness of limit (4.15) (see Theorem 4.2 below and the examples inSetions 5 and 7).We also note that, although we have de�ned quantities (4.15) using a speialbasis in the spae Vk, it is not diÆult to verify that these quantities are, in fat,independent on the onrete hoie of the basis and depend only on the subspae Vk.It is also worth to emphasize that, in ontrast to the ase of k = n+1, quantities(4.15) are not topologial invariants, but only Liptshitz ontinuious invariantsand depend, onsequently, on the partiular hoie of the metri, if k < n+ 1 (it isreasonable from many points of view to �x the exponentially deaying metri L1e�jxjon the attrator A (as it is impliitly done in De�nition 4.2)).Moroeover, although quantities (4.15) are not invariant under the H�older onti-nuous homeomorphisms, but, obviously(4.16) bhVkk (F (A)) � �k�n�1bhVkk (A);where 0 < � � 1 is the H�older onstant of the homeomorphism F . Consequently,the property of the (modi�ed) toipologial entropy to be equal zero or to be stritlypositive preserves under the H�older ontinuous homeomorphisms, in partiular, itpreserves under the replaing of the initial weighted metri of L1e�jxj on the attratorby the metri of L1e��jx�x0j , for every � > 0 and x0 2 Rn .Remark 4.3. The most natural hoies of the hyperplane Vk are the following:(4.17) bhsp(A) := bhRnxn (A) and bht(A) := bhRt1 (A);whih are responsible to the spatial and temporal omplexity of the dynamis res-petively. The fat that these quantitatives are strilty positive for a suÆientlylarge lass of equations (2.1) will be veri�ed in Setions 5 and 7.Let us formulate now the analogue of Proposition 4.1 and Corollary 4.1 for theentropies introdued in (4.15). 30



Proposition 4.2. Let Wk := V ?k \ Rnx , where V ?k stands for the orthogonalomplement of the spae Vk, let x = (x00; x0) orrespond to the deompositionRnx = (Vk \ Rnx ) �Wk and e1 = e01 + e001 , where e01 2 Wk, e001 2 Rt . Then, quantity(4.15) an be de�ned in the following equivalent way:(4.18) bhVkk (A) = lim sup"!0 �ln 1"�k�n�1 limR!1 1Rk H " �K; L1e�jx0�te01j(Vk(R)�Wk)� ;where Vk(R) := [0; Re001 ℄� ([0; Re2℄� � � � � [0; Rek℄) (if e1 2 Rnx , then t = 0 and theset K should be replaed by A, aording to relation (3.2) and the vetor e001 in thede�nition of Vk(R) should be replaed by e1 2 Rnx ).Proof. We onsider below only the most ompliated ase e001 6= 0 (the ase e001 = 0and, onsequently, Vk � Rnx is analogous, but even slightly more simple).It follows from the de�nition of the set K and from (4.14) and (4.15) that(4.19) bhVkk (A) = lim sup"!0 �ln 1"�k�n+1 lim supR!+1 1Rk H " �K; L1�R([0; Re001 ℄� Rnx )� ;where(4.20) �R(t; x) := supl002[0;R℄k�1 e�j(x0�te01;x00�l00)j:We note that �R(t; x) � e�jx0�te01j, if x00 2 [0; R℄k�1 and(4.21) �R(t; x) � e�jx0�te01je�� dist(x00;[0;R℄k�1);with an appropriate � > 0, if x00 =2 [0; R℄k�1, onsequently, there exists a onstantK > 0 whih is independent of R suh that(4.22) H " �K; L1e�jx0�te01j(Vk(R)�Wk)� � H " �K; L1�R([0; Re001 ℄� Rnx � �� H " �K; L1e�jx0�te01j(Vk(R+ 2K ln 1=")�Wk)� :Multiplying (4.22) by R�k and passing to the limit R!1, we derive (4.18). Theexistene of the limit as R! +1 follows (as in Proposition 4.1) from the obvioussubadditivity of the funtion(4.23) �k(R1; � � � ; Rk) :== H " �K; L1e�jx0�te01j([0; R1e001 ℄� [0; R2e2℄� � � � � [0; Rkek℄�Wk)� :Proposition 4.2 is proved.We reall that, analogously to De�nition 4.1, the k-dimensional topologial en-tropy introdued in (4.15) also, a priori, may be in�nite. The following analogue ofTheorem 4.1 shows that it is not the ase in our situation.31



Theorem 4.2. Let the assumptions of Theorem 3.1 hold and let, in addition, 
 =Rn and (4.1) be satis�ed. Then, for every k 2 [0; � � � ; n+1℄ and for every hyperplaneVk 2 Rt � Rnx , the orresponding (modi�ed) topologial entropy is �nite:(4.24) bhVkk (A) � C <1:Proof. Let us verify (4.24) only for the most ompliated ase e001 6= 0 (the asee001 = 0 an be onsidered analogously). Using the subadditivity of funtion (4.23),we derive that, for R >> ln 1=", the following estimate is valid:(4.25) H " �K; L1e�jx0�te01j(Vk(R)�Wk)� �� � Rln 1=" + 1�k H " �K; L1e�jx0�te01j(Vk(ln 1=")�Wk)� :We now note that, if t 2 [0; ln 1="℄, then(4.26) "e�jx0j � e�jx0�te01j � 1" e�jx0jand, onsequently, (due to the boundedness of K in L1 and estimate (3.20))H " �K; L1e�jx0�te01j(Vk(ln 1=")�Wk)� � H "2 �K; L1e�jx0j(Vk(ln 1=")�Wk)� �� H "2 �K; L1(Vk(ln 1=")� [0; K ln 1="℄n+1�k)� �� H "2 �K; L1([0; K1 ln 1"2 ℄n+1)� � C �ln 1"�n+1 :Inserting the obtained estimate to (4.25), we haveH " �K; L1e�jx0�te01j(Vk(R)�Wk)� � C1Rk �ln 1"�n+1�k + C2Rk�1�ln 1"�n+1 :Inserting this estimate to (4.18), we derive the �niteness of bhVkk (A) and �nish theproof of Theorem 4.2.The following theorem lari�es the relations between the topologial entropieswhih orrespond to di�erent k.Theorem 4.3. Let the assumptions of Theorem 4.1 hold and let the toplogialentropy whih orresponds to some k-dimensional hyperplane Vk (0 < k � n + 1)be stritly positive:(4.27) bhVkk (A) > 0:Then, for every k0 < k and every k0-dimensional hyperplane V 0k0 � Vk, the orres-ponding topologial entropy is also stritly positive:(4.28) bhV 0k0k0 (A) > 0:32



Proof. We �rst note that it is suÆient to onsider only the ase k0 = k � 1, i.e.Vk = Vk0 � fReg, where e 2 Rt � Rnx . There are two main possibilities (the otherones an be easily redued to them):1. Vk0 � Rnx , but Vk ontains the temporal diretions (e =2 Rnx ).2. We add the spatial diretion e 2 Rnx .Let us onsider the �rst ase. We �x the orthonormal basis fe1; � � � ; ekg in Vkin suh way that fe2; � � � ; ekg is an orthonormal basis in Vk0 � Rnx . Let us assumenow that the assertion of the theorem is wrong and(4.29) bhVk0k�1(A) = 0:Then, aording to Proposition 4.2(4.30) lim"!0�ln 1"�k�n�2 lim supR!1 1Rk�1 H " �A; L1�R(Rn )� = 0;where �R(x) := supl002[0;R℄k�1 e�j(x0;x00�l00j (x = x0 + x00, x0 2 V ?k�1, x00 2 Vk�1).We note that the weight �R(x) has exponential growth rate � = 1, moreoverthis weight satis�es (1.1) with the onstant C�R � C where C is independent of R.Consequently, it follows from estimates (2.43) and (1.19) that, for every u0; v0 2 A,the following estimate is valid:(4.31) kS1u0 � S1v0kW 2;qb;�qR(Rn) � C1ku0 � v0kLqb;�qR(Rn) � C2ku0 � v0kL1�R (Rn);where the onstants Ci are independent of R and u0; v0 2 A (see [39℄ and [43℄).Estimate (4.31), together with the invariantness of the attrator, imply that(4.32) H "=C2 �A;W 2;qb;�qR(Rn)� � H " �A; L1�R(Rn)� :Arguing analogously, but using estimate (2.42) with T = ln 1=" instead of (2.43),we have(4.33) H " �K; L1�R([0; ln 1="℄� Rn)� �� H "=C1 �K; L1([0; ln 1="℄;W 2;qb;�qRRn))� � H "m=C2 �A; L1�R(Rn)� :where m := K + 1 is independent of " and �R. Using inequality (4.26), we deduefrom (4.33) that(4.34) H " �K; L1e�jx0�te01j([0; (ln 1=")e001 ℄� V 0k�1(R)�Wk�1)� �� H "2 �K; L1e�jx0j([0; (ln 1=")e001 ℄� V 0k�1(R)�Wk�1)� �� H "2 �K; L1�R([0; ln 1="℄� Rn)� � H "2m=C3 �A; L1�R(Rn)� ;where V 0k�1(R) := [0; Re2℄� � � � � [0; Rek℄.Estimates (4.30) and (4.34) imply that, for every � > 0, there is "0 suh that,for every " > "0limR!1 1Rk�1 H " �K; L1e�jx0�te01j([0; ln 1" e001 ℄� V 0k�1(R)�Wk�1)� � ��ln 1"�n+2�k :33



