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It is worth noting that, in spite of a very large number of results onerning the�nite-dimensionality of attrators (see, e.g., [BV℄, [T℄ and the referenes therein),the validity of any �nite-dimensional redution for equations with singularities ordegenerations in the leading terms (suh as porous media type equations, ellipti-paraboli problems, ...) has been ompletely unlear for a long time. The mainobstale here is the lak of regularity (and of smoothing) near the degenerationpoints, whih prevents from using lassial methods. Furthermore, as it has reentlybeen established, the problem is far from being just tehnial and the degenerationsan lead to essentially new types of attrators whih are not observable in \regular"equations in bounded domains. Indeed, as shown in [EfZ1℄, the global attratorof the simplest degenerate analogue of the real Ginzburg-Landau equation in abounded domain 
, namely,�tu = �x(u3) + u� u3; u���
 = 0;is in�nite-dimensional (to the best of our knowledge, this is the �rst example ofa physially relevant dissipative system in a bounded domain with an in�nite-dimensional global attrator). Furthermore, the \thikness" of this attrator (inthe sense of Kolmogorov's "-entropy) is typial of Sobolev spaes embeddings and isof the order of that of ompat absorbing sets. Thus, this attrator is \huge", evenin omparison with the in�nite-dimensional global attrators of \regular" systemsin unbounded domains for whih the typial thikness is usually of the order ofspaes of analyti funtions embeddings, see, e.g., [Z2℄ and the referenes therein.Nevertheless, a satisfatory �nite-dimensional redution still seems possible un-der proper restritions on the struture of the equations. Roughly speaking, theseonditions should prevent the energy inome near the degenerations (the equationsmust be exponentially stable near all the degeneration points). In partiular, thisondition is violated for the above degenerate Ginzburg-Landau equation, sine the\linearization" near u = 0 reads �tu = uand is, obviously, not stable.The validity of the �nite-dimensional redution (in terms of global and expo-nential attrators) under suh additional restritions has been veri�ed in [EfZ1℄for porous media equations. Furthermore, analogous results for degenerate doublynonlinear equations of the form(0.2) B(�tu) = �xu� f(u) + g(here, B degenerates) have reently been obtained in [EfZ2℄.It is however worth emphasizing that, surprisingly, the semilinear equation (0.1)onsidered in this artile appears to be muh more ompliated than the, at least for-mally, more diÆult fully nonlinear problem (0.2). Indeed, even lassial solutionsare available for equation (0.2) with a �nite number of \reasonable" degenerationpoints for B, see [EfZ2℄. In ontrast to this, only H�older ontinuous solutions areto be expeted for equation (0.1) with a �nite number of degeneration points and,e.g., in the ellipti-paraboli ase, disontinuities are even to be expeted. Thislak of regularity prevents from diretly applying the tehniques devised in [EfZ1℄and [EfZ2℄. In partiular, the lak of information on the time derivative �tu in theregions where u � 0 (in the ellipti-paraboli ase) is ruial here.2



Nevertheless, by using some proper ombination of the results of [MZ℄ and theso-alled l-trajetories method (see [MP℄), we are able to overome the above men-tioned diÆulties and justify the �nite-dimensional redution under some naturalassumptions on B, a and f (point or ellipti-paraboli degenerations for B, stan-dard elliptiity and non-degeneray assumptions on a, plus some restritions onf yielding that there is no energy inome near the degenerations, see Setion 1for details). Thus, the main result of this artile is the existene (in that ase) of�nite-dimensional global and exponential attrators for the semigroup assoiatedwith problem (0.1), see Theorem 2.2.This artile is organized as follows. In Setion 1, we give the main assumptionsand prove the existene and uniqueness of solutions. Then, in Setion 2, we provethe existene of the global attrator and, under some additional assumptions onB, we prove, in Setion 3, the existene of an exponential attrator, whih yieldsthat the global attrator has �nite fratal dimension. Finally, we give, in Setion4, some remarks and possible extensions.x1 A priori estimates, existene and uniqueness of solutions.We onsider the following problem in a bounded smooth domain 
 � R3 :(1.1) � �tB(u) = div(a(rxu))� f(u) + g;u���
 = 0; B(u)��t=0 = b0;where u = u(t; x) is an unknown funtion, B, a and f are given funtions andg 2 L1(
) orresponds to given external fores.We assume that the nonlinearity a derives from a stritly onvex potential A 2C2(R3), i.e.,(1.2) � 1: a(z) := rzA(z); a(0) = 0;2: �1 � A00(z) � �2; �1; �2 > 0:We also assume that the seond nonlinearity f 2 C1(R) is dissipative,(1.3) lim infjzj!1 f(z)z � �0 > 0;and has the following struture:(1.4) f(z) = f0(z) + �(B(z));where the funtions f0 and � also belong to C1(R) and f0 is monotone,(1.5) f 00(z) � 0:Finally, the third nonlinearity B is assumed to be smooth enough, namely, B 2C1(R), and monotone, B0(z) � 0, and to satisfy one of the following lasses ofassumptions:(Assumptions (A)) � 1: B(0) = 0; B(z) 6= 0; z 6= 0;2: �1jzjp � B0(z) � �2jzjp; �1; �2 > 0;3



or(Assumptions (B)) � 1: B(z) = 0; z � 0; B0(z) > 0; z > 0;2: �1jzjp � B0(z) � �2jzjp; z � 0; �1; �2 > 0;where p � 0 is some �xed number. Thus, when assumptions (A) are satis�ed, wehave a paraboli system (1.1) with at most one degeneration point for B at z = 0and, when assumptions (B) are satis�ed, (1.1) is paraboli for u > 0 and elliptifor u � 0.As usual, in order to study the degenerate ase, we approximate problem (1.1)by non-degenerate ones,(1.6) � �tB(u) + "�tu = div(a(rxu))� f(u) + g;u���
 = 0; (B(u) + "u)��t=0 = b0;where 0 < " � 1 is a small parameter. Equation (1.6) is a non-degenerateseond-order paraboli problem whih, obviously, has a unique solution u = u" 2W (1;2);q([0; T ℄ � 
), for every q < 1, see, e.g., [LSU℄ (if B and b0 are smoothenough, say, B; b0 of lass C2; the existene of solutions for less regular initialdata then follows from the a priori estimates obtained below and standard approx-imation arguments). Our aim is now to obtain uniform with respet to " a prioriestimates on u and then obtain a solution of (1.1) by passing to the limit "! 0.We start with a uniform dissipative L1-estimate for the solutions of (1.6).Theorem 1.1. Let the above assumptions hold and the initial datum b0 be suhthat there exists u0 2 L1(
) suh that(1.7) B(u0) = b0; i.e., b0 2 L1(
), and, when assumptions (B) hold,we assume that, in addition, b0(x) � 0:Then, the solution u = u" of equation (1.6) satis�es the following estimate:(1.8) ku(t)kL1(
) � C(1 + kgkL1(
)) +Q(kb0kL1(
))e��t;where the positive onstants C and � and the monotoni funtion Q are independentof "! 0.Proof. As usual, the proof of estimate (1.8) is based on the omparison priniple.We �rst derive the upper L1-bound on the solution u. To this end, we note that,due to the dissipativity assumption (1.3), there exists a suÆiently large onstantK > 0 suh that(1.9) f(u) � 1=2�0(u�K); u � 0; f(u) � 1=2�0(u+K); u � 0:Let now y = y+(t) be solution of the following �rst-order ODE:(1.10) ddt (B(y) + "y) + 1=2�0(y �K) = kgkL1(
); y(0) = maxfK; supx2
u(0; x)g:Then, y(t) � K and, onsequently, y(t) is a supersolution for equation (1.6). Theomparison priniple (for the non-degenerate seond-order paraboli problem (1.6))reads(1.11) u(t; x) � y(t); (t; x) 2 R+ � 
:4



