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t. Our aim in this arti
le is to study the long time behavior, in terms of�nite-dimensional attra
tors, of degenerate triply nonlinear equations. In parti
ular,we are interested in the 
ase where the equation be
omes ellipti
 in some region.Introdu
tion.We are interested in this arti
le in the study of the long time behavior (in termsof �nite-dimensional attra
tors) of triply nonlinear paraboli
 equations of the form�tB(u) = div(a(rxu))� f(u) + g; (0:1)in a bounded regular domain of R3 . Su
h equations o

ur, e.g., in the study ofphase separation, and, in parti
ular, in models of Allen-Cahn equations based on ami
rofor
e balan
e and an anisotropi
 free energy (see [Gu℄, [Mi℄ and [TC℄).The study of equations of the form (0.1) 
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ase where the equation is ellipti
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ase; more pre
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e of �nite-dimensional attra
tors.1991 Mathemati
s Subje
t Classi�
ation. 35B41, 35B45, 35K65.Key words and phrases. Degenerate equations of ellipti
-paraboli
 type, global attra
tors,exponential attra
tors. Typeset by AMS-TEX1



It is worth noting that, in spite of a very large number of results 
on
erning the�nite-dimensionality of attra
tors (see, e.g., [BV℄, [T℄ and the referen
es therein),the validity of any �nite-dimensional redu
tion for equations with singularities ordegenerations in the leading terms (su
h as porous media type equations, ellipti
-paraboli
 problems, ...) has been 
ompletely un
lear for a long time. The mainobsta
le here is the la
k of regularity (and of smoothing) near the degenerationpoints, whi
h prevents from using 
lassi
al methods. Furthermore, as it has re
entlybeen established, the problem is far from being just te
hni
al and the degenerations
an lead to essentially new types of attra
tors whi
h are not observable in \regular"equations in bounded domains. Indeed, as shown in [EfZ1℄, the global attra
torof the simplest degenerate analogue of the real Ginzburg-Landau equation in abounded domain 
, namely,�tu = �x(u3) + u� u3; u���
 = 0;is in�nite-dimensional (to the best of our knowledge, this is the �rst example ofa physi
ally relevant dissipative system in a bounded domain with an in�nite-dimensional global attra
tor). Furthermore, the \thi
kness" of this attra
tor (inthe sense of Kolmogorov's "-entropy) is typi
al of Sobolev spa
es embeddings and isof the order of that of 
ompa
t absorbing sets. Thus, this attra
tor is \huge", evenin 
omparison with the in�nite-dimensional global attra
tors of \regular" systemsin unbounded domains for whi
h the typi
al thi
kness is usually of the order ofspa
es of analyti
 fun
tions embeddings, see, e.g., [Z2℄ and the referen
es therein.Nevertheless, a satisfa
tory �nite-dimensional redu
tion still seems possible un-der proper restri
tions on the stru
ture of the equations. Roughly speaking, these
onditions should prevent the energy in
ome near the degenerations (the equationsmust be exponentially stable near all the degeneration points). In parti
ular, this
ondition is violated for the above degenerate Ginzburg-Landau equation, sin
e the\linearization" near u = 0 reads �tu = uand is, obviously, not stable.The validity of the �nite-dimensional redu
tion (in terms of global and expo-nential attra
tors) under su
h additional restri
tions has been veri�ed in [EfZ1℄for porous media equations. Furthermore, analogous results for degenerate doublynonlinear equations of the form(0.2) B(�tu) = �xu� f(u) + g(here, B degenerates) have re
ently been obtained in [EfZ2℄.It is however worth emphasizing that, surprisingly, the semilinear equation (0.1)
onsidered in this arti
le appears to be mu
h more 
ompli
ated than the, at least for-mally, more diÆ
ult fully nonlinear problem (0.2). Indeed, even 
lassi
al solutionsare available for equation (0.2) with a �nite number of \reasonable" degenerationpoints for B, see [EfZ2℄. In 
ontrast to this, only H�older 
ontinuous solutions areto be expe
ted for equation (0.1) with a �nite number of degeneration points and,e.g., in the ellipti
-paraboli
 
ase, dis
ontinuities are even to be expe
ted. Thisla
k of regularity prevents from dire
tly applying the te
hniques devised in [EfZ1℄and [EfZ2℄. In parti
ular, the la
k of information on the time derivative �tu in theregions where u � 0 (in the ellipti
-paraboli
 
ase) is 
ru
ial here.2



Nevertheless, by using some proper 
ombination of the results of [MZ℄ and theso-
alled l-traje
tories method (see [MP℄), we are able to over
ome the above men-tioned diÆ
ulties and justify the �nite-dimensional redu
tion under some naturalassumptions on B, a and f (point or ellipti
-paraboli
 degenerations for B, stan-dard ellipti
ity and non-degenera
y assumptions on a, plus some restri
tions onf yielding that there is no energy in
ome near the degenerations, see Se
tion 1for details). Thus, the main result of this arti
le is the existen
e (in that 
ase) of�nite-dimensional global and exponential attra
tors for the semigroup asso
iatedwith problem (0.1), see Theorem 2.2.This arti
le is organized as follows. In Se
tion 1, we give the main assumptionsand prove the existen
e and uniqueness of solutions. Then, in Se
tion 2, we provethe existen
e of the global attra
tor and, under some additional assumptions onB, we prove, in Se
tion 3, the existen
e of an exponential attra
tor, whi
h yieldsthat the global attra
tor has �nite fra
tal dimension. Finally, we give, in Se
tion4, some remarks and possible extensions.x1 A priori estimates, existen
e and uniqueness of solutions.We 
onsider the following problem in a bounded smooth domain 
 � R3 :(1.1) � �tB(u) = div(a(rxu))� f(u) + g;u���
 = 0; B(u)��t=0 = b0;where u = u(t; x) is an unknown fun
tion, B, a and f are given fun
tions andg 2 L1(
) 
orresponds to given external for
es.We assume that the nonlinearity a derives from a stri
tly 
onvex potential A 2C2(R3), i.e.,(1.2) � 1: a(z) := rzA(z); a(0) = 0;2: �1 � A00(z) � �2; �1; �2 > 0:We also assume that the se
ond nonlinearity f 2 C1(R) is dissipative,(1.3) lim infjzj!1 f(z)z � �0 > 0;and has the following stru
ture:(1.4) f(z) = f0(z) + �(B(z));where the fun
tions f0 and � also belong to C1(R) and f0 is monotone,(1.5) f 00(z) � 0:Finally, the third nonlinearity B is assumed to be smooth enough, namely, B 2C1(R), and monotone, B0(z) � 0, and to satisfy one of the following 
lasses ofassumptions:(Assumptions (A)) � 1: B(0) = 0; B(z) 6= 0; z 6= 0;2: �1jzjp � B0(z) � �2jzjp; �1; �2 > 0;3