Using the subadditivity of funtion (4.23), we derive from the last estimate thatlimT!1 1T limR!1 1Rk�1 H " �K; L1e�jx0�te01j([0; T e001 ℄� V 0k�1(R)�Wk�1)� �� ��ln 1"�n+1�kand, onsequentlybhVkk (A) = lim sup"!0 �ln 1"�k�n�1 limT!1 1T limR!1 1Rk�1 H " (K;L1e�jx0�te01j([0; T e001 ℄� V 0k�1(R)�Wk�1)� = 0;whih ontradits to assumption (4.27).Let us now onsider the seond ase and assume again that the assertion of thetheorem is wrong, i.e., (4.29) is true. We �x the orthonormal basis fe1; � � � ; ekg in Vkin suh way that ei 2 Rnx , for i = 2; � � � ; k, and fe1; � � � ; ek�1g be the orthonormalbasis in Vk�1. Let us assume also that e001 6= 0 (the other ase e001 = 0 is ompletelyanalogous). Let x = (x00; x0; y) be the deomposition of x 2 Rn whih orrespondsto the deomposition Rnx = (Vk�1 \ Rnx ) �Wk � fRekg. Then, using Proposition4.2 and the fat that Wk�1 =Wk � fRekg, we have(4.35) lim"!0�ln 1"�k�n�2 lim supR!1 1Rk�1 H "�K;L1e�j(x0�te01;y)j(Vk�1(R)�Wk�1)� = 0:Using the obvious inequalitye�j(x0�te01;y)j � "e�jx0�te01j for jyj � ln 1=";we derive from (4.35) that(4.36) lim"!0�ln 1"�k�n�2 lim supR!1 1Rk�1 H "�K;L1e�jx0�te001 j(Vk�1(R)� [0; ek ln 1" ℄�Wk)� = 0:Arguing now as in the end of the proof for the �rst ase (after obtaining estimate(4.34)) and using the subadditivity of funtion (4.23), we derive that bhVkk (A) = 0whih ontradits to (4.27) and �nishes the proof of Theorem 4.3.Remark 4.4. We have proved, in a fat, a slightly more strong result, namely, wehave obtained the following estimate:(4.37) bhVkk (A) � LbhVk�1k�1 (A); Vk�1 � Vk;for the appropriate onstant L whih is independent of k and Vk. This result anbe onsidered as a generalization of the well known relation between the fratal di-mension and the topologial entropy for the Lipshitz ontinuous dynamial sytemswith one dimensional 'time':(4.38) htop(A) � L dimF (A):Indeed, for one dimensional 'time' (n = 0), we have bh0(A) = dimF (A) and bh1(A) =htop(A). 34



Corollary 4.2. Let the assumptions of Theorem 4.1 hold and let, in addition,topologial entropy (4.8) is stritly positive. Then, for every k 2 [0; � � � ; n+ 1℄ andfor every k-dimensional hyperplane Vk, the orresponding topologial entropy is alsostritly positive: bhVkk (A) > 0.On the other hand, if the 0-dimensional entropy is equal to zero, i.e.lim"!0�ln 1"��n�1 H " �A; L1(Bln 1="0 )� = 0;then all the entropies, de�ned by (4.14) are equal to zero.Remark 4.5. It is possible to onsider the spatial and temporal dynamis fromthe uni�ed point of view. Indeed, let us endow the set K, de�ned in Theorem 3.1by the topology of the spae L1e�j(t;x)j(Rn+1) and onsider the (n+1)-parametrialsemigroup of spatial and temporal shifts fT(s;h); s 2 R+ ; h 2 Rng ating in thisspae. Then, by de�nition, the set K is stritly invariant under this semigroup:(4.39) T(s;h)K = K; (T(s;h))u(t; x) := u(t+ s; x+ h); s 2 R+ ; h 2 Rnand, onsequently, we may de�ne all quantities (4.15) for semigroup (4.39) as well.We denote them by bhVkk (K). We laim that(4.40) C1bhVkk (K) � bhVkk (A) � C2bhVkk (K):Indeed, let K+ := K��t�0, then, aording to (2.42), we have the Liptshitz onti-nuous isomorphism between the sets(4.41) �A;W 2;qb;e�qjxj(Rn)�! �K+; L1e�Kjtj(R+ ;W 2;qb;e�qjxj(Rn))� ;whih is realized by the solving operator of problem (2.1) (if K is large enough, seealso (4.31) and [43℄). We also note that, due to (4.31), the entropies of A omputedin the L1e�jxj -metri oinsides with the ones omputed in the metri of the left handside of (4.41). Therefore, the topologial entropies of K+ omputed in the metri ofthe right-hand side of (4.41) oinsides with the orresponding topologial entropiesof A. Using now estimates (4.16) for estimating the entropies in the uni�ed metrie�j(t;x)j, we easily derive the following analogue of estimates (4.40):(4.42) C1bhVkk (K+) � bhVkk (A) � C2bhVkk (K+):Arguing as in the proof of Theorem 4.3, we derive thatbhVkk (K+) � bhVkk (K) � C3bhVkk (K+);whih implies estimate (4.40).x5 Lower bounds of the "-entropy and spatial haos.In this Setion, following [39℄ and [43℄, we derive the lower bounds for the Kol-mogorov's "-entropy of the attrator A of spatially homogeneous equation (2.1) in35




 = Rn (assumptions (4.1) are assumed to be satis�ed) and obtain a topologialdesription of the spatial omplexity of this attrator.We �rst note that it follows from onditions (2.3) that equation (2.1) possessesat least one spatially homogeneous equilibrium z0 2 Rn , f(z0)+�0z0 = g. Withoutloss of generality, we may assume that z0 � 0 (f(0) = g = 0) and, onsequently,equation (2.1) has the following view:(5.1) �tu = a�xu� (L;rx)u+Bu� �f(u); �f(0) = �f 0(0) = 0;where B := ��0u � f 0(0) 2 L(Rk ;Rk ) and �f(u) := f(u) � f 0(0)u. Our mainassumption is the following: the equilibrium z0 = 0 is exponentially unstable, i.e.(5.2) �(a�x � (L;rx) +B) \ fRe z > 0g 6= ?;where �(T ) denotes the spetrum of the operator T .In order to formulate the result on the in�nite dimensional unstable manifold forequation (5.1), we need the following lassial spaes (see e.g. [27℄).De�nition 5.1. We denote by B � (Rn) = B � (Rn ; C ) the subspae of L1(Rn ; C )whih onsists of all funtions � the Fourier transform b� of whih satis�es(5.3) supp b� � [��; �℄n:Analogously, we denote by B �;� (Rn ), � 2 Rn a slightly general lass of funtionswhih onsists of funtions � the Fourier transform b� of whih satis�es(5.4) supp b� � � + [��; �℄n:We reall that the spae B �;� is isomorphi to B � and this homeomorphism is givenby multipliation on the funtion ei�:x.Theorem 5.1. Let the assumptions of Theorem 4.1 hold, equation (2.1) have theform (5.1), and assumption (5.2) be satis�ed. Then, for every N >> 1, there exist apositive number � > 0, a vetor �0 2 Rn , � < j�0j, a positive number r = r(N) > 0and a map(5.5) U0 : B(r; 0; B �0 ;�)!A; Th Æ U0 = U0 Æ Th;where B(r; v; V ) denotes the r-ball of the spae V entered at v, suh that, for everyx0 2 Rn , the following estimates hold:(5.6) 8<: kU0(u1)� U0(u2); B1x0k2;q � CN supx2
 ku1�u2;B1xk0;1(1+jx�x0j2N )1=2 ;ku1 � u2; B1x0k0;1 � CN supx2
 kU0(u1)�U0(u2);B1xk2;q(1+jx�x0j2N)1=2 ;where the onstant CN depends only on N and is independednt of x0.Moreover, there exists a vetor ~l 2 Rk and a linear operator S : B �0 ;�(Rn) !W 2;qb (Rn ;Rk ) suh that(5.7) S(u0):~l � Re u0; for every u0 2 B �0 ;�(Rn )and, for every u0 2 B(r; 0; B �0 ;�), the following estimate hold:(5.8) kU0(u0)� S(u0)kW 2;qb (Rn) � Cku0k2L1b (Rn):The detailed proof of this theorem is given in [43℄, for the ase L = 0. Thegeneral ase L 6= 0 is ompletely analogous, so we omit the proof here (see alsoSetion 7 where the proof of the analogous result will be given in a more ompliatedsituation).Estimate (5.8), together with the information about the "-entropy in the spaesB � allows to obtain the lower bounds for the attrator of equation (2.1).36