Using now the fat that, when both (A) and (B) hold, the funtion B(z) growsmonotonially as z ! +1, one an easily dedue from (1.10) that(1.12) y(t) � C(1 + kgkL1(
)) +Q(kb0kL1(
))e��t; t � 0;for proper positive onstants C and � and monotoni funtion Q whih are in-dependent of ". This gives the upper L1-bound on the solution u of the form(1.8).We now hek the lower bound. Arguing analogously, we establish that thesolution y = y�(t) of the following ODE:(1.13) ddt (B(y)+"y)+1=2�0(y+K) = �kgkL1(
); y(0) = minf�K; infx2
u(0; x)g;gives a subsolution of problem (1.8) if K is large enough and we have(1.14) u(t; x) � y(t); (t; x) 2 R+ � 
:Then, when assumptions (A) hold, the situation is ompletely analogous to theprevious ase and we have the analogue of (1.12) for the solution �y(t), whihgives (1.8) and �nishes the proof in that ase.Let us now assume that onditions (B) hold. In that ase, we have B(y(t)) � 0,sine y(t) � �K < 0. Moreover, due to (1.7), we have b0 � 0, whih, in turn,implies that u(0) � 0 and y(0) = �K. So, (1.13) reads(1.15) " ddty(t) + 1=2�0(y(t) +K) = �kgkL1(
); y(0) = �K;whih an be solved expliitly,y(t) = �K � kgkL1(
) �1� e��02" t� ; t � 0:Thus, y(t) � �K � kgkL1(
); 8t � 0; and estimate (1.8) is also veri�ed underassumptions (B). This �nishes the proof of Theorem 1.1.Our next aim is to obtain uniform estimates on the derivatives of u. We statethem in three simple Lemmata below.Lemma 1.1. Let the assumptions of Theorem 1.1 hold. Then, the solution u of(1.6) satis�es(1.16) Z t+1t krxu(s)k2L2(
) ds � C(1 + kgkL1(
)) +Q(kb0kL1(
))e��t;where the positive onstants C and � and the monotoni funtion Q are independentof " and t.Proof. Multiplying equation (1.6) by u and integrating over [t; t+ 1℄� 
, we have(1.17) (B(u(t+ 1))� B(u(t)); 1)L2(
) + "=2[ku(t+ 1)k2L2(
) � ku(t)k2L2(
)℄++ Z t+1t (a(rxu(s));rxu(s))L2(
) ds == Z t+1t [(g; u(s))L2(
) � (f(u(s)); u(s))L2(
)℄ ds;where B(v) := R v0 B0(u)u du. Using now the L1-estimates for u obtained in theprevious theorem and the fat that a = ruA, for a stritly onvex potential A (seeassumptions (1.2)), we obtain (1.16) and �nish the proof of the lemma.The next lemma gives a gradient-like energy inequality.5



Lemma 1.2. Let the above assumptions hold. Then, the solution u of problem(1.6) satis�es the following estimates:(1.18) Z t+1t [(B0(u(s))�tu(s); �tu(s))L2(
) + "=2k�tu(s)k2L2(
)℄ ds+krxu(t)k2L2(
) � t+ 1t �C(1 + kgk2L1(
)) +Q(kb0kL1(
))e��t� ; t > 0; � > 0;where all the onstants and the monotoni funtion Q are independent of ". If, inaddition, u(0) 2W 1;20 (
), then(1.19) Z 10 [(B0(u(s))�tu(s); �tu(s))L2(
) + "k�tu(s)k2L2(
)℄ ds+ krxu(t)k2L2(
) �� C �1 + kgk2L1(
) +Q(kb0kL1(
)) + krxu(0)k2L2(
)� :Proof. Multiplying equation (1.6) by (t�T )�tu and integrating over [T; T +2℄�
,we have(1.20) Z T+2T [(t� T )(B0(u(t))�tu(t); �tu(t))L2(
) + "=2k�tu(t)k2L2(
)℄ dt++ (t� T )krxu(t)k2L2(
) + (t� T )(F (u(t)); 1)L2(
) �� C Z T+2T [krxu(t)k2L2(
) + (F (u(t)); 1)L2(
)℄ dt+ Ckgk2L1(
);for t 2 [T; T + 2℄. This internal estimate, together with the dissipative estimatesfor ku(t)kL1(
) and kukL2([T;T+1℄;W 1;2(
)) obtained in Theorem 1.1 and Lemma1.1, respetively, give the desired estimate (1.18). Estimate (1.19) an be provenanalogously, but is muh simpler, sine we only need to multiply the equation by�tu. This �nishes the proof of Lemma 1.2.In the third lemma, we state the W 2;2-regularity result.Lemma 1.3. Let the above assumptions hold. Then, the solution u(t) of problem(1.6) satis�es the following estimate:(1.21) Z t+1t ku(s)k2W 2;2(
) ds � t+ 1t �C(1 + kgk2L1(
)) +Q(kb0kL1(
))e��t� ;t > 0, where C, � > 0 and Q are independent of ".Proof. We rewrite (1.6) as an ellipti boundary value problem for every �xed t,(1.22) div(a(rxu(t))) = �tB(u(t))+ "�tu(t)+ f(u(t))� g := Hu(t); u(t)���
 = 0:Then, aording to the H2-L2-regularity result for seond-order quasilinear elliptiequations (see, e.g., [Mi℄), we have(1.23) ku(t)kW 2;2(
) � CkHu(t)kL2(
);where the onstant C is independent of u. Using now estimates (1.8) and (1.18) toestimate the L2-norm of Hu, we obtain (1.21) and �nish the proof of the lemma.Finally, we formulate an L1-Lipshitz ontinuity result based on the Kato in-equality. 6



Lemma 1.4. Let the above assumptions hold and let u1(t) and u2(t) be two solu-tions of problem (1.6). Then, the following estimates hold:(1.24) kB(u1(t))� B(u2(t))kL1(
) + "ku1(t)� u2(t)kL1(
) �� CeKt �kB(u1(0))� B(u2(0))kL1(
) + "ku1(0)� u2(0)kL1(
)� ;where the onstants C and K depend only on the L1-norms of u1 and u2.Proof. We set v(t) = u1(t)� u2(t). This funtion solves(1.25) �t[B(u1(t))� B(u2(t)) + "v(t)℄ = div[a(rxu1(t))� a(rxu2(t))℄�� [f0(u1(t))� f0(u2(t))℄� [�(B(u1(t))� �(B(u2(t))℄:Multiplying this equation by sgn v(t) = sgn(B(u1(t)) � B(u2(t))) and using theKato inequality (this multipliation an be easily justi�ed in a standard way, sine(1.6) is non-degenerate and the solutions u1 and u2 are suÆiently regular), wehave(1.26) �t[kB(u1(t))� B(u2(t))kL1(
) + "kv(t)kL1(
)℄++ (f0(u1(t))� f0(u2(t)); sgn(u1(t))� sgn(u2(t)))L2(
) �� (�(B(u1(t)))� �(B(u2(t))); sgn(B(u1(t))� B(u2(t))))L2(
):Using now assumptions (1.4) and (1.5) for the funtions f0 and �, together withthe L1-bounds for u1 and u2, we dedue that�t[kB(u1(t))� B(u2(t))kL1(
) + "kv(t)kL1(
)℄ � KkB(u1(t))� B(u2(t))kL1(
);whih, together with the Gronwall inequality, give (1.24) and �nish the proof of thelemma.We are now able to formulate the solvability result for the limit degenerateproblem (1.1), whih an be onsidered as the main result of this setion.Theorem 1.2. Let the assumptions of Theorem 1.1 hold. Then, for every b0 2L1(
), b0 � 0, problem (1.1) has at least one solution u(t) belonging to the follow-ing lass:(1.27) u 2 L1([0; T ℄� 
); B(u) 2 C([0; T ℄; L1(
));u 2 L1([0; T ℄;W 1;20 (
)) \ L2([t; T ℄;W 2;2(
));�tR(u) 2 L2([t; T ℄� 
); t > 0; R(v) := Z v0 pB0(u) du:Furthermore, this solution satis�es all the estimates obtained in Lemmata 1.1{1.3 and Theorem 1.1 and an be obtained in a unique way as the limit of theorresponding solutions u" of the regularized problems (1.6) as "! 0. Finally, forevery two suh solutions u1(t) and u2(t) (orresponding to di�erent initial data b10and b20), the following global L1-Lipshitz ontinuity holds:(1.28) kB(u1(t))� B(u2(t))kL1(
) �� CeKtkB(u1(0))�B(u2(0))kL1(
) = CeKtkb10 � b20kL1(
);7