or(Assumptions (B)) � 1: B(z) = 0; z � 0; B0(z) > 0; z > 0;2: �1jzjp � B0(z) � �2jzjp; z � 0; �1; �2 > 0;where p � 0 is some �xed number. Thus, when assumptions (A) are satis�ed, wehave a paraboli
 system (1.1) with at most one degeneration point for B at z = 0and, when assumptions (B) are satis�ed, (1.1) is paraboli
 for u > 0 and ellipti
for u � 0.As usual, in order to study the degenerate 
ase, we approximate problem (1.1)by non-degenerate ones,(1.6) � �tB(u) + "�tu = div(a(rxu))� f(u) + g;u���
 = 0; (B(u) + "u)��t=0 = b0;where 0 < " � 1 is a small parameter. Equation (1.6) is a non-degeneratese
ond-order paraboli
 problem whi
h, obviously, has a unique solution u = u" 2W (1;2);q([0; T ℄ � 
), for every q < 1, see, e.g., [LSU℄ (if B and b0 are smoothenough, say, B; b0 of 
lass C2; the existen
e of solutions for less regular initialdata then follows from the a priori estimates obtained below and standard approx-imation arguments). Our aim is now to obtain uniform with respe
t to " a prioriestimates on u and then obtain a solution of (1.1) by passing to the limit "! 0.We start with a uniform dissipative L1-estimate for the solutions of (1.6).Theorem 1.1. Let the above assumptions hold and the initial datum b0 be su
hthat there exists u0 2 L1(
) su
h that(1.7) B(u0) = b0; i.e., b0 2 L1(
), and, when assumptions (B) hold,we assume that, in addition, b0(x) � 0:Then, the solution u = u" of equation (1.6) satis�es the following estimate:(1.8) ku(t)kL1(
) � C(1 + kgkL1(
)) +Q(kb0kL1(
))e��t;where the positive 
onstants C and � and the monotoni
 fun
tion Q are independentof "! 0.Proof. As usual, the proof of estimate (1.8) is based on the 
omparison prin
iple.We �rst derive the upper L1-bound on the solution u. To this end, we note that,due to the dissipativity assumption (1.3), there exists a suÆ
iently large 
onstantK > 0 su
h that(1.9) f(u) � 1=2�0(u�K); u � 0; f(u) � 1=2�0(u+K); u � 0:Let now y = y+(t) be solution of the following �rst-order ODE:(1.10) ddt (B(y) + "y) + 1=2�0(y �K) = kgkL1(
); y(0) = maxfK; supx2
u(0; x)g:Then, y(t) � K and, 
onsequently, y(t) is a supersolution for equation (1.6). The
omparison prin
iple (for the non-degenerate se
ond-order paraboli
 problem (1.6))reads(1.11) u(t; x) � y(t); (t; x) 2 R+ � 
:4



Using now the fa
t that, when both (A) and (B) hold, the fun
tion B(z) growsmonotoni
ally as z ! +1, one 
an easily dedu
e from (1.10) that(1.12) y(t) � C(1 + kgkL1(
)) +Q(kb0kL1(
))e��t; t � 0;for proper positive 
onstants C and � and monotoni
 fun
tion Q whi
h are in-dependent of ". This gives the upper L1-bound on the solution u of the form(1.8).We now 
he
k the lower bound. Arguing analogously, we establish that thesolution y = y�(t) of the following ODE:(1.13) ddt (B(y)+"y)+1=2�0(y+K) = �kgkL1(
); y(0) = minf�K; infx2
u(0; x)g;gives a subsolution of problem (1.8) if K is large enough and we have(1.14) u(t; x) � y(t); (t; x) 2 R+ � 
:Then, when assumptions (A) hold, the situation is 
ompletely analogous to theprevious 
ase and we have the analogue of (1.12) for the solution �y(t), whi
hgives (1.8) and �nishes the proof in that 
ase.Let us now assume that 
onditions (B) hold. In that 
ase, we have B(y(t)) � 0,sin
e y(t) � �K < 0. Moreover, due to (1.7), we have b0 � 0, whi
h, in turn,implies that u(0) � 0 and y(0) = �K. So, (1.13) reads(1.15) " ddty(t) + 1=2�0(y(t) +K) = �kgkL1(
); y(0) = �K;whi
h 
an be solved expli
itly,y(t) = �K � kgkL1(
) �1� e��02" t� ; t � 0:Thus, y(t) � �K � kgkL1(
); 8t � 0; and estimate (1.8) is also veri�ed underassumptions (B). This �nishes the proof of Theorem 1.1.Our next aim is to obtain uniform estimates on the derivatives of u. We statethem in three simple Lemmata below.Lemma 1.1. Let the assumptions of Theorem 1.1 hold. Then, the solution u of(1.6) satis�es(1.16) Z t+1t krxu(s)k2L2(
) ds � C(1 + kgkL1(
)) +Q(kb0kL1(
))e��t;where the positive 
onstants C and � and the monotoni
 fun
tion Q are independentof " and t.Proof. Multiplying equation (1.6) by u and integrating over [t; t+ 1℄� 
, we have(1.17) (B(u(t+ 1))� B(u(t)); 1)L2(
) + "=2[ku(t+ 1)k2L2(
) � ku(t)k2L2(
)℄++ Z t+1t (a(rxu(s));rxu(s))L2(
) ds == Z t+1t [(g; u(s))L2(
) � (f(u(s)); u(s))L2(
)℄ ds;where B(v) := R v0 B0(u)u du. Using now the L1-estimates for u obtained in theprevious theorem and the fa
t that a = ruA, for a stri
tly 
onvex potential A (seeassumptions (1.2)), we obtain (1.16) and �nish the proof of the lemma.The next lemma gives a gradient-like energy inequality.5