Theorem 5.2. Let the assumptions of Theorem 5.1 hold. Then, the "-entropy ofthe attrator A of this equation possesses the following estimate:(5.9) H " �A; L1(BR0 )� � CRn ln 1" ; " � "0 < 1;whih shows that (3.8) is sharp, if R� ln 1=" and for R � ln 1" .Moreover, for every Æ > 0, there exists a onstant CÆ > 0 suh that(5.10) H " �A; L1(B10)� � CÆ �ln 1"�n+1�Æ ; " � "0 < 1and, onsequently, (3.8) is sharp for the ase R� ln 1" as well.Proof. Let u10; u20 2 B(�; 0; B �0 ;�) and � � r (where r; �; �0 are the same as inTheorem 5.1). Then, for every R > 0(5.11) kU0(u10)� U0(u20)kL1(BR0 ) � kRe(u10 � u20)kL1(BR0 ) � C�2;where C is independent of R. Indeed, aording to (5.8) and (5.7)kU0(u10)� U0(u20)kL1(BR0 ) �� kSu10 � Su20kL1(BR0 ) � kU0(u10)� Su10kL1(Rn) � kU0(u20)� Su20kL1(Rn) �� kSu10 � Su20kL1(BR0 ) � C1(ku10k2B�;�0 + ku20k2B�;�0 ) �� kRe(u10 � u20)kL1(BR0 ) � C�2:Thus,(5.12) H "=4 �A; L1b (BR0 )� � H " �B(� "2C �1=2 ; 0; BRe�0 ;�); Cb(BR0 )� == H (2C")1=2 �B(1; 0; BRe�0 ;�); Cb(BR0 )� ;where, by de�nition, BRe�0 ;�(Rn ;R) := Re B �0 ;�(Rn ; C ). To omplete the proof of thetheorem, we need the following lemma.Lemma 5.1. The "-entropy of the unit balls in the spaes B �0 ;� and BRe�0 ;� possessesestimates (5.9) and (5.10) (where A is replaed by B(1; 0; B �0 ;�) or B(1; 0; BRe�0 ;�)respetively).The proof of the lemma is given, e.g. in [27℄ or [39℄ for the spaes B �0 ;�. Thease of B �0 ;� is ompletely analogous (see also [43℄).Estimating entropy in the right-hand side of (5.12) by Lemma 5.1, we immedia-tely obtain estimates (5.9) and (5.10) for the "-entropy of the attrator and �nishthe proof of Theorem 5.2.Corollary 5.1. Let the assumptions of Theorem 5.1 hold. Then, the (modi�ed)topologial entropy bhsp(A) (see (4.17)) is stritly positive:(5.13) bhsp(A) > 037



and, onsequently (due to Theorem 4.3), the topologial entropies bhVkk (A) are alsostritly positive, for all Vk � Rnx .Remark 5.1. It follows from (5.13) that the (lassial) topologial entropy of thegroup fTh; h 2 Rng ating on the attrator (whih is de�ned by (4.15) without thestabilizing fator (ln 1=")�1) is in�nite. The same is true for all its subsemigroupsfTh; h 2 Vkg if Vk � Rnx .Theorem 5.1 allows also to obtain some topologial desription of the spatialomplexity of the attrator A.Corollary 5.2. Let the assumptions of Theorem 5.1 hold and let(5.14) K := B(r; 0; B �0 ;�) endowed by the topology of L1lo(Rn);where r, � and �0 be the same as in Theorem 5.1. Then, the map U0 realizes ahomeomorphism(5.15) U0 : (K ; Th)! (U0(K ); Th) � (A; Th) :Moreover, this homeomorphism preserves the topologial entropy bhsp(5.16) 0 < bhsp(K ) = bhsp(U0(K )) � bhsp(A):Proof. The fat that the map U0 is a homeomorphism in a loal topology is animmediate orollary of estimates (5.6). The homeomorphism of 'dynamial systems'follows from the fat that U0 ommutes with Th (see (5.5)). Relations (5.16) anbe easily derived from Lemma 5.1 and from estimates (5.6) (see [43℄). Corollary5.2 is proved.Thus, we have onstruted the embedding of the model 'dynamial system'(K ; Th) to the spatial dynamis on the attrator. In order to larify the haotinature of this model dynamial sytem, we restit ourselves to onsider the disretedynamis fTh; h 2 �Zng for the appropriate � > 0. For this ase, the desriptionof the dynamis (K ; Th) an be essentially simpli�ed.De�nition 5.2. Let D := fz 2 C : jzj � 1g be a unit disk in C . We setM := D Znand endow this spae by the standard Tikhonov's topology. We de�ne a groupfTl; l 2 Zng on M as follows:(5.17) (Tlv)(m) := v(l+m); l;m 2 Zn; v 2 M;where the spae M is interpreted as a spae of all funtions v : Zn ! D .Propositrion 5.1. There exist a positive number � > 0 and a ontinuous map� :M! K suh that(5.18) T�l�(v0) = �(Tlv0); l 2 Zn; v0 2 M:Moreover, for every weight funtion with polinomial growth rate � < 1, the followingestimate is valid:(5.19) C1kv1 � v2kL1� (Zn) � k�(v1)� �(v2)kL1� (Rn) � C2kv1 � v2kL1� (Zn);38



for every v1; v2 2 M (where the onstants Ci depend only on � and C� fromassumption (1.2)).If we de�ne the (modi�ed) topologial entropy for (M; Tl) as follows:(5.20) bhsp(M) := lim sup"!0 �ln 1"��1 limT!1 1Tn H " (M; L1([0; T ℄n)) ;(ompare with (4.15) and (4.18)), then the map � preserves the topologial entropy(up to the multiplier �n):(5.21) 0 < ��nbhsp(M) = bhsp(�(M)) � bhsp(K ):The proof of Proposition 5.1 is based on the lassial Kotelnikov-Cartrait inter-polation formula (see [27℄) for funtions from the lass B � and is given in [43℄.Combining Theorem 5.2 and Proposition 5.1, we obtain the following result.Theorem 5.3. Let the assumptions of Theorem 5.1 hold. Then, there exists anumber � > 0 and a homeomorphi embedding(5.22) � : (M; Tl)! (A; T�l) ; l 2 Zn;whih preserves the (modi�ed) topologial entropy(5.23) 0 < ��nbhsp(M) = bhsp(�(M)) � bhsp(A):Indeed, it is suÆient to take � := U0 Æ �.Remark 5.2. The dynamial system (M; Tl) an be onsidered as one of possibleways to generalize the symboli dynamis (Bernoulli shifts, see e.g. [25℄) to the aseof in�nite (and even ontinual) number of symbols. Indeed, onsidering the losedinvariant subset MN � M whih onsists of funtions v : Zn ! fa1; � � � ; aNg,where ai 2 D are di�erent omplex numbers, we obtain from (5.22) the embeddingof the symboli dynamis with �nite number N symbols to the dynamial system ofspatial shifts on the attrator. Thus, the onstrution of embedding (5.22) lari�esthe nature of the spatial haotisity on the attrator of (2.1), in partiular, it explainswhy we should use the fator (ln 1" )�1 for the proper de�nition of the topologialentropy bhsp of the spatial dynamis on the attrator (see, e.g. [43℄ for a moredetailed study of the phenomena of spatial haos).Thus, embedding (5.22) shows that the spatial dynamis on the attrator A isextremely haoti. In partiular, this embedding allows to realize (up to a ho-meomorphism) every �nite dimensional dynamis by restriting the group of shitftsfTh; h 2 Rng to the appropriate spatially invariant subset of A. To be more preise,the following result holds.Corollary 5.3. Let the assumptions of Theorem 5.1 hold, let K � RN be anarbitray ompat set in RN , N 2 N, and let F1; � � � ; Fn : K ! K be arbitrarypairwise ommutative homeomorphisms, i.e.(5.24) Fi Æ Fj = Fj Æ Fi; i; j 2 f1; � � � ; ng:39



Then, there exist a positive number  = (N) > 0 and a homeomorphism(5.25) b� : K ! b�(K) � A;suh that(5.26) Tlb�(k) = b� �F l11 Æ � � � Æ F lnn (k)� ; k 2 K; l 2 Zn;where F lii denotes the li-th iteration of the map Fi.Proof. Indeed, due to Theorem 5.3, it is suÆient to onstrut only the embedding�� : K ! M whih satis�es (5.26). Moroever, without loss of generality, we mayassume that K � DMn , for the appropriate M 2 N , and f(k)m1;��� ;mn 2 D ; mi =0; 1; � � � ;M � 1g is the orresponding oordinate system in it. We de�ne the map�� : K !M by the following formula:��(k)(l) := �F k11 Æ � � � Æ F knn (k)�r1;��� ;rn ; li = kiM+ri; ki 2 Z; ri 2 f0; � � � ;M�1g:Then, obviously, this map satis�es (5.26) with  =M and the ontinuity of this em-bedding follows immediately from the fat that Fi are homeomorphisms. Corollary5.3 is proved.In order to study the spatial omplexity of an individual point at the attrator,it is natural to introdue (following [43℄) the following quantity.De�nition 5.3. Let u0 2 A. Then, by de�nition, the (modi�ed) spatial entropyof u0 is the following number:(5.27) bhsp(u0) := bhsp(H(u0)); where H(u0) := [Thu0; h 2 Rn ℄L1lo(Rn);where [�℄V denotes the losure in the spae V .Corollary 5.4. Let the assumptions of Theorem 5.1 hold. Then, for every pointu0 2 A, its spatial entropy is �nite. Moreover, there exist points u0 2 A the spatialentropy of whih is stritly positive:(5.28) 0 < bhsp(u0) <1:Indeed, the �rst assertion of the orollary follows immediately from Theorem 4.2and the seond one follows from Theorem 5.1 and from the obvious fat that thedynamial system fM; Tlg is topologially transitive (i.e. possesses dense orbits).Remark 5.3. It is proved in [43℄ that, under some natural assumptions on (2.1),spatial entropy (5.27) preserves under the temporal evolution:(5.29) bhsp(Stu0) = bhsp(u0); u0 2 A:40