where the onstants C and K only depend on the L1-norms of b10 and b20.Proof. Let un(t) := u"n(t) be a sequene of solutions of the approximate problems(1.6) with "n ! 0 and with the same initial datum b0. Then, due to Theorem 1.1and Lemmata 1.1{1.3, we an assume, without loss of generality, that(1.29) un ! u weakly-� inL1([0; T ℄� 
) \ L1([t; T ℄;W 1;20 (
)) \ L2([t; T ℄;W 2;2(
)):The main problem is, however, that, when assumptions (B) hold, we do not ontrolthe time derivative �tu in the region u � 0 and, onsequently, we annot diretlyextrat the strong onvergene un ! u in a proper spae from (1.29) (whih isessential for the passage to the limit n ! 1 in the nonlinear terms of equation(1.6)). In order to overome this diÆulty, we use monotoniity arguments. We�rst note that Lemma 1.2 allows to ontrol the L2-norm of the time derivative ofthe funtions  n(t) := B(un(t)) on every interval [t; T ℄. Furthermore, its x-gradientan also be easily ontrolled, sine krxun(t)kL2(
) is uniformly bounded on [t; T ℄.Thus, the sequene  n is preompat in the strong topology of L2([t; T ℄� 
) and,without loss of generality, we an assume, in addition, that(1.30)  n !  strongly in C([t; T ℄; L2(
)):Let us prove that(1.31)  = B(u):To this end, we use the standard fat that the operator z 7! B(z) is maximalmonotone in L2([t; T ℄ � 
), sine B0(z) � 0 (being pedants, we should �rst uto� the funtion B for large z in order to make it well-de�ned as an operator inL2([t; T ℄� 
), but, sine we ontrol the L1-norm of the solutions, this proedureis not essential and is omitted). Thus, in order to verify (1.31), we only need tohek that(1.32) ( �B(w); u� w)L2([t;T ℄�
) � 0; 8w 2 L2([t; T ℄� 
);see, e.g., [Li℄. There remains to note that the strong onvergene (1.30) allowsto obtain (1.32) by a diret passage to the limit n ! 1 in the following obviousinequality:(1.33) (B(un)�B(w); un � w)L2([t;T ℄�
) = ( n � B(w); un � w)L2([t;T ℄�
) � 0:Thus, (1.31) is veri�ed and, onsequently,B(un)! B(u) strongly in C([t; T ℄; L2(
));whih, in turn, implies that(1.34) �tB(un)! �tB(u) weakly in L2([t; T ℄� 
);�(B(un))! �(B(u)) strongly in C([t; T ℄; L2(
)):Moreover, arguing analogously, we have(1.35) R(un)! R(u) strongly in C([t; T ℄; L2(
)):Consequently, �tR(un) =pB0(un)�tun ! �tR(u) weakly in L2([t; T ℄� 
) and(1.36) k�tR(u)kL2([t;T ℄�
) � lim infn!1 k�tR(un)kL2([t;T ℄�
):In order to pass to the limit in the right-hand side of (1.6), we need the followinglemma. 8



Lemma 1.5. Let the above assumptions hold and let un and u be as above. Then,(1.37) �tB(u) = �tR(u) �pB0(u)and, for every t > 0,(1.38) limn!1(�tB(un); un)L2([t;T ℄�
) = (�tB(u); u)L2([t;T ℄�
):Proof of the lemma. Sine �tun is regular enough, we have(1.39) �tB(un) = �tR(un) �pB0(un):We now reall that the weak onvergenes �tB(un) ! �tB(u) and �tR(un) !�tR(u) have already been established. Thus, (1.37) will be proven provided thatwe hek that pB0(un) ! pB0(u) strongly in L2([t; T ℄� 
). Let us �rst assumethat assumptions (A) hold. Then, the inverse funtion v 7! B�1(v) exists and iseven H�older ontinuous. Consequenlty, the strong onvergene of B(un) to B(u)implies the strong onvergene of un to u and, therefore, pB0(un) also onvergesstrongly to pB0(u), whih, in turn, implies (1.37). Let now assumptions (B) besatis�ed. Then, sine B(u) � 0 for u � 0 and is stritly monotone for u > 0, we havea H�older ontinuous partial inverse funtion v 7! T (v) suh that T (B(u)) = u+ :=maxfu; 0g. Thus, in that ase, the strong onvergene B(un) to B(u) only impliesthat u+n onverges strongly to u+. Nevertheless, sine now B0(u) = B0(u+), thisonvergene is suÆient to onlude that pB0(un) onverges strongly to pB0(u)and �nish the proof of equality (1.37) for both assumptions (A) and (B).In order to hek (1.38), it is now suÆient to rewrite it in the formlimn!1(�tR(un);pB0(un) � un)L2([t;T ℄�
) = (�tR(u);pB0(u) � u)L2([t;T ℄�
)and note that, analogously to the arguments given above, pB0(un) � un onvergesstrongly to pB0(u) � u. This �nishes the proof of Lemma 1.5.It is now not diÆult to �nish the passage to the limit n!1 in equations (1.6)for un and verify that u solves indeed the limit degenerate problem (1.1). To thisend, we use the standard fat that the quasilinear di�erential operator(1.40) A(u) := � div(a(rxu)) + f0(u)is maximal monotone in L2([t; T ℄;W 1;20 (
)) (we reall that f0 is monotone). Then,we rewrite equation (1.6) in the form(1.41) A(un) = �n := g � �tB(un)� �(B(un)):Aording to the above onvergenes, we haverxun !rxu; �n ! � := g � �tB(u)� �(B(u)) weakly in L2([t; T ℄� 
):Moreover, using (1.34) and (1.38), we see thatlimn!1(�n; un)L2([t;T ℄�
) = (�; u)L2([t;T ℄�
);9



whih, by monotoniity arguments, implies that A(u) = �. Thus, the funtion usolves indeed the limit degenerate problem (1.1).Passing to the limit n!1 in the estimates of Theorem 1.1 and Lemmata 1.1{1.4, it follows that these estimates hold for the solution of the limit problem aswell.Thus, there only remains to hek the uniqueness and the fat that the limitsolution u is suh that B(u) 2 C([0; T ℄; L1(
)). To this end, we take the di�erenebetween equations (1.6) for un and um, respetively, multiply the resulting equationby sgn(un � um), use the fat that un(0) = um(0) and argue as in Lemma 1.4 toinfer(1.42) �tkB(un(t))� B(um(t))kL1(
) � KkB(un(t))�B(um(t))kL1(
)++ C("n + "m)(k�tun(t)kL1(
) + k�tum(t)kL1(
)):Assume �rst that b0 is hosen in suh a way that, in addition, u(0) 2 W 1;20 (
).Then, aording to estimates (1.18) and (1.19), we an ontrol the derivatives inthe right-hand side of (1.42) and, using the Gronwall inequality, dedue that(1.43) kB(un(t))� B(um(t))kL1(
) � CeKt("n + "m)1=2:Thus, B(un) is a Cauhy sequene in C([t; T ℄; L1(
)) and, onsequently, B(u) =lim"!1B(u") belongs to C([t; T ℄; L1(
)) and is determined in a unique way by thesolutions of the approximate equations (1.6). In the general ase, i.e., b0 2 L1(
),b0 � 0, it is suÆient to approximate u(0) by smooth initial data un(0) in L1(
)and pass to the limit n!1. This yields that B(u) 2 C([0; T ℄; L1(
)) for generalinitial data as well and �nishes the proof of the theorem.Remark 1.1.(i) It is worth emphasizing that we have proven the uniqueness of a solution u only inthe sublass of (1.27) of the solutions whih an be obtained by passing to the limit"! 0 in the non-degenerate approximate equations. The uniqueness of a solutionin the whole lass (1.27) is muh more deliate, sine, for degenerate equations, thevalidity of the Kato inequality is nontrivial and must be veri�ed. Sine, everywherein the sequel, we will only onsider the solutions of equation (1.1) whih an beobtained by the above limit proedure, this uniqueness is not important for whatfollows and we refer the reader to [O℄ for a more detailed exposition.(ii) We also mention that we only onsider initial data b0 2 L1(
) in order toexlude from the very beginning the "pathologial" singular solutions whih mayappear in doubly nonlinear equations with less regular initial data, see, e.g., [D2℄and [EfZ2℄. Moreover, it is worth noting that our assumption B0(z) � zp is nees-sary only near the degeneration point z = 0 and should not be onsidered as somegrowth assumption as z !1, for whih we only need B0(z) � C > 0.We onlude this setion by some kind of additional regularity for the timederivative �tu whih will be ruial for our theory.Proposition 1.1. Let the above assumptions hold and let u(t) be a solution of(1.1) as onstruted in the previous theorem. Assume also that the nonlinearity Bbelongs to C2(R) and satis�es the additional ondition(1.44) jB00(z)j4=3 � CB0(z); z 2 I; 8I � R bounded:10