Lemma 1.2. Let the above assumptions hold. Then, the solution u of problem(1.6) satis�es the following estimates:(1.18) Z t+1t [(B0(u(s))�tu(s); �tu(s))L2(
) + "=2k�tu(s)k2L2(
)℄ ds+krxu(t)k2L2(
) � t+ 1t �C(1 + kgk2L1(
)) +Q(kb0kL1(
))e��t� ; t > 0; � > 0;where all the 
onstants and the monotoni
 fun
tion Q are independent of ". If, inaddition, u(0) 2W 1;20 (
), then(1.19) Z 10 [(B0(u(s))�tu(s); �tu(s))L2(
) + "k�tu(s)k2L2(
)℄ ds+ krxu(t)k2L2(
) �� C �1 + kgk2L1(
) +Q(kb0kL1(
)) + krxu(0)k2L2(
)� :Proof. Multiplying equation (1.6) by (t�T )�tu and integrating over [T; T +2℄�
,we have(1.20) Z T+2T [(t� T )(B0(u(t))�tu(t); �tu(t))L2(
) + "=2k�tu(t)k2L2(
)℄ dt++ (t� T )krxu(t)k2L2(
) + (t� T )(F (u(t)); 1)L2(
) �� C Z T+2T [krxu(t)k2L2(
) + (F (u(t)); 1)L2(
)℄ dt+ Ckgk2L1(
);for t 2 [T; T + 2℄. This internal estimate, together with the dissipative estimatesfor ku(t)kL1(
) and kukL2([T;T+1℄;W 1;2(
)) obtained in Theorem 1.1 and Lemma1.1, respe
tively, give the desired estimate (1.18). Estimate (1.19) 
an be provenanalogously, but is mu
h simpler, sin
e we only need to multiply the equation by�tu. This �nishes the proof of Lemma 1.2.In the third lemma, we state the W 2;2-regularity result.Lemma 1.3. Let the above assumptions hold. Then, the solution u(t) of problem(1.6) satis�es the following estimate:(1.21) Z t+1t ku(s)k2W 2;2(
) ds � t+ 1t �C(1 + kgk2L1(
)) +Q(kb0kL1(
))e��t� ;t > 0, where C, � > 0 and Q are independent of ".Proof. We rewrite (1.6) as an ellipti
 boundary value problem for every �xed t,(1.22) div(a(rxu(t))) = �tB(u(t))+ "�tu(t)+ f(u(t))� g := Hu(t); u(t)���
 = 0:Then, a

ording to the H2-L2-regularity result for se
ond-order quasilinear ellipti
equations (see, e.g., [Mi℄), we have(1.23) ku(t)kW 2;2(
) � CkHu(t)kL2(
);where the 
onstant C is independent of u. Using now estimates (1.8) and (1.18) toestimate the L2-norm of Hu, we obtain (1.21) and �nish the proof of the lemma.Finally, we formulate an L1-Lips
hitz 
ontinuity result based on the Kato in-equality. 6



Lemma 1.4. Let the above assumptions hold and let u1(t) and u2(t) be two solu-tions of problem (1.6). Then, the following estimates hold:(1.24) kB(u1(t))� B(u2(t))kL1(
) + "ku1(t)� u2(t)kL1(
) �� CeKt �kB(u1(0))� B(u2(0))kL1(
) + "ku1(0)� u2(0)kL1(
)� ;where the 
onstants C and K depend only on the L1-norms of u1 and u2.Proof. We set v(t) = u1(t)� u2(t). This fun
tion solves(1.25) �t[B(u1(t))� B(u2(t)) + "v(t)℄ = div[a(rxu1(t))� a(rxu2(t))℄�� [f0(u1(t))� f0(u2(t))℄� [�(B(u1(t))� �(B(u2(t))℄:Multiplying this equation by sgn v(t) = sgn(B(u1(t)) � B(u2(t))) and using theKato inequality (this multipli
ation 
an be easily justi�ed in a standard way, sin
e(1.6) is non-degenerate and the solutions u1 and u2 are suÆ
iently regular), wehave(1.26) �t[kB(u1(t))� B(u2(t))kL1(
) + "kv(t)kL1(
)℄++ (f0(u1(t))� f0(u2(t)); sgn(u1(t))� sgn(u2(t)))L2(
) �� (�(B(u1(t)))� �(B(u2(t))); sgn(B(u1(t))� B(u2(t))))L2(
):Using now assumptions (1.4) and (1.5) for the fun
tions f0 and �, together withthe L1-bounds for u1 and u2, we dedu
e that�t[kB(u1(t))� B(u2(t))kL1(
) + "kv(t)kL1(
)℄ � KkB(u1(t))� B(u2(t))kL1(
);whi
h, together with the Gronwall inequality, give (1.24) and �nish the proof of thelemma.We are now able to formulate the solvability result for the limit degenerateproblem (1.1), whi
h 
an be 
onsidered as the main result of this se
tion.Theorem 1.2. Let the assumptions of Theorem 1.1 hold. Then, for every b0 2L1(
), b0 � 0, problem (1.1) has at least one solution u(t) belonging to the follow-ing 
lass:(1.27) u 2 L1([0; T ℄� 
); B(u) 2 C([0; T ℄; L1(
));u 2 L1([0; T ℄;W 1;20 (
)) \ L2([t; T ℄;W 2;2(
));�tR(u) 2 L2([t; T ℄� 
); t > 0; R(v) := Z v0 pB0(u) du:Furthermore, this solution satis�es all the estimates obtained in Lemmata 1.1{1.3 and Theorem 1.1 and 
an be obtained in a unique way as the limit of the
orresponding solutions u" of the regularized problems (1.6) as "! 0. Finally, forevery two su
h solutions u1(t) and u2(t) (
orresponding to di�erent initial data b10and b20), the following global L1-Lips
hitz 
ontinuity holds:(1.28) kB(u1(t))� B(u2(t))kL1(
) �� CeKtkB(u1(0))�B(u2(0))kL1(
) = CeKtkb10 � b20kL1(
);7