x6 The spatial dynamial system in the extended phase spae.Our next task is to extend Theorem 5.3 to the ase of temporal dynamis. Tothis end, we onstrut the auxiliary dynamial system for whih the diretion twill be 'spatial' and, applying the algorithm of studying the spatial haos given inSetion 5 to that system, we obtain the desription of the temporal haos for initialsystem (2.1).As in Setions 4 and 5, we onsider only spatially homogeneous ase(6.1) 
 = Rn ; g � 0; L(x) := L 2 Rn ; f(0) = 0:Moreover, without loss of generality, we may assume that the vetor L has the form(6.2) L := Le1; e1 := (1; 0; � � � ; 0); L 2 R+(the general ase may be redued to this one by the appropriate spatial rotation).We now introdue the following auxiliary paraboli boundary value problem inthe half-spae x = (x1; x0) 2 R+ � Rn�1 :(6.3) ( �tu = a(�2x1u+�x0u)� L�x1u� �0u� f(u); t 2 R; x0 2 Rn�1 ;u��x1=0 = u0; x1 � 0:We onsider this boundary problem as a (formal) evolution equation with respetto the variable x1. In order to indiate this idea in a more lear way, we introduenew variables(6.4) � := x1; y = (y1; � � � ; yn) = (y1; y0) := (t; x0):In these variables problem (6.3) has the following view:(6.5) ( a(�2�u+�y0u)� L��u� �0u� f(u) = �y1u; y 2 Rn ; � � 0;u���=0 = u0:The following theorem shows that problem (6.5) de�nes indeed a dynamial systemwith respet to �, if L is large enough.Theorem 6.1. Let the assumptions of Theorem 2.1 hold and (6.2) be satis�ed. Wealso assume that there exists a nonnegative onstant �0 � 0 suh that(6.6) L�0 � �a+ � 2a�(a+)�1a���20 �K > 0;where a+ := 1=2(a+ a�), a� := 1=2(a� a�) and K is the same as in (2.3). Then,for every u0 2 	b(R�Rn�1) := fu0; �tu0 2W (1�1=(2q);2�1=q);qb (Rn )g, problem (6.5)has a unique bounded solution u(�; y), i.e. the unique solution in the lass(6.7) u; �tu 2W (1;2);qb �Rt � �R+;x1 � Rn�1x0 �� :Proof. The existene of a solution for problem (6.5) follows from Theorems 2.1and 2.2 (even without assumption (6.6)). Indeed, it follows from these theoremsthat problem (6.5) with additional onditions y1 > �N and u��y1=�N = u0 (where41



u0 2W 2;qb (R+ � Rn ) suh a funtion that u0 � 0, if � > 1, ku0kb;2;q � ku0k	b , andthe �rst ompatibility ondition at � = 0, y1 = �N is satis�ed) has a solution uN ,for every N 2 N . Moreover, estimate (2.9) implies that(6.8) kuN (t); B1x0k2;q + k�tuN (t); B1x0k0;q � Q(ku0k	b) +Q(kgkLqb);where the funtion Q is independent of N and x0. Passing now to the limit N !1and using uniform estimate (6.8), we easily derive the existene of a solution forproblem (6.6). We also note that estimate (2.9) implies the following estimate forthis solution:(6.9) ku(t); B1x0k2;q + k�tu(t); B1x0k0;q � Q(ku0k	b)e��� +Q(kgkLqb);where Q and � are independent of t and x0. We now reall that 	b(Rn) is atrae spae for spae (6.7) to the hyperplane x1 = 0 (see e.g. [28℄), onsequently,di�erentiating equation (6.5) with respet to t � y1 and applying the paraboliLq-regularity theorem to the obtained equation, we derive from (6.9) that(6.10) Z T+1T �ku(t); B1x0kq2;q + k�tu(t); B1x0kq2;q + k�2t u(t); B1x0kq0;q� dt �� Q(ku0k	b)e��x1 +Q(kgkLqb);where Q and � are independent of x0 and T . Thus, the existene of a solution of(6.5) in the lass (6.7) is veri�ed. Moreover, (due to the embedding theorem andthe fat that q > n+ 1), we have(6.11) kukC1b (R+�Rn) � Q(ku0k	b) +Q(kgkLqb);for the appropriate monotoni funtion Q.Let us verify now the uniqueness of a solution under assumption (6.6). Indeed,let u1(�) and u2(�) be two solutions of problem (6.5) and let v(�) := u1(�)�u2(�).Then, this funtion satis�es the following relation:(6.12) ( a(�2�v +�y0v)� L��v � �0v � l(�)v = �y1v; y 2 Rn ; � � 0;v���=0 = 0;where l(�) := R 10 f 0(su1(�) + (1� s)u2(�)) ds. Moroeover, due to (2.3) and (6.11),we have(6.13) l(�) � �K and klkC1b (R+�Rn) � Q(kui���=0k	b):Let us now introdue the variable �(�) := e��0�v(�), where �0 � 0 is the same asin (6.6). Then, we have the following equation:(6.14) a(�2�� +�y0�)� (L� 2a�0)��� � �L�0 � a�20 � l(�)� � � �0� = �y1�:Let us multiply equation (6.14) by e�"(j���0j+jy�y0j)�(�) :=  "(�; y)�, where �0 � 0,y0 2 Rn and " is a small parameter whih will be �xed below, and integrate over(�; y) 2 R+ � Rn (sine v is bounded and �0 � 0 then � is also bounded and,42



onsequently, all integrals obtained below have a sense). Then, we derive, after theintegration by parts, using inequality (2.11) and evident estimates, that(6.15) � ha+���:���;  "i�ha+ry0�:ry0�;  "i+2�0j ha����:�;  "i j��0 
j�j2;  "�� 
(L�0 � a+�20 �K)�:�;  "�+ C" 
j���j2 + jry0�j2 + j�j2;  "� � 0;here and below hu; vi denotes the standard inner produt in L2(R+ �Rn). Estima-ting the third term in (6.15) as follows:2�0j ha����:�;  "i j � �1=2 ha+���:���;  "i+ 2�20 
a�(a+)�1a��:�;  "� ;we obtain the inequality(6.16) 1=2 ha+���:���;  "i+ ha+ry0�:ry0�;  "i+ �0 
j�j2;  "�+
(L�0 � (a+ � 2a�(a+)�1a�)�20 �K)�:�;  "� �� C" 
j���j2 + jry0�j2 + j�j2;  "� :Due to ondition (6.6), the third term in (6.16) is nonnegative, onsequently, thereexists a positive onstant � > 0 (independent of ", �0 and y0) suh that(6.17) (�� C") 
j���j2 + jry0�j2 + j�j2;  "� � 0;whih implies that � � 0 if " is small enough and �nishes the proof of Theorem 6.1.Corollary 6.1. Let the assumptions of Theorem 6.1 hold. Then, problem (6.5)de�nes a semigroup fS�; � � 0g in the phase spae 	b(Rn ):(6.18) S� : 	b ! 	b; � � 0; S�u0 := u(�);where u(�) is a solution of (6.5), with u(0) = u0. Moreover, this semigroup pos-sesses the following estimate:(6.19) kS�u0k	b � Q(ku0k	b)e��� +Q(kgkLqb);for the appropriate positive � > 0 and monotoini funtion Q.Indeed, estimate (6.19) is an immediate orollary of (6.10) and the de�nition ofthe trae spae 	b. The existene of the semigroup follows then from the mainassertion of Theorem 6.1.Our task now is to study dynamial system (6.18). At the �rst step, we show thatthis system is Lipshitz ontinuous in the spaes 	�";y0 , where �";y0(y) := e�"jy�y0j(see De�nitions 1.2 and 1.5), if " > 0 is small enough.Corollary 6.2. Let the assumptions of Theorem 6.1 hold and let u1(�) and u2(�)be two bounded solutions of (6.5), with di�erent 'initial values'. Then, the followingestimate is valid:(6.20) ku1(�)� u2(�)k	�";y0 � Ce(�0�")�ku1(0)� u2(0)k	�";y0 ;43