Then, there exists a positive onstant � , 0 < � < 1, depending only on the L1-normof the initial datum b0, suh that, for every time interval [T; T + 1℄, there existsT0 2 [T; T + 1℄ (depending on the solution u) suh that(1.45) k�tR(u(t))k2L2(
) + Z T0+�T0 k�trxu(s)k2L2(
) ds � Q(kb0kL1(
));for all t 2 [T0; T0 + � ℄, where the monotoni funtion Q is also independent of theonrete hoie of u.Proof. We only give below the formal derivation of estimate (1.44), whih an bejusti�ed in a standard way by onsidering the approximate solutions of (1.6) andpassing to the limit "! 0.We �rst note that, aording to Lemma 1.2, we haveZ T+1T (B0(u(s))�tu(s); �tu(s))L2(
) ds � Q(kb0kL1(
)); T � 1=2:Consequently, (B0(u(t))�tu(t); �tu(t))L2(
) is �nite for almost all t and, for everytime interval [T; T + 1℄, there exists at least one point T0 = T0(u; T ) 2 [T; T + 1℄suh that(1.46) (B0(u(T0))�tu(T0); �tu(T0))L2(
) � 2Q(kb0kL1(
)):Sine equation (1.1) is autonomous, then, without loss of generality, we may assumethat T0 = 0.We now di�erentiate equation (1.1) with respet to t and set v = �tu. Then, wehaveB0(u(t))�tv(t) +B00(u(t))jv(t)j2 = div(a0(rxu(t))rxv(t))�� f 00(u(t))v(t)� �0(B(u(t))B0(u(t))v(t):Multiplying this equation by v, integrating with respet to x 2 
 and using thefat that a and f are monotoni, we have(1.47) �t(B0(u(t))v(t); v(t))L2(
) + 2�krxv(t)k2L2(
) �� C(B0(u(t))v(t); v(t))L2(
) + (jB00(u(t))j; jv(t)j3)L2(
);for some positive onstant �. Let Iu(t) := (B0(u(t))v(t); v(t))L2(
). Then, usingTheorem 1.1, assumption (1.44) and the Sobolev embedding W 1;2(
) � L6(
), wean estimate the last term in the right-hand side of (1.47) as follows:(jB00(u)j; jvj3)L2(
) = (jB00(u)j � jvj3=2; jvj3=2)L2(
) �� (jB00(u)j4=3; jvj2)3=4L2(
)kvk3=2L6(
) �� C(B0(u); jvj2)3=4L2(
)krxvk3=2L2(
) � �krxvk2L2(
) + CI3u;where C = C(kb0kL1(
)). Thus, (1.47) reads(1.48) �tIu(t) + �krxv(t)k2L2(
) � C(Iu(t) + Iu(t)3):11



Moreover, due to (1.46) and owing to the fat that T0 = 0, we have(1.49) 0 � Iu(0) � 2Q(kb0kL1(
)):We an note that the di�erential inequality (1.48) is not strong enough in orderto obtain global in time estimates for Iu(t). Nevertheless, it is suÆient for therequired loal in time ones. Indeed, due to the omparison priniple, we have(1.50) Iu(t) � y(t);where y solves(1.51) y0 = C(y + y3); y(0) = 2Q(kb0kL1(
)):Therefore, the loal solvability result for the ODE (1.51) gives the existene of atime interval [0; � ℄, with � > 0 only depending on kb0kL1(
), suh that(1.52) Iu(t) � y(t) � Q1(kb0kL1(
));where Q1 is also independent of the onrete hoie of u. Integrating now (1.48)with respet to t 2 [0; � ℄ and using (1.52), we dedue the required estimate for theintegral norm of rxv and �nish the proof of Proposition 1.1.Remark 1.2. Obviously, assumption (1.44) is automatially satis�ed in the non-degenerate ase (whih orresponds to assumptions (A) and p = 0). However, inthe degenerate ase p > 0, this gives rather essential restritions on the regularityof the funtion B near the degeneration point. In partiular, it is not diÆult toverify that (1.44) implies that p � 4 if p > 0. This assumption will be satis�ed,e.g., if the funtion B is of lass C5 near the degeneration point z = 0.x2 Semigroups and attrators.In this setion, we show that the semigroup assoiated with the degenerate equa-tion (1.1) possesses the global attrator in an appropriate phase spae and formulatethe main result of the artile, namely, the existene of an exponential attrator forthis semigroup, whih will be proven in the next setion.We �rst de�ne the phase spae � for problem (1.1) as follows:(2.1) � := fb0 2 L1(
); and, when assumptions (B) hold,b0(x) � 0; x 2 
; alsogand we de�ne the semigroup S(t) assoiated with equation (1.1) by the followingnatural expression:(2.2) S(t)b0 := B(u(t)); where u(t) solves (1.1) with B(u(0)) = b0.Remark 2.1. We see that, in ontrast to the usual situation, the semigroup S(t)does not map u(0) onto u(t), but B(u(0)) onto B(u(t)). This naturally reets thefat that the solution u(t) is uniquely de�ned by B(u(0)) and that the equationmay beome ellipti in some regions; when assumptions (A) hold, we an atuallyonsider the usual framework. We also emphasize one more that, by a "solution"12



of equation (1.1), we always mean a solution onstruted in Theorem 1.2 by thelimit proedure, no matter whether or not problem (1.1) has other "pathologial"solutions whih are automatially dropped out of our analysis.We now reall the de�nition of the global attrator for the semigroup S(t)adapted to our framework.De�nition 2.1. A set A � � is the global attrator for the semigroup S(t) asso-iated with the degenerate problem (1.1) if1) it is ompat in L1(
) and bounded in L1(
);2) it is stritly invariant, i.e., S(t)A = A; 8t � 0;3) it attrats the images of all bounded (in the L1-topology) subsets of � in thetopology of L1(
), i.e., for every bounded subset B of � and every neighborhoodO(A) of the set A in L1(
), there exists T = T (B;A) suh that(2.3) S(t)B � O(A); for all t � T :Remark 2.2.(i) Aording to De�nition 2.1, the attrator A attrats the bounded subsets of� = L1(
) in the weaker topology of L1(
) and, thus, oinides with the so-alled(L1(
); L1(
))-attrator in the terminology of Babin and Vishik, see [BV℄. We alsonote that, sine the trajetories of S(t) are bounded in L1(
), the spae L1(
)in the formulation of the attration property an be replaed by Lp(
), for every�nite p. However, the ase p =1, whih oinides with the standard de�nition ofthe global attrator, is more deliate and requires estimates on the solutions of thedegenerate system (1.1) in H�older spaes whih, to the best of our knowledge, arenot known for the ellipti-paraboli problem when assumptions (B) hold.(ii) The attration property an also be formulated via the Hausdor� semi-distanebetween subsets of �. More preisely, let(2.4) distV (X;Y ) := supx2X infy2Y kx� ykVbe the non-symmetri Hausdor� distane between X and Y in a Banah spae V .Then, the attration property reads: for every bounded subset B � �,(2.5) limt!1 distL1(
)(S(t)B;A) = 0:The next theorem gives the existene of the above global attrator for the semi-group S(t) assoiated with the degenerate problem (1.1).Theorem 2.1. Let the assumptions of Theorem 1.2 hold. Then, the semigroupS(t) de�ned by (2.2) possesses the global attrator A in the sense of De�nition2.1 whih is bounded in L1(
) \ W 1;2(
) and possesses the following standarddesription:(2.6) A = B(K��t=0);where K � L1(R � 
) is the set of all solutions of (1.1) whih are de�ned for allt 2 R and are globally bounded.Proof. Aording to standard results on the existene of the global attrator (see,e.g, [BV℄ and [T℄), we need to hek that13



1) the semigroup S(t) is ontinuous in the L1-topology on every bounded subsetof �;2) the semigroup S(t) possesses a bounded in L1(
) and ompat in L1(
)absorbing set.The �rst assumption is an immediate orollary of the global Lipshitz ontinuityof the semigroup S(t), see estimate (1.28). Moreover, it follows from estimates (1.8)and (1.18) that the R-ball in the spae L1(
) \W 1;2(
) is an absorbing set forthe semigroup S(t) if R is large enough. Sine this ball is, obviously, ompat inthe topology of L1(
), the existene of the global attrator A follows, see [BV℄ and[T℄. Its boundedness is now a onsequene of the fat that the global attrator isontained in any absorbing set and desription (2.6) follows from the standard de-sription of the global attrator via bounded omplete trajetories of the assoiatedsemigroup, see [BV℄. This �nishes the proof of Theorem 2.1.Our next task is to establish the existene of an exponential attrator for thesemigroup S(t) assoiated with equation (1.1), whih implies, in partiular, the�nite-dimensionality of the global attrator onstruted in the previous theorem.We �rst give the de�nition of an exponential attrator adapted to our framework.De�nition 2.2. A set M � � is an exponential attrator for the semigroup S(t)assoiated with problem (1.1) if the following onditions are satis�ed:1) it is bounded in � and ompat in L1(
);2) it is semi-invariant, S(t)M�M; 8t � 0;3) it has �nite fratal dimension in L1(
),dimf (M; L1(
)) � C <1;4) it attrats exponentially the images of all bounded subsets of �, i.e., there ex-ists a positive onstant � and a monotoni funtion Q suh that, for every boundedsubset B of the phase spae �, there holds(2.7) distL1(
)(S(t)B;M) � Q(kBkL1(
))e��t;for all t � 0.The following theorem an be onsidered as the main result of this artile.Theorem 2.2. Let the assumptions of Theorem 1.1 hold and let, in addition, thenonlinearity B belong to C2(R) and satisfy assumption (1.44). Then, the semigroupS(t) assoiated with the degenerate problem (1.1) possesses a �nite-dimensionalexponential attratorM in the sense of De�nition 2.2 whih is bounded in L1(
)\W 1;2(
).The proof of this theorem will be ompleted in the next setion. In the remainingof this setion, we formulate an abstrat result on the existene of an exponentialattrator whih is lose to that given in [MZ℄ (see also [EfMZ℄) and is the maintehnial tool to prove Theorem 2.2.Proposition 2.1. Let H1 and H, H1 � H, be two Banah spaes suh that theembedding H1 � H is ompat and let C be a losed bounded subset of H. Assumealso that there exists a map S : C ! C whih satis�es the following properties:1) it is globally Lipshitz ontinuous on C, i.e., for every 1; 2 2 C, there holds(2.8) kS1 � S2kH � Lk1 � 2kH;14