where the 
onstants C and K only depend on the L1-norms of b10 and b20.Proof. Let un(t) := u"n(t) be a sequen
e of solutions of the approximate problems(1.6) with "n ! 0 and with the same initial datum b0. Then, due to Theorem 1.1and Lemmata 1.1{1.3, we 
an assume, without loss of generality, that(1.29) un ! u weakly-� inL1([0; T ℄� 
) \ L1([t; T ℄;W 1;20 (
)) \ L2([t; T ℄;W 2;2(
)):The main problem is, however, that, when assumptions (B) hold, we do not 
ontrolthe time derivative �tu in the region u � 0 and, 
onsequently, we 
annot dire
tlyextra
t the strong 
onvergen
e un ! u in a proper spa
e from (1.29) (whi
h isessential for the passage to the limit n ! 1 in the nonlinear terms of equation(1.6)). In order to over
ome this diÆ
ulty, we use monotoni
ity arguments. We�rst note that Lemma 1.2 allows to 
ontrol the L2-norm of the time derivative ofthe fun
tions  n(t) := B(un(t)) on every interval [t; T ℄. Furthermore, its x-gradient
an also be easily 
ontrolled, sin
e krxun(t)kL2(
) is uniformly bounded on [t; T ℄.Thus, the sequen
e  n is pre
ompa
t in the strong topology of L2([t; T ℄� 
) and,without loss of generality, we 
an assume, in addition, that(1.30)  n !  strongly in C([t; T ℄; L2(
)):Let us prove that(1.31)  = B(u):To this end, we use the standard fa
t that the operator z 7! B(z) is maximalmonotone in L2([t; T ℄ � 
), sin
e B0(z) � 0 (being pedants, we should �rst 
uto� the fun
tion B for large z in order to make it well-de�ned as an operator inL2([t; T ℄� 
), but, sin
e we 
ontrol the L1-norm of the solutions, this pro
edureis not essential and is omitted). Thus, in order to verify (1.31), we only need to
he
k that(1.32) ( �B(w); u� w)L2([t;T ℄�
) � 0; 8w 2 L2([t; T ℄� 
);see, e.g., [Li℄. There remains to note that the strong 
onvergen
e (1.30) allowsto obtain (1.32) by a dire
t passage to the limit n ! 1 in the following obviousinequality:(1.33) (B(un)�B(w); un � w)L2([t;T ℄�
) = ( n � B(w); un � w)L2([t;T ℄�
) � 0:Thus, (1.31) is veri�ed and, 
onsequently,B(un)! B(u) strongly in C([t; T ℄; L2(
));whi
h, in turn, implies that(1.34) �tB(un)! �tB(u) weakly in L2([t; T ℄� 
);�(B(un))! �(B(u)) strongly in C([t; T ℄; L2(
)):Moreover, arguing analogously, we have(1.35) R(un)! R(u) strongly in C([t; T ℄; L2(
)):Consequently, �tR(un) =pB0(un)�tun ! �tR(u) weakly in L2([t; T ℄� 
) and(1.36) k�tR(u)kL2([t;T ℄�
) � lim infn!1 k�tR(un)kL2([t;T ℄�
):In order to pass to the limit in the right-hand side of (1.6), we need the followinglemma. 8



Lemma 1.5. Let the above assumptions hold and let un and u be as above. Then,(1.37) �tB(u) = �tR(u) �pB0(u)and, for every t > 0,(1.38) limn!1(�tB(un); un)L2([t;T ℄�
) = (�tB(u); u)L2([t;T ℄�
):Proof of the lemma. Sin
e �tun is regular enough, we have(1.39) �tB(un) = �tR(un) �pB0(un):We now re
all that the weak 
onvergen
es �tB(un) ! �tB(u) and �tR(un) !�tR(u) have already been established. Thus, (1.37) will be proven provided thatwe 
he
k that pB0(un) ! pB0(u) strongly in L2([t; T ℄� 
). Let us �rst assumethat assumptions (A) hold. Then, the inverse fun
tion v 7! B�1(v) exists and iseven H�older 
ontinuous. Consequenlty, the strong 
onvergen
e of B(un) to B(u)implies the strong 
onvergen
e of un to u and, therefore, pB0(un) also 
onvergesstrongly to pB0(u), whi
h, in turn, implies (1.37). Let now assumptions (B) besatis�ed. Then, sin
e B(u) � 0 for u � 0 and is stri
tly monotone for u > 0, we havea H�older 
ontinuous partial inverse fun
tion v 7! T (v) su
h that T (B(u)) = u+ :=maxfu; 0g. Thus, in that 
ase, the strong 
onvergen
e B(un) to B(u) only impliesthat u+n 
onverges strongly to u+. Nevertheless, sin
e now B0(u) = B0(u+), this
onvergen
e is suÆ
ient to 
on
lude that pB0(un) 
onverges strongly to pB0(u)and �nish the proof of equality (1.37) for both assumptions (A) and (B).In order to 
he
k (1.38), it is now suÆ
ient to rewrite it in the formlimn!1(�tR(un);pB0(un) � un)L2([t;T ℄�
) = (�tR(u);pB0(u) � u)L2([t;T ℄�
)and note that, analogously to the arguments given above, pB0(un) � un 
onvergesstrongly to pB0(u) � u. This �nishes the proof of Lemma 1.5.It is now not diÆ
ult to �nish the passage to the limit n!1 in equations (1.6)for un and verify that u solves indeed the limit degenerate problem (1.1). To thisend, we use the standard fa
t that the quasilinear di�erential operator(1.40) A(u) := � div(a(rxu)) + f0(u)is maximal monotone in L2([t; T ℄;W 1;20 (
)) (we re
all that f0 is monotone). Then,we rewrite equation (1.6) in the form(1.41) A(un) = �n := g � �tB(un)� �(B(un)):A

ording to the above 
onvergen
es, we haverxun !rxu; �n ! � := g � �tB(u)� �(B(u)) weakly in L2([t; T ℄� 
):Moreover, using (1.34) and (1.38), we see thatlimn!1(�n; un)L2([t;T ℄�
) = (�; u)L2([t;T ℄�
);9



whi
h, by monotoni
ity arguments, implies that A(u) = �. Thus, the fun
tion usolves indeed the limit degenerate problem (1.1).Passing to the limit n!1 in the estimates of Theorem 1.1 and Lemmata 1.1{1.4, it follows that these estimates hold for the solution of the limit problem aswell.Thus, there only remains to 
he
k the uniqueness and the fa
t that the limitsolution u is su
h that B(u) 2 C([0; T ℄; L1(
)). To this end, we take the di�eren
ebetween equations (1.6) for un and um, respe
tively, multiply the resulting equationby sgn(un � um), use the fa
t that un(0) = um(0) and argue as in Lemma 1.4 toinfer(1.42) �tkB(un(t))� B(um(t))kL1(
) � KkB(un(t))�B(um(t))kL1(
)++ C("n + "m)(k�tun(t)kL1(
) + k�tum(t)kL1(
)):Assume �rst that b0 is 
hosen in su
h a way that, in addition, u(0) 2 W 1;20 (
).Then, a