where " > 0 is small enough and the onstant C depends only on " and kui(0)k�b,i = 1; 2 (but is independent of y0 2 Rn).Proof. Let, as in the proof of Theorem 6.1, �(�) := e��0�(u1(�) � u2(�)). Then,this funtion satis�es equation (6.14), with non-zero boundary onditions ����=0 =u1(0)� u2(0). Let us now introdue a funtion w(�; y) := �w(t; x) (the extention ofthe funtion u1(0) � u2(0) inside of the domain R+ � Rn) whih belongs to lass(6.7) and satis�es the following ondition:(6.21) �w(t; x) � 0; for x1 � 1and the following inequality:(6.22) k �wkW (1;2);q([T;T+1℄�(B1x0\
+)) + k�t �wkW (1;2);q([T;T+1℄�(B1x0\
+)) �� Cku1(0)� u2(0)k	([T�1;T+2℄�(B2x0\�
+));where 
+ := R+;x1 � Rn�1x0 , the onstant C is independent of T 2 R and x0 2 
+and the spae 	 is de�ned in (2.5). Suh an extension exists sine 	b is the traespae for funtions of lass (6.7). Let �1(�) := �(�) � w(�). Then, this funtion,obviously, satis�es the non-homogeneous analogue of (6.14):(6.23) a(�2��1 +�y0�1)� (L� 2a�0)���1 � �L�0 � a�20 � l(�)� �1 � �0�1 == �y1�1 + h(�);where �1���=0 = 0 and, aording to (6.13), (6.21) and (6.22), the funtion h(�) :=h(�; y) = �h(t; x) satis�es(6.24) k�hkLq([T;T+1℄�(B1x0\
+))k�t�hkLq([T;T+1℄�(B1x0\
+)) �� C1ku1(0)� u2(0)k	([T�1;T+2℄�(B2x0\�
+));where the onstant C1 depends on kui(0)k	b , but is independent of T 2 R andx0 := (�; x00) 2 
. We also note that the right-hand side of (6.24) vanishes if � � 2,sine, in this ase, B2x0 \ �
+ = ?.Multiplying now equation (6.23) by e�"j���0j�"jy�y0j�1 and arguing as in theproof of Theorem 6.1, we derive that, for suÆiently small " > 0 the followingestimate holds:(6.25) Dj���1j2 + jry0�1j2 + j�1j2; e�"j���0j�"jy�y0jE �� C 00 Djhj2; e�"j���0j�"jy�y0jE ;where the onstant C 00 is independent of �0 and y0. Estimates (6.24) and (6.25)imply that(6.26) k�1kL2([T;T+1℄�(B1x0\
+)) �� C2e�"�ku1(0)� u2(0)k	�";y0 ; y0 := (T; x00); x0 := (�; x00);where C2 depends on kui(0)k	b , but is independent of T 2 R and x0 2 
+.44



We now reall that, due to the standard interior regularity theory applied toparaboli equation (6.23) (see e.g. [28℄), we have the following estimate:(6.27) k�1kW (1;2);q([T;T+1℄�(B1x0\
+)) + k�t�1kW (1;2);q([T;T+1℄�(B1x0\
+)) �� C3�k�1kL2([T�1;T+1℄�(B2x0\
+)) + khkLq([T�1;T+1℄�(B2x0\
+))++ k�thkLq([T�1;T+1℄�(B2x0\
+))�;where C3 is independent of T 2 R and x0 2 
+. Inserting estimates (6.26), (6.24)into the right-hand side of (6.27) and using the de�nition of the trae spae 	, weobtain, after simple alulations, thatk�1(�)k	(B1y0 ) � C4e�"�ku1(0)� u2(0)k	�";y0 (Rn)and, onsequently(6.28) ku1(�)� u2(�)k	(B1y0 ) � C5e(�0�")�ku1(0)� u2(0)k	�";y0 (Rn);where the onstants C4 and C5 depend on kui(0)k	b and ", but are independent ofy0 2 Rn . Multiplying this estimate by e�"1jy0�zj, "1 < ", integrating over y0 2 Rnand using estimate (1.7), we derive (6.20). Corollary 6.2 is proved.Corollary 6.3. Let the assumptions of Theorem 6.1 hold. Then, the semigroupfS�; � > 0g de�ned by expression (6.18) possesses a loally ompat attrator Asp(i.e. (	b;	lo)-attrator, see De�nition 3.1). Moreover, this attrator has thefollowing struture:(6.29) Asp = K��x1=0;where K is the same as in Theorem 3.1.Proof. Indeed, aording to the attrators existene theorem for abstrat semi-groups (see e.g. [4℄, [24℄ or [34℄), it is suÆient to verify the following onditions:1. The semigroup (6.18) is 	lo-ontinuous on every 	b-bounded set.2. There exists an absorbing set B � 	b for this semigroup, whih is ompatin 	lo-topology.We note that the �rst ondition is an immediate orollary of estimate (6.20).Let us verify the seond one. It follows from estimate (6.19) that the set(6.30) BR := fu0 : ku0k	b � Rgis an absorbing set for semigroup (6.18), if R is large enough (whih is not ompatin 	lo). We laim, however, that the set B := S1BR is a desired absorbing setwhih is (pre)ompat in 	lo.Indeed, it follows from (6.10) and from the embedding theorem (q > n+1) thatkf(u)kC1b (R+�Rn) � C = C(R);if u(0) 2 BR. Consequently, due to the L2q-interior regularity theorem for theparaboli equations (see (6.27), where q is replaed by 2q) and due to the expliitdesription of the orresponding trae spae at � = 0, we have(6.31) ku(1)kW (1�1=(4q);2�1=(2q)b (Rn) + k�y1u(1)kW (1�1=(4q);2�1=(2q)b (Rn) � Q1(R);45



if u(0) = u0 2 BR. There now remains to note that the spae in the left-hand sideof (6.31) is ompatly embedded to 	lo.Thus, all the onditions of the attrators existene theorem are veri�ed for se-migroup (6.18) and, onsequently, it possesses a loally ompat attrator Asp.Desription (6.29) also follows from this abstrat theorem and from the evidentfat that the sets of all bounded trajetories for semigroups (6.18) and (2.41) oin-side. Corollary 6.3 is proved.Our next task is to verify that the semigroup fS�; � > 0g is di�erentiable withrespet to the initial data u0. To this end, we need the solvability result for theorresponding equation of variations.Corollary 6.4. Let the assumptions of Theorem 6.1 hold, u(�) := S�u0, u0 2 	b,be an arbitrary solution of (6.5), and a funtion h(�; y) be suh that(6.32) e��0�h(�; y); e��0��y1h(�; y) 2 Lqb(R+ � Rn):Then, for every w0 2 	b, the following problem:(6.33) ( a(�2�w +�y0w)� L��w � �0w � f 0(u(�))w = �y1w + h;w���=0 = w0has a unique solution in the lass(6.34) w 2 L1e��0� (R+ ;	b(Rn ))and the following estimate is valid, for a suÆiently small " > 0 and for everyy0 2 Rn :(6.35) kw(�)kq	�";y0 � Ceq(�0�")�kw0kq	�";y0++ Ceq�0� Z 10 e�q"j���0j�q�0�0 �kh(�0)kqLq�";y0 + k�y1h(�0)kqLq�";y0� d�0;where the onstant C depends on ku0k	b and ", but is independent of y0.The proof of this Corollary is ompletely analogous to that of Theorem 6.1 andCorollary 6.2, so we omit it here.Remark 6.1. It is essential that we onsider only suh solutions w of (6.33) whihgrow as � ! +1 not faster than e�0�. Usually, there exists a number of othersolutions of (6.33) whih grow faster than e�0�, but all these solutions are out ofthe onsideration, due to assumption (6.34).Theorem 6.2. Let the assumptions of Theorem 6.1 hold and let u(�) and u1(�) betwo arbitrary solutions of (6.5). We de�ne the funtion w(�) as a unique solution(in lass (6.34)) of problem (6.33), with h � 0 and w(0) = u(0) � u1(0). Then,the following estimate is valid, for suÆiently small " > 0, � > 0, and for everyy0 2 Rn :(6.36) ku(�)� u1(�)�w(�)k	�";y0 � Ce�0�ku(0)� u1(0)k�	bku(0)� u1(0)k	�";x0 ;46



where the onstant C depends on ku(0)k	b, ku1(0)k	b, ", and �, but is independentof y0 2 Rn .Proof. We set v(�) := u(�)� u1(�) and �(t) := v(t)�w(t). Then, the last funtionsatis�es the following equation:(6.37) ( a(�2�� +�y0�)� L��� � �0� � f 0(u(�))� = �y1� + h(�);����=0 = 0;where(6.38) h(�) := Z 10 [f 0(u(�)� sv(�))� f 0(u(�))℄ ds v(�):Applying estimate (6.35) to equation (6.37), we have(6.39) k�(�)kq	�";y0 �� Ceq�0� Z 10 e�q"j���0j�q�0�0 �kh(�)kqLq�";y0 (Rn) + k�y1h(�)kqLq�";y0 (Rn)� d�0:Thus, there remains to obtain the appropriate estimates for funtion (6.38) and itsy1-derivative. To this end, we reall that f 0 2 C1 and, onsequently(6.40) jf 0(�1)� f 0(�2)j � Q�(j�1j+ j�2j)j�1 � �2j�;for every �i 2 Rk and every 0 � � � 1 (here Q� is a monotoni funtion dependingon � and f . Therefore, (due to the embedding 	b � C and Corollary 6.1)(6.41) kh(�)kLq�";y0 (Rn) � Ckv(�)k�	bkv(�)k	�";y0 ;where C depends on �, ku(0)k	b and ku1(0)k	b, but is independent of y0. Estima-ting the right-hand side of (6.41) by (6.20), we have(6.42) kh(�)kLq�";y0 (Rn) � C1e(1+�)(�0�")�kv(0)k�	bkv(0)k	�";y0 :Arguing analogously, but using the fat that f 00 2 C1 and C1 � 	, we have(6.43) k�y1h(�)kLq�";y0 (Rn) � C2e(1+�)(�0�")�kv(0)k�	bkv(0)k	�";y0 :Seting � > 0 in suh way that (1 + �)(�0 � ") � �0 and inserting estimates (6.42)and (6.43) into the right-hand side of (6.39), we obtain estimate (6.36) after simplealulations. Theorem 6.2 is proved.Corollary 6.5. Let the assumptions of Theorem 6.1 hold. Then, semigroup (6.18)is Frehet di�erntiable in 	b, for every �xed � � 0 and its Frehet derivativeDu0S�(u0)� := w�(�), where � 2 	b and w�(�) is a unique solution of (6.33),with h � 0 and w(0) = �. Moreover,(6.44) S� 2 C1+�(	b;	b)47