where the Lipshitz onstant L is independent of the hoie of 1 and 2 belongingto C;2) there exists an integer N0 suh that, for every  2 C, there exists n = n() 2f0; � � � ; N0 � 1g suh that, for every 1 2 C, there holds(2.9) kS1 � S2kH1 � Kk1 � 2kH; 2 := S(n);where the disrete semigroup generated on C by the iterations of S is denoted byfS(l), l 2 Ng and the onstant K is independent of  and 1.Then, the disrete semigroup S(l) possesses an exponential attrator M on C,i.e., there exists a set M� C whih satis�es the following properties:1) it is a ompat subset of C;2) it is semi-invariant, S(l)M�M; 8l 2 N;3) it has �nite fratal dimension in H,(2.10) dimf (M;H) � C1;4) it attrats exponentially the images of C in the metri of H,(2.11) distH(S(l)C;M) � C2e��l; 8l 2 N :Moreover, the positive onstants C1, C2 and � an be expressed expliitly in termsof K, L, N0 and some qualitative harateristis of the embedding H1 � H.The proof of this proposition repeats word by word that given in [MZ℄ and istherefore omitted. x3 Proof of the main result.In this setion, we omplete the proof of Theorem 2.2 and establish the existeneof a �nite-dimensional exponential attrator for the semigroup S(t) assoiated withthe degenerate equation (1.1). To this end, we need the following result.Proposition 3.1. Let the assumptions of Theorem 2.2 hold, let u be a solutionof problem (1.1) and let [T0; T0 + �℄ belong to one of the regularity intervals foundin Proposition 1.1. The latter means that, on this time interval, we an ontrolthe L2-norm of �trxu by (1.44). Then, for every other solution �u(t), t � T0, ofequation (1.1), the following estimate holds:(3.1) Z T0+�T0+�=2 ku(t)� �u(t)k2W 1;2(
) dt � CkB(u(T0))� B(�u(T0))k2L1(
);where the onstant C only depends on � and the L1-norms of u and �u and isindependent of the onrete hoie of u and �u.Proof. As in Proposition 1.1, we only give below the formal derivation of estimate(3.1), whih an be easily justi�ed by using the approximate equations (1.6).We set v(t) := �u(t)� u(t). Then, this funtion obviously solves(3.2) �t[B(�u(t))�B(u(t))℄ = div[a(rx�u(t))� a(rxu(t))℄� [f(�u(t))� f(u(t))℄:15



Multiplying this equation by v(t), integrating with respet to x 2 
 and using themonotoniity of a and assumption (1.4), we have(3.3) (�t(B(�u(t))�B(u(t))); v(t))L2(
) + 1=2(a(rx�u)� a(rxu);rxv)L2(
)++ 2�krxv(t)k2L2(
) � C(jB(�u(t))� B(u(t))j; jv(t)j)L2(
); � > 0:The right-hand side of (3.3) an be estimated as follows:(3.4) (jB(�u(t))�B(u(t))j; jv(t)j)L2(
) == (jB(�u(t))�B(u(t))j1=2; jB(�u(t))� B(u(t))j1=2 � jv(t)j)L2(
) �� CkB(�u(t))� B(u(t))k1=2L1(
)kv(t)k3=2L3(
) �� �krxv(t)k2L2(
) + C1kB(�u(t))�B(u(t))k2L1(
):In order to transform the left-hand side of (3.3), we use the following identity:(3.5) �t[B(�u(t))� B(u(t))℄ � v(t) = �tIu;�u(t) + �tu(t) � Ju;�u(t);where(3.6) Iu;�u(t) := G(u(t))�G(�u(t)) +B(�u(t))v(t);Ju;�u(t) := B(�u(t))� B(u(t))�B0(u(t))v(t);with G(v) := R v0 B(u) du. Inequality (3.3) reads, in view of (3.4) and (3.5),(3.7) �t(Iu;�u(t); 1)L2(
) + �krxv(t)k2L2(
) �� CkB(�u(t))� B(u(t))k2L1(
) + C(j�tu(t)j; jJu;�u(t)j)L2(
):In order to estimate the terms I and J , we need the following lemma.Lemma 3.1. Let the above assumptions hold. Then, the funtions Iu;�u and Ju;�usatisfy the following estimates:(3.8) 8><>: 1) Iu;�u � 0;2) jJu;�uj � CI1=2u;�u � ju� �uj;3) Iu;�u � CjB(u)�B(�u)j1=2 � ju� �uj3=2;where juj+ j�uj � R and the onstant C = CR depends on R, but is independent ofu; �u 2 R.Proof. Sine G is of lass C2 and G00(z) = B0(z) � 0, we have(3.9) Iu;�u = Z 10 [B(su+ (1� s)�u)�B(�u)℄ ds � (u� �u) == Z 10 Z 10 B0(s1(su+ (1� s)�u) + s1�u) ds1 ds � ju� �uj2 � 0:16



Thus, (3.8)1 is veri�ed. Let us now hek (3.8)2 and (3.8)3. Let �rst assumptions(A) for the nonlinearity B be satis�ed. Then, sine B0(u) � jujp, estimate (3.9)an be rewritten as follows:(3.10) C2(B0(u) + B0(�u)) � ju� �uj2 � Iu;�u �� C(jujp + j�ujp)j � ju� �uj2 � C1(B0(u) + B0(�u)) � ju� �uj2;see [Z1℄ for details. Analogously, using, in addition, (1.44), we an estimate Ju;�uas follows:(3.11) jJu;�uj = Z 10 Z 10 jB00(s1(su+ (1� s)�u) + s1�u)j ds1 ds � ju� �uj2 �� C Z 10 Z 10 jB0(s1(su+(1�s)�u)+s1�u)j3=4 ds1 ds � C1(B0(u)+B0(�u))3=4 �ju��uj2and, onerning the di�erene B(u)� B(�u), we have(3.12) jB(u)� B(�u)j � C(B0(u) + B0(�u)) � ju� �uj:Sine 1=2 < 3=4, estimates (3.10){(3.12), together with the fat that juj+ j�uj � R,imply estimates (3.8)2 and (3.8)3. Thus, when assumptions (A) hold, Lemma 3.1is proven.Let us now onsider assumptions (B). To this end, we note that, if u > 0 and�u > 0, we have exatly the same situation as with assumptions (A), so that allthe estimates of the lemma are already veri�ed. The ase u < 0 and �u < 0 is alsoobvious sine, in that ase, both sides of inequalities (3.8) are identially equal tozero. So, we only need to onsider the following two ases:1) u > 0 and �u < 0;2) u < 0 and �u > 0.Let us onsider ase 1). Then, (3.8) reads(3.13) � 2) B0(u)(u� �u)� B(u) � G(u)1=2 � ju� �uj;3) G(u) � B(u)1=2 � ju� �uj3=2:We note that, in that ase, ju� �uj � juj. Moreover, sine B0(u) � jujp, p � 0, then,G(u) � CB(u)1=2u3=2 near u = 0, whih implies (3.13)3. In order to verify (3.13)2,it suÆes to note that (1.44) implies(3.14) B0(u) � C[B0(u)℄3=4 � juj; G(u) � CB0(u) � juj2:This inequality, together with the fat that ju � �uj � juj, imply (3.13)2. Thus,Lemma 3.1 is also veri�ed in ase 1).Let us now onsider ase 2). In that ase, (3.8) reads(3.15) � 2) B(�u) � C[B(�u)(�u� u)�G(�u)℄1=2 � j�u� uj;3) B(�u)(�u� u)�G(�u) � B(�u)1=2 � j�u� uj3=2:Sine B0(�u) � �up and �u� u � �u, we have(3.16) B(�u)(�u� u)�G(�u) � B(�u)�u�G(u) == Z 10 sB0(s�u) ds � u2 � C�up+2 � C1G(�u):17