ording to estimates (1.18) and (1.19), we 
an 
ontrol the derivatives inthe right-hand side of (1.42) and, using the Gronwall inequality, dedu
e that(1.43) kB(un(t))� B(um(t))kL1(
) � CeKt("n + "m)1=2:Thus, B(un) is a Cau
hy sequen
e in C([t; T ℄; L1(
)) and, 
onsequently, B(u) =lim"!1B(u") belongs to C([t; T ℄; L1(
)) and is determined in a unique way by thesolutions of the approximate equations (1.6). In the general 
ase, i.e., b0 2 L1(
),b0 � 0, it is suÆ
ient to approximate u(0) by smooth initial data un(0) in L1(
)and pass to the limit n!1. This yields that B(u) 2 C([0; T ℄; L1(
)) for generalinitial data as well and �nishes the proof of the theorem.Remark 1.1.(i) It is worth emphasizing that we have proven the uniqueness of a solution u only inthe sub
lass of (1.27) of the solutions whi
h 
an be obtained by passing to the limit"! 0 in the non-degenerate approximate equations. The uniqueness of a solutionin the whole 
lass (1.27) is mu
h more deli
ate, sin
e, for degenerate equations, thevalidity of the Kato inequality is nontrivial and must be veri�ed. Sin
e, everywherein the sequel, we will only 
onsider the solutions of equation (1.1) whi
h 
an beobtained by the above limit pro
edure, this uniqueness is not important for whatfollows and we refer the reader to [O℄ for a more detailed exposition.(ii) We also mention that we only 
onsider initial data b0 2 L1(
) in order toex
lude from the very beginning the "pathologi
al" singular solutions whi
h mayappear in doubly nonlinear equations with less regular initial data, see, e.g., [D2℄and [EfZ2℄. Moreover, it is worth noting that our assumption B0(z) � zp is ne
es-sary only near the degeneration point z = 0 and should not be 
onsidered as somegrowth assumption as z !1, for whi
h we only need B0(z) � C > 0.We 
on
lude this se
tion by some kind of additional regularity for the timederivative �tu whi
h will be 
ru
ial for our theory.Proposition 1.1. Let the above assumptions hold and let u(t) be a solution of(1.1) as 
onstru
ted in the previous theorem. Assume also that the nonlinearity Bbelongs to C2(R) and satis�es the additional 
ondition(1.44) jB00(z)j4=3 � CB0(z); z 2 I; 8I � R bounded:10



Then, there exists a positive 
onstant � , 0 < � < 1, depending only on the L1-normof the initial datum b0, su
h that, for every time interval [T; T + 1℄, there existsT0 2 [T; T + 1℄ (depending on the solution u) su
h that(1.45) k�tR(u(t))k2L2(
) + Z T0+�T0 k�trxu(s)k2L2(
) ds � Q(kb0kL1(
));for all t 2 [T0; T0 + � ℄, where the monotoni
 fun
tion Q is also independent of the
on
rete 
hoi
e of u.Proof. We only give below the formal derivation of estimate (1.44), whi
h 
an bejusti�ed in a standard way by 
onsidering the approximate solutions of (1.6) andpassing to the limit "! 0.We �rst note that, a

ording to Lemma 1.2, we haveZ T+1T (B0(u(s))�tu(s); �tu(s))L2(
) ds � Q(kb0kL1(
)); T � 1=2:Consequently, (B0(u(t))�tu(t); �tu(t))L2(
) is �nite for almost all t and, for everytime interval [T; T + 1℄, there exists at least one point T0 = T0(u; T ) 2 [T; T + 1℄su
h that(1.46) (B0(u(T0))�tu(T0); �tu(T0))L2(
) � 2Q(kb0kL1(
)):Sin
e equation (1.1) is autonomous, then, without loss of generality, we may assumethat T0 = 0.We now di�erentiate equation (1.1) with respe
t to t and set v = �tu. Then, wehaveB0(u(t))�tv(t) +B00(u(t))jv(t)j2 = div(a0(rxu(t))rxv(t))�� f 00(u(t))v(t)� �0(B(u(t))B0(u(t))v(t):Multiplying this equation by v, integrating with respe
t to x 2 
 and using thefa
t that a and f are monotoni
, we have(1.47) �t(B0(u(t))v(t); v(t))L2(
) + 2�krxv(t)k2L2(
) �� C(B0(u(t))v(t); v(t))L2(
) + (jB00(u(t))j; jv(t)j3)L2(
);for some positive 
onstant �. Let Iu(t) := (B0(u(t))v(t); v(t))L2(
). Then, usingTheorem 1.1, assumption (1.44) and the Sobolev embedding W 1;2(
) � L6(
), we
an estimate the last term in the right-hand side of (1.47) as follows:(jB00(u)j; jvj3)L2(
) = (jB00(u)j � jvj3=2; jvj3=2)L2(
) �� (jB00(u)j4=3; jvj2)3=4L2(
)kvk3=2L6(
) �� C(B0(u); jvj2)3=4L2(
)krxvk3=2L2(
) � �krxvk2L2(
) + CI3u;where C = C(kb0kL1(
)). Thus, (1.47) reads(1.48) �tIu(t) + �krxv(t)k2L2(
) � C(Iu(t) + Iu(t)3):11



Moreover, due to (1.46) and owing to the fa
t that T0 = 0, we have(1.49) 0 � Iu(0) � 2Q(kb0kL1(
)):We 
an note that the di�erential inequality (1.48) is not strong enough in orderto obtain global in time estimates for Iu(t). Nevertheless, it is suÆ
ient for therequired lo
al in time ones. Indeed, due to the 
omparison prin
iple, we have(1.50) Iu(t) � y(t);where y solves(1.51) y0 = C(y + y3); y(0) = 2Q(kb0kL1(
)):Therefore, the lo
al solvability result for the ODE (1.51) gives the existen
e of atime interval [0; � ℄, with � > 0 only depending on kb0kL1(
), su
h that(1.52) Iu(t) � y(t) � Q1(kb0kL1(
));where Q1 is also independent of the 
on
rete 
hoi
e of u. Integrating now (1.48)with respe
t to t 2 [0; � ℄ and using (1.52), we dedu
e the required estimate for theintegral norm of rxv and �nish the proof of Proposition 1.1.Remark 1.2. Obviously, assumption (1.44) is automati
ally satis�ed in the non-degenerate 
ase (whi
h 
orresponds to assumptions (A) and p = 0). However, inthe degenerate 
ase p > 0, this gives rather essential restri
tions on the regularityof the fun
tion B near the degeneration point. In parti
ular, it is not diÆ
ult toverify that (1.44) implies that p � 4 if p > 0. This assumption will be satis�ed,e.g., if the fun
tion B is of 
lass C5 near the degeneration point z = 0.x2 Semigroups and attra
tors.In this se
tion, we show that the semigroup asso
iated with the degenerate equa-tion (1.1) possesses the global attra
tor in an appropriate phase spa
e and formulatethe main result of the arti
le, namely, the existen
e of an exponential attra
tor forthis semigroup, whi
h will be proven in the next se
tion.We �rst de�ne the phase spa
e � for problem (1.1) as follows:(2.1) � := fb0 2 L1(
); and, when assumptions (B) hold,b0(x) � 0; x 2 
; alsogand we de�ne the semigroup S(t) asso
iated with equation (1.1) by the followingnatural expression:(2.2) S(t)b0 := B(u(t)); where u(t) solves (1.1) with B(u(0)) = b0.Remark 2.1. We see that, in 
ontrast to the usual situation, the semigroup S(t)does not map u(0) onto u(t), but B(u(0)) onto B(u(t)). This naturally re
e
ts thefa
t that the solution u(t) is uniquely de�ned by B(u(0)) and that the equationmay be
ome ellipti
 in some regions; when assumptions (A) hold, we 
an a
tually
onsider the usual framework. We also emphasize on
e more that, by a "solution"12