and the following estimates hold, for every u01; u02 2 	b:kS�(u01)� S�(u02)�Du0S�(u01)(u01 � u02)k	b � Ce�0�ku01 � u02k1+�	b(6.45) kDu0S�(u01)�Du0S�(u02)kL(	b;	b) � Ce�0�ku01 � u02k�	b ;(6.46)where � > 0 and the onstant C depends on ku0i k	b, i = 1; 2.Indeed, applying the supremum with respet to y0 2 Rn to the both sides of(6.36) and using (1.19), we obtain estimate (6.45). Estimate (6.46) is a standardorollary of (6.45).Remark 6.2. In ontrast to the ase of semigroups, generated by the evolutionequations, we annot gurantee that S� 2 C2, even for the ase where f 2 C1.In a fat, in order to obtain the regularity CN , one should require, in addition,assumption (6.6) to be satis�ed not only for � = �0, but also for � = 2�0; � � � ;� =N�0. Fortunately, regularity (6.44) is enough for what follows.Remark 6.3. The method of introduing the spatial dynamial systems (and theso-alled spatial redution) was initiated in [26℄ in order to study the ellipti boun-dary problems in ylindrial domains from the dynamial point of view, see also [8℄,[36℄ and the referenes therein for the further developement of this method and itsappliations to ellipti boundary problems. Nevertheless, to the best of our kno-ledge, this method has never been diretly aplied to study the spatial 'dynamis'generated by paraboli equations.x7 The spatial dynamial system nearthe exponentially unstable equilibrium.In this Setion, we onstrut the in�nite dymensional unstable manifold of zeroequilibrium of the spatial dynamial system fS�; � � 0g onstruted in the previousSetion. We reall that, due to Corollary 6.5, this semigroup is of the lass C1+�,for some positive � > 0, and the linearized semigroup at u0 = 0(7.1) S0� := Du0S�(0)an be determined by the following expression: S0�v0 := w(�), where the funtionw(�) is a unique (due to Corollary 6.4) solution of the following problem:(7.2) ( a(��w +�y0w)� L��w � �0w � f 0(0)w = �y1w;w���=0 = v0;whih belongs to lass (6.34). Moreover, estimate (6.35) allows to extend thissemigroup in a unique way to the semigroup, ating in the weight spae 	�, for everyweight funtion � with suÆiently small exponential growth rate, in partiular, forevery � with polynomial growth rate (see De�nition 1.1).The following proposition desribes the spetrum of this linarized semigroup.Proposition 7.1. Let the assumptions of Theorem 6.1 hold. Then, the spetrumof the operator S0� , � > 0, in 	b oinsides with its spetrum in 	�, where � is an48



arbitrary weight funtion with polynomial growth rate and an be found from thefollowing expression:(7.3) �(S0�) = f0g [ f� = e�� : 9� 2 C ; Re � � �0; 9� 2 Rn ; suh thatdet �a(�2 � j�0j2)� L� � �0 � f 0(0)� i�1� = 0g:The assertion of this Proposition is more or less standard and an be veri�edusing the Fourier transform and the lassial theorems on multipliators in Lq(Rn)(see, e.g. [35℄).Our next task is to verify that linearized semigroup (7.1) is exponentially uns-table, if (5.2) is ful�lled.Proposition 7.2. Let the assumption of Theorem 6.1 hold and let, in addition,ondition (5.2) is also ful�lled, i.e.(7.4) � �a(�2� +�y0)� L�� � �0 � f 0(0)� \ fRe� > 0g 6= ?:Then, linearized semigroup (7.1) is exponentially unstable, i.e(7.5) �(S0�) \ fj�j = �g 6= ?:Proof. Indeed, it follows from (7.4) that there exist a point �0 2 iR, a point �0 2Rn�1 and a point �00, Re�00 > 0 suh that(7.6) det �a(�20 � j�0j2)� L�0 � �0 � f 0(0)� �00� = 0:On the other hand, ondition (6.6) obviously implies that(7.7) Re� �a(�20 � j�0j2)� L�0 � �0 � f 0(0)� < 0:It now follows from (7.6), (7.7) and the ontinuity arguments that there exists apoint � 2 C , 0 < Re � < �0, suh that(7.8) � �a(�2 � j�0j2)� L�0 � �0 � f 0(0)� \ fiRg 6= ?:Consequently, there exists �1 2 R suh that(7.9) det �a(�2 � j�0j2)� L� � �0 � f 0(0)� i�1� = 0:The assertion of the proposition is an immediate orollary of (7.9) and (7.3).We are now ready to formulate the main result of this Setion whih is theanalogue of Theorem 5.1 for the spatial dynamial system.Theorem 7.1. Let the assumptions of Theorem 6.1 hold and assumption (5.2) besatis�ed. Then, for every N >> 1, there exist a positive number � > 0, a vetor�0 2 Rn , � < j�0j, a positive number r0 = r0(N) > 0 and a ommuting with thegroup fT yh ; h 2 Rng of 'spatial' shifts map(7.10) V0 : B(r; 0; B �0 ;�)! Asp; T yh Æ V0 = V0 Æ T yh ;49



suh that, for every y0 2 Rn , the following estimates hold:(7.11) 8<: kV0(u1)� V0(u2); B1y0k	 � CN supy2Rn ku1�u2;B1yk0;1(1+jy�y0j2N)1=2 ;ku1 � u2; B1y0k0;1 � CN supy2Rn kV0(u1)�V0(u2);B1yk	(1+jy�y0j2N)1=2 ;where the onstant CN depends only on N and independednt of y0.Moreover, there exist a vetor ~l 2 Rk and a linear operator S0 : B �0 ;�(Rn) !	b(Rn)k suh that(7.12) S0(u0):~l � Reu0; for every u0 2 B �0 ;�(Rn)and, for every u0 2 B(r; 0; B �0 ;�), the following estimate holds:(7.13) kV0(u0)� S0(u0)k	b(Rn) � Cku0k1+�L1b (Rn);where 1 � � > 0 is the same as in (6.44).Proof. Let L := S1, L0 := S01 , and P := L� L0. Then, due to Corollary 6.5(7.14) kPv0k	�";y0 � C(kv0k	b)kv0k�	bkv0k	�";y0 ;where C is independent of y0.Aording to desription (6.29), it is suÆient onstrut a suÆiently large setof bounded bakward solutions (i.e. de�ned for � < 0) for problem (6.5) (whihan be parametrized by the points from B(r; 0; B �0 ;�)). Instead of onsidering theontinuous dynamis generated by (6.5), we onsider the 'equivalent' disrete one(7.15) v(m+ 1) = L0v(m) + Pv(m); m 2 Z�;whih ats on the spae of sequenes fv(m)g 2 L1(Z�;	b). Our plan now is tosolve (7.15) near zero equilibrium using the impliit funtion theorem. To this end,we �rst study the linear non-homogeneous analogue of (7.15)(7.16) w(m+ 1)� L0w(m) = h(m):Lemma 7.1. Let the above assumptions hold. Then, for every � > r(L0) :=j�(L0)j > 1 and for every h 2 L1��m(Z�;	b), there exists a unique solution w 2L1��m(Z�;	b) suh that(7.17) kwkL1��m (Z�;	b) � CkhkL1��m (Z�;	b)and, onsequently, the linear operatorT� : L1��m(Z�;	b)! L1��m(Z�;	b)is well de�ned by the expression (T�h)(l) := w(l). Moreover, for every N 2 N andy0 2 Rn(7.18) kwkL1��m (Z�;	'N;y0 ) � CNkhkL1��m (Z�;	'N;y0 );50



where the weight 'N;y0 is de�ned by (1.6) and the onstant CN is independent ofy0 2 Rn .Indeed, the operator T� is given by the following expression:(7.19) (T�h)(l) := lXm=�1Ll�m0 h(m):The fat that de�nition (7.19) is orret, together with estimate (7.17), follows fromthe assumption � > j�(L0)j and from the standard formula for the spetral radiusof L0. The fat that the funtion w := T�h satis�es (7.16) an be easily veri�ed ina diret way. Estimate (7.18) an be obtained in the same way as (7.17) using, inaddition, the fat that the spetra of L0 in 	b and 	'N;y0 oinside (aording toProposition 7.1).Let us onsider now homogeneous problem (7.16) (h � 0).Lemma 7.2. Let the above assumptions hold. Then, there exist a positive num-ber �0, r(L0) > �0 > 1, satisfying �1+�0 > r(L0), a vetor �0 2 Rn , a number� > 0, � < j�0j, a vetor ~l 2 Rk and a linear operatorS : B �0 ;�(Rn )! L1��m0 (Z�;	b(Rn))k;suh that1. w(m) := (Su0)(m) is a solution of (7.16) with h � 0, for every u0 2 B �0 ;�.2. (S0u0):~l � Reu0, for every u0 2 B �0 ;�, where S0u0 := (Su0)(0).3. For every N 2 N, every y0 2 Rn and every u0 2 B �0 ;�, the following estimateis valid:(7.20) kSu0kL1��m0 (Z�;	'qN;y0 ) � CNku0kL1'N;y0 (Rn);where the onstant CN is independent of y0 and, onsequently(7.21) kSu0kL1��m0 (Z�;	b) � Cku0kL1(Rn):Proof. Aording to Proposition 7.2, there exist a point �0 2 Rn and a point �0 =�(�0): 0 < Re �0 < �0 suh that(7.22) det �a(�(�0)2 � j�00j2)� L�(�0)� �0 � f 0(0)� i�10� = 0:We note that equation (7.22) de�nes an algebrai (2n-sheeted) funtion b�(�). Con-sequently, without loss of generality, we may assume that (�0; �0(�0)) is not a branhpoint of this funtion. Moreover, without loss of generality, we may assume alsothat �0 6= 0 and (1 + �) Re �0 > ln r(L0), where r(L0) is a spetral radius of L0whih, due to Proposition 7.1, an be alulated as follows:(7.23) ln r(L0) = maxfRe b�(�) : � 2 Rn ;Re b�(�) � �0g:51