Moreover, analogously to (3.14),(3.17) C1[B0(�u)℄3=4�u2 � B(�u) � C2[B0(�u)℄3=4�u2;C3B0(�u)�u � B(�u) � C4B0(�u)�u; C5B0(�u)�u2 � G(�u) � C6B0(�u)�u2:Estimates (3.16) and (3.17) imply (3.15). Thus, estimates (3.8) are veri�ed in allases and Lemma 3.1 is proven.It is now not diÆult to �nish the proof of the proposition. To this end, wemultiply equation (3.7) by (t � T0)4 and set Zu;�u(t) := (t � T0)4(Iu;�u(t); 1)L2(
).Then, we have(3.18) �tZu;�u(t) + �(t� T0)4krxv(t)k2L2(
) � 4((t� T0)3; Iu;�u(t))L2(
)++ (j�tu(t)j; (t� T0)4jJu;�u(t)j)L2(
) + (t� T0)4kB(u(t))�B(�u(t))k2L1(
):Using (3.8)3, we an estimate the �rst term in the right-hand side of (3.18) asfollows:(3.19) ((t� T0)3; Iu;�u)L2(
) � C(jB(u)� B(�u)j1=2; (t� T0)3jvj3=2)L2(
) �� C1kB(u)� B(�u)k1=2L1(
)(t� T0)3kvk3=2L3(
) �� C2kB(u)� B(�u)k2L1(
) + �=4(t� T0)4krxvk2L2(
):Analogously, using (3.8)2 and the embedding W 1;2(
) � L6(
), we an estimatethe seond term in the right-hand side of (3.18),(3.20) (j�tuj; (t� T0)4Ju;�u)L2(
) � C(j�tuj; (t� T0)4Iu;�u � jvj)L2(
) �� Ck�tukL6(
)[(t� T0)4(Iu;�u; 1)L2(
)℄1=2(t� T0)2kvkL3(
) �� Ck�trxuk2L2(
)Zu;�u + �=4(t� T0)4krxvk2L2(
):Inserting these estimates into (3.18), we �nally have(3.21) �tZu;�u(t)� Ck�trxu(t)k2L2(
)Zu;�u(t) + �=2(t� T0)4krxv(t)k2L2(
) �� C 0(1 + (t� T0)4)kB(u(t))�B(�u(t))k2L1(
):We reall that, due to our assumptions, the time interval [T0; T0 + � ℄ is a regularinterval with respet to the solution u, i.e., on this interval, Proposition 1.1 allowsto ontrol the L2-norm of �trxu,(3.22) Z T0+�T0 k�trxu(t)k2L2(
) dt � Q(kukL1([0;T ℄�
)):Moreover, aording to estimate (1.28), we have(3.23) kB(u(t))�B(�u(t))kL1(
) � CeK(t�T0)kB(u(T0))�B(�u(T0))kL1(
):18



Applying the Gronwall inequality to (3.21) and using (3.22), (3.23) and the fatthat Zu;�u(T0) = 0, we dedue that(3.24) Zu;�u(t) �� Q(kukL1([0;T ℄�
) + k�ukL1([0;T ℄�
))kB(u(T0))� B(�u(T0))k2L1(
);t 2 [T0; T0 + �℄;for some monotoni funtion Q whih is independent of the onrete hoie of uand �u. Integrating now inequality (3.21) with respet to t 2 [T0 + �=2; T0 + �℄ andusing (3.22{3.24), we obtain estimate (3.1) for the L2(W 1;2)-norm of v and �nishthe proof of Proposition 3.1.The next orollary is ruial in order to verify the seond assumption of Propo-sition 2.1 in our situation.Corollary 3.1. Let the assumptions of Proposition 3.1 hold and let u, �u and[T0; T0 + �℄ be the same as in this proposition. Then, the following estimates hold:(3.25) k�tB(u)� �tB(�u)kL2([T0+�=2;T0+�℄;W�1;2(
))++ kB(u)�B(�u)kL2([T0+�=2;T0+�℄;W 1;2(
)) � KkB(u)� B(�u)kL1([T0;T0+�=2℄�
);where the onstant K only depends on � and the L1-norms of u and �u, but isindependent of the onrete hoie of u and �u.Proof. We �rst note that, for every two solutions u and �u of equation (1.1) andevery Æ > 0, the following estimate holds:(3.26) kB(u(Æ))�B(�u(Æ))kL1(
) � CÆkB(u)� B(�u)kL1([0;Æ℄�
);where the onstant CÆ only depends on Æ and the L1-norms of u and �u. Indeed,in order to prove this estimate, it suÆes to multiply equation (3.2) by t sgn(u(t)��u(t)), integrate over [T0; T0 + �=2℄� 
 and use the Kato inequality.Combining the smoothing property (3.26) with Proposition 3.1, we hek thatthe following estimate holds:(3.27) Z T0+�T0+�=2 ku(t)� �u(t)k2W 1;2(
) dt � CkB(u)�B(�u)k2L1([T0;T0+�=2℄�
):In order to dedue (3.25) from (3.27), it is suÆient to note that, expressing�t(B(u) � B(�u)) from equation (3.2) and using the fat that the L1-norms ofu and �u an be ontrolled, we have(3.28) k�t(B(u(t))� B(�u(t)))k2W�1;2(
)++ krx(B(u(t))� B(�u(t)))k2L2(
) � Cku(t)� �u(t)k2W 1;2(
);where the onstant C only depends on the L1-norms of u and �u. Thus, Corollary3.1 is proven.We are now ready to �nish the proof of Theorem 2.2 by verifying the assumptionsof Proposition 2.1 for some proper disrete semigroup assoiated with equation19



(1.1). In order to onstrut it, we �rst onstrut a semi-invariant absorbing set Bfor the semigroup S(t) assoiated with equation (1.1). As shown in the proof ofTheorem 2.1, the ball(3.29) B0 := fb0 2 L1(
) \W 1;2(
); kb0kL1(
) + kb0kW 1;2(
) � Rgis an absorbing set for this semigroup if R is large enough, but it is not neessarilysemi-invariant. In order to overome this diÆulty, we transform this set in thefollowing standard way:(3.30) B = � [t�0 S(t)B0�L1(
);where [�℄V denotes the losure in the spae V . Then, on the one hand, this newabsorbing set remains bounded in L1(
) \ W 1;2(
) (due to Theorem 1.1 andLemmata 1.2{1.3), i.e., for every trajetory u(t) starting from B(u(0)) = b0 2 B,(3.31) ku(t)kL1(
) + ku(t)kW 1;2(
) + k�tB(u)kL2([t;t+1℄�
) � C;where the onstant C is independent of u and t � 0. On the other hand, this setis, obviously, semi-invariant with respet to S(t),(3.32) S(t)B � B:Then, aording to Proposition 1.1, there exists � > 0 suh that, for every trajetoryu(t) starting from B and every time interval [T; T + 1℄ of length one, there exists asubinterval [T0; T0 + � ℄ � [T; T + 1℄ of length � on whih the L2-norm of �trxu isontrolled as follows:(3.33) Z T0+�T0 k�trxu(t)k2L2(
) dt � C;where C is independent of the trajetory u starting from B. Thus, it is suÆientto onstrut the required exponential attrator on the absorbing set B only.Let us now �x � = 1=N , where N 2 N is large enough so that(3.34) 1=N � �=3;and introdue the following spaes of funtions depending on x and t:(3.35) H := L1([0; �=2℄� 
);H1 :=W 1;2([0; �=2℄;W�1;2(
)) \ L2([0; �=2℄;W 1;2(
)):Then, H1 is ompatly embedded into H (see, e.g., [LSU℄). We also introdue thetrajetory analogue of the absorbing set B as follows:(3.36) Btr := fB(u(t)); t 2 [0; �=2℄; u(t) solves (1.1) with B(u(0)) 2 Bg � Hand de�ne the �=2-shift map S on Btr by(3.37) (Sv)(t) := S(�=2)v(t); v 2 Btr:20