of equation (1.1), we always mean a solution 
onstru
ted in Theorem 1.2 by thelimit pro
edure, no matter whether or not problem (1.1) has other "pathologi
al"solutions whi
h are automati
ally dropped out of our analysis.We now re
all the de�nition of the global attra
tor for the semigroup S(t)adapted to our framework.De�nition 2.1. A set A � � is the global attra
tor for the semigroup S(t) asso-
iated with the degenerate problem (1.1) if1) it is 
ompa
t in L1(
) and bounded in L1(
);2) it is stri
tly invariant, i.e., S(t)A = A; 8t � 0;3) it attra
ts the images of all bounded (in the L1-topology) subsets of � in thetopology of L1(
), i.e., for every bounded subset B of � and every neighborhoodO(A) of the set A in L1(
), there exists T = T (B;A) su
h that(2.3) S(t)B � O(A); for all t � T :Remark 2.2.(i) A

ording to De�nition 2.1, the attra
tor A attra
ts the bounded subsets of� = L1(
) in the weaker topology of L1(
) and, thus, 
oin
ides with the so-
alled(L1(
); L1(
))-attra
tor in the terminology of Babin and Vishik, see [BV℄. We alsonote that, sin
e the traje
tories of S(t) are bounded in L1(
), the spa
e L1(
)in the formulation of the attra
tion property 
an be repla
ed by Lp(
), for every�nite p. However, the 
ase p =1, whi
h 
oin
ides with the standard de�nition ofthe global attra
tor, is more deli
ate and requires estimates on the solutions of thedegenerate system (1.1) in H�older spa
es whi
h, to the best of our knowledge, arenot known for the ellipti
-paraboli
 problem when assumptions (B) hold.(ii) The attra
tion property 
an also be formulated via the Hausdor� semi-distan
ebetween subsets of �. More pre
isely, let(2.4) distV (X;Y ) := supx2X infy2Y kx� ykVbe the non-symmetri
 Hausdor� distan
e between X and Y in a Bana
h spa
e V .Then, the attra
tion property reads: for every bounded subset B � �,(2.5) limt!1 distL1(
)(S(t)B;A) = 0:The next theorem gives the existen
e of the above global attra
tor for the semi-group S(t) asso
iated with the degenerate problem (1.1).Theorem 2.1. Let the assumptions of Theorem 1.2 hold. Then, the semigroupS(t) de�ned by (2.2) possesses the global attra
tor A in the sense of De�nition2.1 whi
h is bounded in L1(
) \ W 1;2(
) and possesses the following standarddes
ription:(2.6) A = B(K��t=0);where K � L1(R � 
) is the set of all solutions of (1.1) whi
h are de�ned for allt 2 R and are globally bounded.Proof. A

ording to standard results on the existen
e of the global attra
tor (see,e.g, [BV℄ and [T℄), we need to 
he
k that13



1) the semigroup S(t) is 
ontinuous in the L1-topology on every bounded subsetof �;2) the semigroup S(t) possesses a bounded in L1(
) and 
ompa
t in L1(
)absorbing set.The �rst assumption is an immediate 
orollary of the global Lips
hitz 
ontinuityof the semigroup S(t), see estimate (1.28). Moreover, it follows from estimates (1.8)and (1.18) that the R-ball in the spa
e L1(
) \W 1;2(
) is an absorbing set forthe semigroup S(t) if R is large enough. Sin
e this ball is, obviously, 
ompa
t inthe topology of L1(
), the existen
e of the global attra
tor A follows, see [BV℄ and[T℄. Its boundedness is now a 
onsequen
e of the fa
t that the global attra
tor is
ontained in any absorbing set and des
ription (2.6) follows from the standard de-s
ription of the global attra
tor via bounded 
omplete traje
tories of the asso
iatedsemigroup, see [BV℄. This �nishes the proof of Theorem 2.1.Our next task is to establish the existen
e of an exponential attra
tor for thesemigroup S(t) asso
iated with equation (1.1), whi
h implies, in parti
ular, the�nite-dimensionality of the global attra
tor 
onstru
ted in the previous theorem.We �rst give the de�nition of an exponential attra
tor adapted to our framework.De�nition 2.2. A set M � � is an exponential attra
tor for the semigroup S(t)asso
iated with problem (1.1) if the following 
onditions are satis�ed:1) it is bounded in � and 
ompa
t in L1(
);2) it is semi-invariant, S(t)M�M; 8t � 0;3) it has �nite fra
tal dimension in L1(
),dimf (M; L1(
)) � C <1;4) it attra
ts exponentially the images of all bounded subsets of �, i.e., there ex-ists a positive 
onstant � and a monotoni
 fun
tion Q su
h that, for every boundedsubset B of the phase spa
e �, there holds(2.7) distL1(
)(S(t)B;M) � Q(kBkL1(
))e��t;for all t � 0.The following theorem 
an be 
onsidered as the main result of this arti
le.Theorem 2.2. Let the assumptions of Theorem 1.1 hold and let, in addition, thenonlinearity B belong to C2(R) and satisfy assumption (1.44). Then, the semigroupS(t) asso
iated with the degenerate problem (1.1) possesses a �nite-dimensionalexponential attra
torM in the sense of De�nition 2.2 whi
h is bounded in L1(
)\W 1;2(
).The proof of this theorem will be 
ompleted in the next se
tion. In the remainingof this se
tion, we formulate an abstra
t result on the existen
e of an exponentialattra
tor whi
h is 
lose to that given in [MZ℄ (see also [EfMZ℄) and is the mainte
hni
al tool to prove Theorem 2.2.Proposition 2.1. Let H1 and H, H1 � H, be two Bana
h spa
es su
h that theembedding H1 � H is 
ompa
t and let C be a 
losed bounded subset of H. Assumealso that there exists a map S : C ! C whi
h satis�es the following properties:1) it is globally Lips
hitz 
ontinuous on C, i.e., for every 
1; 
2 2 C, there holds(2.8) kS
1 � S
2kH � Lk
1 � 
2kH;14