Thus, there exist a neighbourhood Br0�0 and smooth funtions � : Br0�0 ! Br00�0 ande : Br0�0 ! C k suh that �(�0) = �0 and(7.24) �a(�(�)2 � j�0j2)� L�(�)� �0 � f 0(0)� i�1� e(�) = 0; for every � 2 Br0�0 :Moreover, we may assume (see e.g. [43℄) that the eigenvalue e(�) is normalized insuh way that(7.25) e(�):~l = 1; for every � 2 Br0�0 ;for the appropriate onstant vetor ~l 2 Rk .We also assume that r0 > 0 is small enough that (1 + �)(Re �0 � r00) > ln r(L0)and de�ne �0 := eRe �0�r00 . Moreover, we de�ne the exponent � > 0 in suh waythat(7.26) supp bu0 � Br0=2�0 ; for every u0 2 B �0 ;�(Rn);where bu0 denotes the Fourier transform of the funtion u0.There now remains to de�ne the operator S0 : B �0 ;� ! L1��m0 (Z�;	b(Rn ; C ))kby the expression:(7.27) \S0(u0)(m)(�) := em�(�)u0(�)e(�); u0 2 B �0 ;�and to de�ne �nally S(u0) := ReS0(u0). Then, it is not diÆult to verify (analo-gously to [43℄) that the operator thus obtained satis�es all the assumptions of thelemma. Lemma 7.2 is proved.Lemma 7.3. Let the above assumptions hold and let S0 be the same as in Lemma7.2. Then, the following estimates hold:(7.28) C�1N ku0kL1'N;y0 (Rn) � kS0u0kL1'N;y0 (Rn) � CNku0kL1'N;y0 (Rn);where the onstant CN is independent of y0.Indeed, the right inequality of (7.28) is an immediate orollary of Lemma 7.2and the proof of the left one is based on the formula S0u0 = Reu0 and on the fatthat every funtion from B �0 ;�, with � < j�0j, is determined in a unique way by itsreal part (see [43℄ for the details).Let us verify some important properties of the operator P ating on the spaeof sequenes.Lemma 7.4. Let the above assumptions hold. Then, the operator P, determinedby the expression(7.29) (Pv)(m) := Pv(m);is of the lass(7.30) P 2 C1+�(L1��m(Z�;	b); L1��m(1+�)(Z�;	b));52



for every � > 1 and the following estimate holds, for every N and y0:(7.31) kPvkL1��m(1+�) (Z�;	'N;y0 ) � CNkvk�L1��m(Z�;	b)kvkL1��m (Z�;	'N;y0 );where the onstant CN is independent of y0 2 Rn .Proof. Estimate (7.31) is an immediate orollary of (7.14) and (1.7). Let us nowverify the di�erentiability. Let v1; v2 2 L1��m(Z�;	b). Then, due to Corollary 6.5(7.32) kP (v1(m))� P (v2(m))�Du0P (v1(m))(v1(m)� v2(m))k	b =kL(v1(m))�L(v2(m))�Du0L(v1(m))(v1(m)�v2(m))k	b�Ckv1(m)�v2(m)k1+�	b :Multiplying (7.32) by ��(1+�)m and taking the supremum over m 2 Z�, we obtainthat the map P is di�erentiable (and verify the evident formula for its derivative).There remains to verify that the derivative is H�older ontinuous. Let, in addition,� 2 L1��m(Z�;	b) be an arbitrary sequene. Then, due to (6.46)(7.33) k[Du0P (v1(m))�Du0P (v2(m))℄�(m)k	b == k[Du0L(v1(m))�Du0L(v2(m))℄�(m)k	b � Ckv1 � v2k�	bk�(m)k	b:Multiplying now this relation by ��(1+�)m and taking the supremum over m 2 Z�,we verify that the derivative is indeed H�older ontinuous and �nish the proof ofLemma 7.4.We are now ready to omplete the proof of the theorem. To this end, we rewriteequation (7.15) as follows:(7.34) v = Su0+ T�1+�0 Pv;where �0 > 1 is the same as in Lemma 7.2, u0 2 B �0 ;� and v 2 L1��m0 (Z�;	b) andsolve it near 0 using the impliit funtion theorem. Indeed, let us de�ne the map(7.35) F : L1��m0 (Z�;	b)� B �0 ;�(Rn)! L1��m0 (Z�;	b)by the following expression(7.36) F(v; u0) := v � Su0� T�1+�0 Pv;Aording to our onstrution, �1+�0 > r(L0) and, onsequently (due to Lemmata7.1 and 7.4), funtion (7.36) is well de�ned. Moreover, it follows from Lemma7.4 that this funtion is of the lass C1+� and DvF(0; 0) = Id. Thus, due to theimpliit funtion theorem, there exist r0 > 0 and a C1-map V : B(r0; 0; B �0 ;�) !L1��m0 (Z�;	b) suh that(7.37) F(V(u0); u0) = 0and, onsequently, the funtion v := V(u0) solves (7.15). We now set V0(u0) :=V(u0)(0). We laim that this map satis�es all the assertions of Theorem 7.1. Indeed,sine Du0V(0) = 0, then(7.38) kV(u0)kL1��m0 (Z�;	b) � Cku0kL1 � Cr0:53



It follows from (7.31), (7.37), and (7.38) that(7.39) kV(u0)� Su0kL1��m0 (Z�;	b) � Cku0k1+�L1 :Restriting (7.39) to m = 0, we obtain (7.13). Let us verify estimates (7.11). Letu1; u2 2 B(r0; 0; B �0 ;�). Then, it follows from (7.37), (7.17), and from (6.45) that(7.40) kV(u1)� V(u2)� S(u1� u2)kL1��m0 (Z�;	'N;y0 ) �� CN 2Xi=1 kV(ui)k�L1��m0 (Z�;	b)kV(u1)� V(u2)kL1��m0 (Z�;	'N;y0 ):Using now estimates (7.38), (7.20) and dereasing r0 > 0, if neerssary, we derivefrom (7.40) that(7.41) kV(u1)� V(u2)kL1��m0 (Z�;	'qN;y0 ) � CNku1 � u2kL1'N;y0 ;for all u1; u2 2 B(r0(N); 0; B �0 ;�) and for suÆiently small positive r0(N) > 0. The�rst estimate of (7.13) is an immediate orollary of this estimate (with N replaedby N �n�1). Let us now verify the seond one. To this end, we derive from (7.40)and from (7.28) that(7.42) C�1N ku1 � u2kL1'N;x0 � kV0(u1)� V0(u2)kL1'N;x0++ C 0N 2Xi=1 kV(ui)k�L1��m0 (Z�;	b)kV(u1)� V(u2)kL1��m0 (Z�;	'N;y0 ):Inserting estimates (7.38) and (7.41) into the right-hand side of (7.42), we have(7.43) ku1 � u2kL1'N;x0 � CkV0(u1)� V0(u2)kL1'N;x0 + C 00Nr�0 ku1 � u2kL1'N;x0 :Setting now r0 = r0(N) small enough, we obtain from (7.43) that(7.44) ku1 � u2kL1'N;x0 � C1kV0(u1)� V0(u2)kL1'N;x0 ;for every u1; u2 2 B(r0(N); 0; B �0 ;�). Thus, the seond estimate of (7.13) is alsoveri�ed. We also note that the fat that V0 ommutes with 'spatial' shifts followsfrom the fat that all operators involving in equation (7.34) ommute with theseshifts and from the uniqueness part of the impliit funtion theorem.Thus, there remains to verify embedding (7.10). Let u0 2 B(r0; 0; B �0 ;�). Thenv(m) := � V(u0)(m) if m 2 Z�;Lm(u0) if m 2 Nis a omplete bounded trajetory of the disrete semigroup generated by the ope-rator L. Moreover, it is also follows from Theorem 6.1 that the funtion v(�) :=S�v(m), where � = � +m, m 2 Z and 0 � � < 1, is a omplete bounded trajetory54



of the ontinuous semigroup S�. Therefore, due to (6.29), v(0) = V(u0) 2 Asp andTheorem 7.1 is proved.Remark 7.1. We have proved a little more: namely, that there exists a Liptshitzontinuous embedding:(7.45) ~V : (B(r0; 0; B �0 ;�); T yh )! (K; T yh ) ;suh that(7.46) C�1ku1 � u2kL1'N;y0 �� k~V(u1)� ~V(u2)kCe��0j�j(R;�'qN;y0 ) � Cku1 � u2kL1'N;y0 ;for the appropriate onstant C whih is independent of y0. Indeed, this embeddingis given by formula(7.47) ~V(u0)(�) := � S�V(m); � = f�g; m = [�℄ if � < 0,S�V0(u0) if � > 0.Corollary 7.1. Let the assumptions of Theorem 7.1 hold. Then, for " < "0 < 1,the follwowing estimate holds:(7.48) H " �Asp; L1(y 2 BR0 )� � CRn ln 1" :Moreover, for R = 1 and for every Æ > 0, there exists CÆ > 0 suh that(7.49) H " �Asp; L1(B10)� � CÆ �ln 1"�n+1�Æ :The proof of estimates (7.48) and (7.49) is ompletely analogous to that givenin Theorem 5.2 (only instead of (5.8) one should use (7.13)).Corollary 7.2. Let the above assumptions hold. Then, the 'spatial' topologialentropy (i.e. the entropy, whih orresponds to the 'spatial' shifts T yh ) is stritlypositive:(7.50) bh0sp0(Asp) > 0(see Setion 4).Indeed, (7.50) is an immediate orollary of (7.48).x8 Complexity of temporal dynamis in RDSin unbounded domains and temporal haos.In this Setion, we return to study the dynamial system fSt; t � 0g and for-mulate several statements whih are orollaries of the results obtained in Setion 7for the ase of spatial dynamial system fS�; � � 0g. We start our onsiderationwith the proof that the temporal (modi�ed) topologial entropy for the semigroupSt generated by equation (2.1) may be stritly positive.55