Then, the semi-invariane (3.32) implies that the set Btr is also semi-invariant withrespet to the shift map S,(3.38) S : Btr ! Btr:Our next task is to verify the onditions of Proposition 2.1 for the map (3.38).Indeed, estimate (1.28) immediately implies that the map S is globally Lipshitzontinuous on Btr and we only need to verify the seond assumption of Proposition2.1 and inequality (2.9). Indeed, due to our hoie of the number �, for everytrajetory u(t) starting from B (or, equivalently, for every trajetory of the disretesemigroup S(n) starting from �b0 := fB(u(t)); t 2 [0; �=2℄g), at least one of theintervals(3.39) [0; �℄; [�; 2�℄; � � � ; [(N � 1)�;N�℄(let it be the interval [n0�; (n0 + 1)�℄) belongs to the regularity interval of u, i.e.,estimate (3.33) is satis�ed on [n0�; (n0+1)�℄. Thus, due to Corollary 3.1, we have(3.40) kSw � S�vkH1 � Kkw � �vkH; 8�v 2 Btr;where w = S(2n0)�b0. So, the seond assumption of Proposition 2.1 holds for Swith N0 = 2N .Thus, we have proven that the disrete semigroup S(n) generated by the itera-tions of the shift operator S possesses an exponential attrator Mtr � Btr whihis �nite-dimensional and satis�es properties 1){4) of Proposition 2.1.We now reall that, due to estimate (3.26), the projetion map �,(3.41) � : Btr ! B; �v = v(�=2); v 2 Btr;is globally Lipshitz ontinuous. Consequently, projeting the trajetory attratorMtr onto B, we obtain an exponential attrator Md := �Mtr for the disretesemigroup fS(n�=2); n 2 Ng on B whih satis�es all properties 1){4) of Proposition2.1 with H = L1(
).Thus, there only remains to pass from the exponential attrator Md of thesemigroup S(n�=2) with disrete times n 2 N to the semigroup S(t) with ontinuoustimes t 2 R+ . To this end, we note that the map (t; b0) 7! S(t)b0 is uniformly H�olderontinuous with respet to (t; b0) 2 [0; �=2℄�B with H�older exponent 1=2. Indeed,the H�older (and even the Lipshitz) ontinuity of S(t)b0 with respet to b0 is animmediate onsequene of (1.28) and the H�older ontinuity with respet to t followsfrom the following simple estimates:(3.42) kB(u(t+ s))� B(u(t))kL1(
) = k Z t+st B0(u(�))�tu(�) d�kL1(
) �� Z t+st (B0(u(�)); j�tu(�)j)L2(
) d� � �Z t+st B0(u(�)) d��1=2�� Z �=20 (B0(u(�))�tu(�); �tu(�))L2(
) d�!1=2 � Cs1=2:Thus, the required exponential attratorM for ontinuous times an be onstrutedby the following standard formula:(3.43) M := � [t2[0;�=2℄ S(t)Md�L1(
) � B;see [EFNT℄ for more details. So, our main theorem on the existene of an expo-nential attrator for the degenerate equation (1.1) is proven.21



x4 Generalizations and onluding remarks.In this onluding setion, we disuss possible generalizations of the results ob-tained above and indiate several alternative methods to prove the �nite-dimensio-nality of attrators.Remark 4.1. To start with, we note that assumption (1.2)2 requires the nonlin-earity a(rxu) to have a linear growth. However, this assumption is not essentialand an be replaed by a standard polynomial growth of order p:(4.1) �1(1 + jzjp�2) � A00(z) � �2(1 + jzjp�2);for some �xed p � 2 and positive onstants �1 and �2. In that ase, of ourse,we will, thanks to energy inequalities, ontrol the W 1;p-norm of the solution u(instead of the usual W 1;2-norm). Indeed, an aurate analysis shows that theglobal boundedness of A00(u) has been used only in the proof of Corollary 3.1and only in order to obtain the ontrol of the W�1;2-norm of �t(B(u)�B(�u)), seeestimate (3.28). In the general ase p > 2, this estimate fails and should be replaedby an appropriate estimate of the Lq-norm, with 1p + 1q = 1,(4.2) k�t(B(u)� B(�u))k2Lq([S;T ℄;W�1;q(
)) � ka(rxu)� a(rx�u)k2Lq([S;T ℄�
)++ kf(u)� f(�u)k2Lq([S;T ℄�
) � C(kukLp([S;T ℄;W 1;p(
)) + k�ukLp([S;T ℄;W 1;p(
)))p�2�� (a(rxu)� a(rx�u);rxu�rx�u)L2([S;T ℄�
) + Cku� �uk2Lq([S;T ℄�
) �� C1(1 + jT � Sjp�2)(a(rxu)� a(rxu);rxu�rx�u)L2([S;T ℄�
);where we have used estimates (4.1), together with the fat that the L1(W 1;p)-norms of u and �u an be ontrolled. There remains to note that the salar produtin the right-hand side of (4.2) an be ontrolled by an analogue of Proposition 3.1,see estimate (3.3). Thus, the estimate of Corollary 3.1 remains true if we replaethe L2(W�1;2)-norm by the Lq(W�1;q)-norm and, onsequently, the spae H1 in(3.35) should be replaed byH1 :=W 1;q([0; �=2℄;W�1;q(
)) \ L2([0; �=2℄;W 1;2(
)):Sine this hange does not destroy the ompatness of the embedding H1 � H,the remaining of the proof of Theorem 2.2 does not hange as well. Therefore, themain result of this artile (Theorem 2.2 on the existene of a �nite-dimensionalexponential attrator) remains true under the more general assumption (4.1).Remark 4.2. We now disuss the regularity assumptions of the domain 
. Indeed,although we have assumed the boundary �
 to be smooth, this assumption has beenused only in Lemma 1.3 (in order to verify the L2(W 2;2)-regularity of the solutions)and in Theorem 1.2 (in order to make sure that the solutions un of the approximateproblem (1.6) are regular enough). However, the W 2;2-regulartity of the solutionsis, in fat, nowhere used in the sequel and all the other estimates do not require thedomain 
 to be regular. Indeed, we have fatually only used the Sobolev embeddingW 1;20 (
) � L6(
) and some interpolation inequalities whih do not require anyregularity of the boundary (due to our hoie of Dirihlet boundary onditions;for Neumann boundary onditions, the Lipshitz ontinuity of the boundary is22



required). Thus, analyzing the solutions of the approximate problems (1.6) ina more aurate way, we see that the main results of the artile hold, e.g., forLipshitz domains (and even for some non-Lipshitz ones).Remark 4.3. We now note that the above results are also valid (with a lot ofsimpli�ations) in the non-degenerate ase(4.3) B0(u) � � > 0as well. Indeed, in that ase, assumption (1.44) is automatially satis�ed (for Bof lass C2) and assumption (1.4) also holds automatially, sine, now, B(z) � znear zero. However, our method may seem arti�ial in this situation. Indeed,under assumption (4.3), equation (1.1) an be rewritten in the form of a quasilinearseond-order paraboli equation,(4.4) �tu = [B0(u)℄�1A00ij(rxu)�xi�xju� [B0(u)℄�1(f(u)� g):The analyti properties of suh equations in the non-degenerate ase are verywell understood, see, e.g., [LSU℄, and we an use the lassial and powerful reg-ularity theory of suh equations. Indeed, in partiular, if B; a 2 C2(R) andg 2 C�(
), for some � > 0, then, due to the interior regularity estimates, equa-tion (4.4) (or, equivalently, equation (1.1)) possesses an absorbing ball in the spaeC1+�=2;2+�([T; T + 1℄� 
),(4.5) kukC1+�=2;2+�([T+1;T+2℄�
) � Q(ku(T )kL1(
));see, e.g., [LSU℄, Chapter 6, Setions 1-6. Having this estimate, one an verify the�nite-dimensionality of the global attrator, e.g., by the lassial volume ontrationmethod and verify the existene of an exponential attrator by proving the followingsimpler smoothing property for the di�erene of two solutions:(4.6) kS(t)b10 � S(t)b20kH1(
) � C eKtpt kb10 � b20kL2(
); t > 0;instead of the ompliated version of suh an inequality formulated in Proposition2.1. Thus, our artile is mainly oriented towards the degenerate ase when (4.3)fails and when the redution to (4.4) and the regularity (4.5) also fail (see also thenext remark).Remark 4.4. We now disuss an alternative method to prove the �nite-dimensio-nality of the global attrator in the degenerate ase (when assumption (4.3) isnot satis�ed). In ontrast to the regular ase, one annot expet the existene oflassial solutions or/and the smothing property (4.5) to hold in the degeneratease (even if all the terms are of lass C1) and the best regularity whih an beexpeted for our equation is the following H�older ontinuity:(4.7) kukC�=2;�([T+1;T+2℄�
) � Q(ku(T )kL1(
)); T > 0; � > 0;see [D2℄, [DUV℄ and the referenes therein for preise onditions whih guaranteeH�older ontinuity results for degenerate seond-order paraboli equations.However, there exists a general method (suggested in [EfZ1℄) whih allows toextrat the �nite-dimensionality (and the existene of an exponential attrator)from this H�older ontinuity and the L1-Lipshitz ontinuity with respet to theinitial data. The appliation of this method to our problem gives the followingresult. 23