where the Lips
hitz 
onstant L is independent of the 
hoi
e of 
1 and 
2 belongingto C;2) there exists an integer N0 su
h that, for every 
 2 C, there exists n = n(
) 2f0; � � � ; N0 � 1g su
h that, for every 
1 2 C, there holds(2.9) kS
1 � S
2kH1 � Kk
1 � 
2kH; 
2 := S(n)
;where the dis
rete semigroup generated on C by the iterations of S is denoted byfS(l), l 2 Ng and the 
onstant K is independent of 
 and 
1.Then, the dis
rete semigroup S(l) possesses an exponential attra
tor M on C,i.e., there exists a set M� C whi
h satis�es the following properties:1) it is a 
ompa
t subset of C;2) it is semi-invariant, S(l)M�M; 8l 2 N;3) it has �nite fra
tal dimension in H,(2.10) dimf (M;H) � C1;4) it attra
ts exponentially the images of C in the metri
 of H,(2.11) distH(S(l)C;M) � C2e��l; 8l 2 N :Moreover, the positive 
onstants C1, C2 and � 
an be expressed expli
itly in termsof K, L, N0 and some qualitative 
hara
teristi
s of the embedding H1 � H.The proof of this proposition repeats word by word that given in [MZ℄ and istherefore omitted. x3 Proof of the main result.In this se
tion, we 
omplete the proof of Theorem 2.2 and establish the existen
eof a �nite-dimensional exponential attra
tor for the semigroup S(t) asso
iated withthe degenerate equation (1.1). To this end, we need the following result.Proposition 3.1. Let the assumptions of Theorem 2.2 hold, let u be a solutionof problem (1.1) and let [T0; T0 + �℄ belong to one of the regularity intervals foundin Proposition 1.1. The latter means that, on this time interval, we 
an 
ontrolthe L2-norm of �trxu by (1.44). Then, for every other solution �u(t), t � T0, ofequation (1.1), the following estimate holds:(3.1) Z T0+�T0+�=2 ku(t)� �u(t)k2W 1;2(
) dt � CkB(u(T0))� B(�u(T0))k2L1(
);where the 
onstant C only depends on � and the L1-norms of u and �u and isindependent of the 
on
rete 
hoi
e of u and �u.Proof. As in Proposition 1.1, we only give below the formal derivation of estimate(3.1), whi
h 
an be easily justi�ed by using the approximate equations (1.6).We set v(t) := �u(t)� u(t). Then, this fun
tion obviously solves(3.2) �t[B(�u(t))�B(u(t))℄ = div[a(rx�u(t))� a(rxu(t))℄� [f(�u(t))� f(u(t))℄:15



Multiplying this equation by v(t), integrating with respe
t to x 2 
 and using themonotoni
ity of a and assumption (1.4), we have(3.3) (�t(B(�u(t))�B(u(t))); v(t))L2(
) + 1=2(a(rx�u)� a(rxu);rxv)L2(
)++ 2�krxv(t)k2L2(
) � C(jB(�u(t))� B(u(t))j; jv(t)j)L2(
); � > 0:The right-hand side of (3.3) 
an be estimated as follows:(3.4) (jB(�u(t))�B(u(t))j; jv(t)j)L2(
) == (jB(�u(t))�B(u(t))j1=2; jB(�u(t))� B(u(t))j1=2 � jv(t)j)L2(
) �� CkB(�u(t))� B(u(t))k1=2L1(
)kv(t)k3=2L3(
) �� �krxv(t)k2L2(
) + C1kB(�u(t))�B(u(t))k2L1(
):In order to transform the left-hand side of (3.3), we use the following identity:(3.5) �t[B(�u(t))� B(u(t))℄ � v(t) = �tIu;�u(t) + �tu(t) � Ju;�u(t);where(3.6) Iu;�u(t) := G(u(t))�G(�u(t)) +B(�u(t))v(t);Ju;�u(t) := B(�u(t))� B(u(t))�B0(u(t))v(t);with G(v) := R v0 B(u) du. Inequality (3.3) reads, in view of (3.4) and (3.5),(3.7) �t(Iu;�u(t); 1)L2(
) + �krxv(t)k2L2(
) �� CkB(�u(t))� B(u(t))k2L1(
) + C(j�tu(t)j; jJu;�u(t)j)L2(
):In order to estimate the terms I and J , we need the following lemma.Lemma 3.1. Let the above assumptions hold. Then, the fun
tions Iu;�u and Ju;�usatisfy the following estimates:(3.8) 8><>: 1) Iu;�u � 0;2) jJu;�uj � CI1=2u;�u � ju� �uj;3) Iu;�u � CjB(u)�B(�u)j1=2 � ju� �uj3=2;where juj+ j�uj � R and the 
onstant C = CR depends on R, but is independent ofu; �u 2 R.Proof. Sin
e G is of 
lass C2 and G00(z) = B0(z) � 0, we have(3.9) Iu;�u = Z 10 [B(su+ (1� s)�u)�B(�u)℄ ds � (u� �u) == Z 10 Z 10 B0(s1(su+ (1� s)�u) + s1�u) ds1 ds � ju� �uj2 � 0:16