Theorem 8.1. Assume that equation (2.1) has form (6.3), the assumptions ofTheorem 2.1 are satis�ed and onditions (6.6) and (5.2) are ful�lled. Then, the(modi�ed) topolgial entropy whih orresponds to Vn := spanft; x2; � � � ; xng (seeDe�nition 4.2) is stritly positive for the attrator A of this equation:(8.1) bhVnn (A) > 0:Proof. Aording to Corollary 7.2(8.2) bhVnn (Asp) � bh0sp0(Asp) > 0:Then, analogously to Remark 4.5 (see also (7.46)), we have(8.3) bhVnn (K) > 0:(Here we have impliitly used the fat that the sets of all bounded solutions for Stand S� oinsides). Estimate (8.1) is an immediate orollary of (8.3) and (4.40) andTheorem 8.1 is proved.Corollary 8.1. Let the assumptions of Theorem 8.1 hold. Then, the temporal(modi�ed) topologial entropy of the attrator A is stritly positive:(8.4) bht(A) := lim sup"!0 �ln 1"��n limT!+1 1T H " �K; L1e�jxj([0; T ℄� Rnx )� > 0:Indeed, (8.4) is an immediate orollary of (8.1) and Theorem 4.3.Remark 8.1. Estimate (8.4) shows, in partiular, that the lassial topologialentropy of the semigroup St on A (whih is de�ned analogously to (8.4), but withoutthe fator �ln 1"��n) is in�nite.We also note that Theorem 8.1 hold not only for the transport term (~L;rx) �L�x1 , but for all vetors ~L the norm j~Lj of whih is large enough. Indeed, up tothe appropriate rotation, the general transport term is equivalent to j~Lj�x1 .Let us obtain now the analogue of Theorems 5.2 and 5.3 for the ase of temporaldynamis. To this end, we need the following proposition.Proposition 8.1. Let the assumptions of Theorem 4.1 hold and let, in addition,the di�usion matrix a satisfy(8.5) aa� = a�a:Then, the map �0 : K ! A, �0u := u(0) realizes a homeomorphism(8.6) �0 : K ! A;where the sets K and A are endowed by the loal topology of the spaes Clo(Rn+1)and Clo(Rn) respetively.Proof. Indeed, sine the sets K and A are ompat and �0(K) = A, then it issuÆient to verify that map (8.6) is injetive. In other words, it is suÆient to verifythat equation (2.1) possesses the property of bakward uniqueness on the attrator.This fat is veri�ed in [43℄ based on the results of [3℄, under the additional tehnialassumption (8.5) (to be more preise, it is veri�ed in [43℄, for the ase L = 0, butthe genaral ase L 6= 0 is ompletely analogous). Proposition 8.1 is proved.56



Theorem 8.2. Let the assumptions of Theorem 8.1 and Proposition 8.1 hold.Then, there exists a homeomorphi embedding:(8.7) V : B(r0; 0; B �0 ;�)!A;where �, �0 and r0 are the same as in Theorem 7.1 (for a some �xed N � 1) andall topologies are 'loal' (Clo(Rn)), suh that(8.8) StV(u0) = V(T x1t u0); T xih V(u0) = V(T xih u0) ; i = 2; � � � ; n;for every u0 2 B(r0; 0; B �0 ;�), t � 0 and h 2 R (here and below T xih := Thei is aspatial shift along the xi). Moreover,bhVnn (V(B(r0 ; 0; B �0 ;�)) > 0:Proof. Indeed, aording to estimate (7.46), we have a homeomorphi embedding ~Vof the set B(r0; 0; B �0 ;�) to K endowed by the topology of L1lo(R+ ;	lo(Rn)). Butit is not diÆult to show, using the standard interior estimates and the fat thatK is bounded in L1(Rn ), that the topologies, endowed on K by the embeddingsto Clo(Rn+1) and to Clo(R;	lo(Rny )), oinside. Consequently, (7.45) is a homeo-morphi embedding of B(r0; 0; B �0 ;�) to the spae K endowed by the topology ofClo(Rn+1) as well.We now de�ne map (8.7) by the following expression:(8.9) V := �0 Æ ~V;where �0 is de�ned in Proposition 8.1. It is not diÆult to verify that the mapthus obtained satisies all the assertions of Theorem 8.2.Combining Theorem 8.2 and Proposition 5.1, we obtain the following result(whih is analogous to Theorem 5.3).Theorem 8.3. Let the assumptions of Theorem 8.2 hold. Then, there exist anumber � > 0 and a homeomorphi embedding(8.10) b� :M!A;suh that(8.11) S�lb�(v0) = b�(T x1l v0); T xi�l b�(v0) = b�(T xil v0) ; i = 2; � � � ; n;for every l 2 Z and every v0 2 M. Moreover,bhVnn (b�(M)) > 0;where Vn := spanft; x2; � � � ; xng.Indeed, it is suÆient to take b� := V Æ �, where � is de�ned in Proposition 5.1.Thus, embedding (8.10) shows that the spatio-temporal dynamis on the attra-tor A is also may be extremely haoti. In partiular, this embedding allows torealize (up to a homeomorphism) every �nite dymensional dynamis by restritingthe (semi)group St to the appropriate spatially invariant subset of A. To be morepreies, the following result holds (ompare with Corollary 5.3).57



Corollary 8.2. Let the assumptions of Theorem 8.2 hold, K � RN be an arbi-tray ompat set in RN , N 2 N, and F1; � � � ; Fn : K ! K be arbitrary pairwiseommutative homeomorphisms, i.e.(8.12) Fi Æ Fj = Fj Æ Fi; i; j 2 f1; � � � ; ng:Then, there exist a positive number  = (N) > 0 and a homeomorphism(8.13) ~� : K ! ~�(K) � Asuh that(8.14) Sl1 Æ T x2l2 Æ � � � Æ T xnln~�(k) = ~� �F l11 Æ � � � Æ F lnn k� ; k 2 K; l 2 Zn;where F lii denotes the li-th iteration of the map Fi.The proof of this orollary is ompletely analogous to that of Corollary 5.3, sowe omit it here.In order to study the temporal omplexity of individual point on the attrator,it is natural to introdue (analogously to De�nition 5.3) the following quantity.De�nition 8.1. Let u0 2 A. Then, by de�nition, the (modi�ed) temporal entropyof u0 is the following number:(8.15) bht(u0) := bht(Ht(u0)); where Ht(u0) := [Stu0; t 2 R+ ℄L1lo(Rn);where [�℄V denotes the losure in the spae V .Corollary 8.3. Let the assumptions of Theorem 8.2 hold. Then, for every pointu0 2 A its (modi�ed) temporal entropy is �nite. Moreover, there exist points u0 2 Athe temporal entropy of whih is stritly positive:(8.16) 0 < bht(u0) <1:Indeed, the �rst assertion of the orollary follows immediately from Theorem 4.2and the seond one follows from Theorem 8.2 and from the evident fat that thedynamial system fT x1l ;Mg, l 2 N , is topologially transitive (i.e. possesses denseorbits).Let us onsider, in onlusion, the simplest example of equation of type (2.1),for whih our theory works.Example 8.1. Let 
 = Rn . We onsider the following analogue of the salar k = 1Chafee-Infante equation with the transport term:(8.17) �tu = �xu� L�x1u+ u� u3; x 2 Rn :Then, as it is not diÆult to verify, the assumptions of Theorem 8.2 are satis�ed,if L > 2 and n < 6. Thus, we have an exetremely haoti temporal dynamis onthe attrator (Theorems 8.1{8.3 and Corollaries 8.1{8.3 hold for equation (8.17),if L > 2). In partiular, there exists a great (unountable) number of di�erenttime periodi solutions of this equation parametrized by the orresponding perioditrajetories of (T x1l ;M), l 2 Z.We also note that the above results are not true without the transport termL�xu(!). Indeed, for L = 0 (8.17) generates the so alled extended gradient systemand, onsequently (see [22℄), does not possess any time periodi solutions (at leastin ase n < 3). This example gives a good illustration for the inuene of thetransport terms on the reation-di�usion dynamis.58
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