Proposition 4.1. Let the assumptions of Theorem 1.1 hold and let, in addition,a; B be of lass C2, the H�older ontinuity estimate (4.7) be satis�ed and the fol-lowing monotoniity assumption:(4.8) jf(z1)� f(z2)j � �jB(z1)�B(z2)j; � > 0;hold, for every z1 and z2 in a small neighborhood of all the degeneration points ofB. Assume also that g 2 C�(
), for some � > 0. Then, the global attrator A ofproblem (1.1) is �nite-dimensional and there exists an exponential attrator for thisproblem in the sense of De�nition 2.2.Sketh of the proof. We briey reall here the main idea of [EfZ1℄ by onsidering,for simpliity, the ase of one degeneration point for B at z = 0, i.e., assumptions(A) hold. In that ase, we an onsider the usual framework, i.e., S(t) maps u(0)onto u(t). Let B be an absorbing set of the semigroup S(t) (for whih the uniformH�older ontinuity holds due to (4.7)) and let B"(u0) be an "-ball in the metri ofL1(
) entered at u0 2 B. Then, sine u0 is ontinuous, we an split the domain 
into the union of two subdomains,(4.9) 
 = 
+(u0) [ 
�(u0); 
+ := fx 2 
; ju0(x)j > �g;
� := fx 2 
; ju0(x)j < 2�g;where � is a suÆiently small positive number. Moreover, sine the semigroup S(t)is globally Lipshitz ontinuous in the L1-metri and the norm kukC�=2([0;T ℄�
)is uniformly bounded with respet to all trajetories starting from B, then, for "suÆiently small, there exists T > 0 (whih is independent of u0 and ") suh that,for every trajetory u(t) suh that u(0) 2 B"(u0)\ B, the following estimates hold:(4.10) � ju(t; x)j > �=2; (t; x) 2 [0; T ℄� 
+;ju(t; x)j < 3�; (t; x) 2 [0; T ℄� 
�:In other words, all the trajetories starting from B"(u0)\B remain uniformly loseto the degeneration point z = 0 for x 2 
� and are uniformly non-degenerate forx 2 
+ if t � T . This simple observation is the key point of the method and is thepreise reason why we need an assumption on the H�older ontinuity.Furthermore, sine the above trajetories are (uniformly) non-degenerate on[0; T ℄ � 
+, then, (4.3) holds on this domain and we an rewrite equation (1.1)in the form (4.4) on the domain 
+. Then, the paraboli regularity theorem men-tioned above yields that u 2 C1+�=2;2+�([0; T ℄� 
+) and the norm in this spaeis uniform with respet to all trajetories starting from B"(u0) \ B. Therefore, thedi�erene v(t) := u1(t)�u2(t) between two suh solutions restrited to 
+ satis�esa linear seond-order paraboli equation with regular oeÆients and, thus (roughyspeaking, see [EfZ1℄ for a preise formulation), we have, for the 
+-omponent ofthe di�erene v(t), a smoothing property whih is analogous to (4.6) (of ourse,v���
+ 6= 0, so that the preise formulation should ontain some interior estimatesand ut-o� funtions).On the other hand, �xing � > 0 small enough so that inequality (4.8) holds, forall z1 and z2 with jzij � 3�; i = 1; 2, and applying the L1-Lipshitz ontinuityestimate in the domain 
� to the equation for the di�erene v(t), we have(4.11) kB(u1(t))� B(u2(t))kL1(
�) � e��tkB(u1(0))�B(u2(0))kL1(
�); t � T24



(again, roughly speaking, sine v���
� 6= 0, and some ut-o� funtions are nees-sary).Thus, we have a uniform (with respet to all initial data belonging to B"(u0)\B)ontration of the 
�-omponent of the di�erene of two solutions and a uniformsmoothing property for their 
+-omponent. As shown in [EfZ1℄, this deomposi-tion is suÆient to verify that the image S(T )(B"(u0)\B) of an "-ball entered atu0 an be overed by a �nite number N of "-balls in L1(
), with  < 1 and N inde-pendent of " and u0, and this last assumption implies the �nite-dimensionality andthe existene of an exponential attrator, see [EfZ1℄ for details. Thus, Proposition4.1 is proven.The essential advantage of the method introdued above is that, in ontrast toour sheme developed in Setions 2 and 3, where we fatually need the nonlinearityB to be of lass C5 near the degeneration points, this method does not require anyregularity on B near the degeneration points and B of lass C2 is neessary onlyoutside the degeneration points (i.e., in the domain 
+). Near the degenerationpoints (i.e., in 
�), we do not need any regularity assumption on B and only needthe monotoniity estimate (4.8) to be satis�ed.However, in ontrast to the lassial De Giorgi theory for non-degenerate seond-order paraboli equations, the H�older ontinuity for degenerate equations is a non-trivial and deliate fat whih an be even violated, e.g., for some ellipti-paraboliequations. In fat, we do not know whether or not the H�older ontinuity holdsunder assumptions (B) in the ellipti-paraboli ase. That is the reason why wehose to give an alternative proof whih is based on relatively simple energy typeestimates in this artile.Remark 4.5. To onlude, we note that it would be very interesting to provethe existene of exponential attrators when the funtion B(u) has singularities ordisontinuities (e.g., for Stefan-like problems). However, the above methods do notwork in this situation, sine inequalities of the form (4.8) annot be satis�ed if Bhas singularities and f is regular. The only type of singularities whih we are ableto treat are the disontinuities of the derivatives of B.Indeed, let us onsider the following partiular ase of equation (1.1):(4.12) � �tB(u) = a�xu� f(u) + g;u���
 = 0; B(u)��t=0 = b0;where a > 0 is some �xed number and the funtion B is only Lipshitz ontinuous,(4.13) �1jz1 � z2j2 � [B(z1)� B(z2)℄:(z1 � z2) � �2jz1 � z2j2;with positive onstants �1 and �2.Proposition 4.2. Let the nonlinearity B satisfy (4.13) and the nonlinearity f beLipshitz and satisfy the dissipativity assumption (1.3). Then, the semigroup S(t)assoiated with equation (4.12) via (2.2) possesses an exponential attrator M inthe sense of De�nition 2.2.Sketh of the proof. Let u1(t) and u2(t) be two solutions of (4.12) starting from anabsorbing set in L1(
). Then, multiplying the equation for the di�erene of two25



solutions u1 and u2 by (��x)�1(B(u1) � B(u2)) and using (4.13), together withthe Lipshitz ontinuity of f , we have(4.14) ddtkB(u1)�B(u2)k2H�1(
)++ �kB(u1)�B(u2)k2L2(
) � CkB(u1)� B(u2)k2H�1(
);with some positive onstants C and � whih are independent of u1 and u2. Fixingnow some T > 0, multiplying (4.14) by t and integrating over [0; T ℄, we dedue that(4.15) kB(u1(T ))�B(u2(T ))k2H�1(
) � CT kB(u1)�B(u2)k2L2([0;T ℄;H�1(
)):Integrating then relation (4.14) with respet to t 2 [T; 2T ℄ and using (4.15), weinfer(4.16) kB(u1)� B(u2)kL2([T;2T ℄;L2(
)) � CT kB(u1)�B(u2)kL2([0;T ℄;H�1(
));with some onstant CT depending on T . Finally, we dedue, from the equation forthe di�erene between u1 and u2, together with (4.13) and the Lipshitz ontinuityof f , that(4.17) k�tB(u1)� �tB(u2)kL2([T;2T ℄;H�2(
)) � CkB(u1)� B(u2)kL2([T;2T ℄;L2(
)):Thus, ombining (4.16) and (4.17), we have(4.18) kB(u1)� B(u2)kW 1;2([T;2T ℄;H�2(
))\L2([T;2T ℄;L2(
)) �� CT kB(u1)�B(u2)kL2([0;T ℄;H�1(
));with some positive onstant CT whih is independent of the hoie of the trajetoriesu1 and u2 starting from the absorbing set.Sine the embeddingW 1;2([0; T ℄; H�2(
)) \ L2([0; T ℄; L2(
)) � L2([0; T ℄; H�1(
))is ompat, inequality (4.18) allows indeed to onstrut an exponential attratorfor the semigroup S(t) in the topology of H�1(
) by the l-trajetories method,see [MP℄. Sine the H1-norm an be ontrolled on the absorbing set, we obtain, byinterpolating between H�1(
) and H1(
), the existene of an exponential attratorin the topology of L2(
) (and even Lp(
), p �nite) as well and Proposition 4.2 isproven.Example 4.1. Although the result of Proposition 4.2 does not apply to the Ste-fan problem, it gives however the �nite-dimensionality of attrators for some freeboundary problems. In partiular, the following free boundary problem:(4.19) 8><>: �tu = a1�xu� f1(u); u > 0;�tu = a2�xu� f2(u); u < 0;u��+ = u���; �nu��+ + �nu��� = 0; u = 0;where a1; a2 > 0, the funtions fi; i = 1; 2; satisfy the dissipativity assumption(1.3) and f1(0) = f2(0) = 0, an be rewritten in the form (4.12), withB(z) = � a�11 z; z > 0;a�12 z; z < 0; f(z) = � a�11 f1(z); z > 0;a�12 f2(z); z < 0:Thus, all the assumptions of Proposition 4.2 are satis�ed and, onsequently, problem(4.19) possesses a �nite-dimensional exponential attrator in the phase spae L2(
).Aknowledgments: The authors wish to thank Professor V. Vespri for very usefuldisussions. 26
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