Thus, (3.8)1 is veri�ed. Let us now 
he
k (3.8)2 and (3.8)3. Let �rst assumptions(A) for the nonlinearity B be satis�ed. Then, sin
e B0(u) � jujp, estimate (3.9)
an be rewritten as follows:(3.10) C2(B0(u) + B0(�u)) � ju� �uj2 � Iu;�u �� C(jujp + j�ujp)j � ju� �uj2 � C1(B0(u) + B0(�u)) � ju� �uj2;see [Z1℄ for details. Analogously, using, in addition, (1.44), we 
an estimate Ju;�uas follows:(3.11) jJu;�uj = Z 10 Z 10 jB00(s1(su+ (1� s)�u) + s1�u)j ds1 ds � ju� �uj2 �� C Z 10 Z 10 jB0(s1(su+(1�s)�u)+s1�u)j3=4 ds1 ds � C1(B0(u)+B0(�u))3=4 �ju��uj2and, 
on
erning the di�eren
e B(u)� B(�u), we have(3.12) jB(u)� B(�u)j � C(B0(u) + B0(�u)) � ju� �uj:Sin
e 1=2 < 3=4, estimates (3.10){(3.12), together with the fa
t that juj+ j�uj � R,imply estimates (3.8)2 and (3.8)3. Thus, when assumptions (A) hold, Lemma 3.1is proven.Let us now 
onsider assumptions (B). To this end, we note that, if u > 0 and�u > 0, we have exa
tly the same situation as with assumptions (A), so that allthe estimates of the lemma are already veri�ed. The 
ase u < 0 and �u < 0 is alsoobvious sin
e, in that 
ase, both sides of inequalities (3.8) are identi
ally equal tozero. So, we only need to 
onsider the following two 
ases:1) u > 0 and �u < 0;2) u < 0 and �u > 0.Let us 
onsider 
ase 1). Then, (3.8) reads(3.13) � 2) B0(u)(u� �u)� B(u) � G(u)1=2 � ju� �uj;3) G(u) � B(u)1=2 � ju� �uj3=2:We note that, in that 
ase, ju� �uj � juj. Moreover, sin
e B0(u) � jujp, p � 0, then,G(u) � CB(u)1=2u3=2 near u = 0, whi
h implies (3.13)3. In order to verify (3.13)2,it suÆ
es to note that (1.44) implies(3.14) B0(u) � C[B0(u)℄3=4 � juj; G(u) � CB0(u) � juj2:This inequality, together with the fa
t that ju � �uj � juj, imply (3.13)2. Thus,Lemma 3.1 is also veri�ed in 
ase 1).Let us now 
onsider 
ase 2). In that 
ase, (3.8) reads(3.15) � 2) B(�u) � C[B(�u)(�u� u)�G(�u)℄1=2 � j�u� uj;3) B(�u)(�u� u)�G(�u) � B(�u)1=2 � j�u� uj3=2:Sin
e B0(�u) � �up and �u� u � �u, we have(3.16) B(�u)(�u� u)�G(�u) � B(�u)�u�G(u) == Z 10 sB0(s�u) ds � u2 � C�up+2 � C1G(�u):17



Moreover, analogously to (3.14),(3.17) C1[B0(�u)℄3=4�u2 � B(�u) � C2[B0(�u)℄3=4�u2;C3B0(�u)�u � B(�u) � C4B0(�u)�u; C5B0(�u)�u2 � G(�u) � C6B0(�u)�u2:Estimates (3.16) and (3.17) imply (3.15). Thus, estimates (3.8) are veri�ed in all
ases and Lemma 3.1 is proven.It is now not diÆ
ult to �nish the proof of the proposition. To this end, wemultiply equation (3.7) by (t � T0)4 and set Zu;�u(t) := (t � T0)4(Iu;�u(t); 1)L2(
).Then, we have(3.18) �tZu;�u(t) + �(t� T0)4krxv(t)k2L2(
) � 4((t� T0)3; Iu;�u(t))L2(
)++ (j�tu(t)j; (t� T0)4jJu;�u(t)j)L2(
) + (t� T0)4kB(u(t))�B(�u(t))k2L1(
):Using (3.8)3, we 
an estimate the �rst term in the right-hand side of (3.18) asfollows:(3.19) ((t� T0)3; Iu;�u)L2(
) � C(jB(u)� B(�u)j1=2; (t� T0)3jvj3=2)L2(
) �� C1kB(u)� B(�u)k1=2L1(
)(t� T0)3kvk3=2L3(
) �� C2kB(u)� B(�u)k2L1(
) + �=4(t� T0)4krxvk2L2(
):Analogously, using (3.8)2 and the embedding W 1;2(
) � L6(
), we 
an estimatethe se
ond term in the right-hand side of (3.18),(3.20) (j�tuj; (t� T0)4Ju;�u)L2(
) � C(j�tuj; (t� T0)4Iu;�u � jvj)L2(
) �� Ck�tukL6(
)[(t� T0)4(Iu;�u; 1)L2(
)℄1=2(t� T0)2kvkL3(
) �� Ck�trxuk2L2(
)Zu;�u + �=4(t� T0)4krxvk2L2(
):Inserting these estimates into (3.18), we �nally have(3.21) �tZu;�u(t)� Ck�trxu(t)k2L2(
)Zu;�u(t) + �=2(t� T0)4krxv(t)k2L2(
) �� C 0(1 + (t� T0)4)kB(u(t))�B(�u(t))k2L1(
):We re
all that, due to our assumptions, the time interval [T0; T0 + � ℄ is a regularinterval with respe
t to the solution u, i.e., on this interval, Proposition 1.1 allowsto 
ontrol the L2-norm of �trxu,(3.22) Z T0+�T0 k�trxu(t)k2L2(
) dt � Q(kukL1([0;T ℄�
)):Moreover, a

ording to estimate (1.28), we have(3.23) kB(u(t))�B(�u(t))kL1(
) � CeK(t�T0)kB(u(T0))�B(�u(T0))kL1(
):18



Applying the Gronwall inequality to (3.21) and using (3.22), (3.23) and the fa
tthat Zu;�u(T0) = 0, we dedu
e that(3.24) Zu;�u(t) �� Q(kukL1([0;T ℄�
) + k�ukL1([0;T ℄�
))kB(u(T0))� B(�u(T0))k2L1(
);t 2 [T0; T0 + �℄;for some monotoni
 fun
tion Q whi
h is independent of the 
on
rete 
hoi
e of uand �u. Integrating now inequality (3.21) with respe
t to t 2 [T0 + �=2; T0 + �℄ andusing (3.22{3.24), we obtain estimate (3.1) for the L2(W 1;2)-norm of v and �nishthe proof of Proposition 3.1.The next 
orollary is 
ru
ial in order to verify the se
ond assumption of Propo-sition 2.1 in our situation.Corollary 3.1. Let the assumptions of Proposition 3.1 hold and let u, �u and[T0; T0 + �℄ be the same as in this proposition. Then, the following estimates hold:(3.25) k�tB(u)� �tB(�u)kL2([T0+�=2;T0+�℄;W�1;2(
))++ kB(u)�B(�u)kL2([T0+�=2;T0+�℄;W 1;2(
)) � KkB(u)� B(�u)kL1([T0;T0+�=2℄�
);where the 
onstant K only depends on � and the L1-norms of u and �u, but isindependent of the 
on
rete 
hoi
e of u and �u.Proof. We �rst note that, for every two solutions u and �u of equation (1.1) andevery Æ > 0, the following estimate holds:(3.26) kB(u(Æ))�B(�u(Æ))kL1(
) � CÆkB(u)� B(�u)kL1([0;Æ℄�
);where the 
onstant CÆ only depends on Æ and the L1-norms of u and �u. Indeed,in order to prove this estimate, it suÆ
es to multiply equation (3.2) by t sgn(u(t)��u(t)), integrate over [T0; T0 + �=2℄� 
 and use the Kato inequality.Combining the smoothing property (3.26) with Proposition 3.1, we 
he
k thatthe following estimate holds:(3.27) Z T0+�T0+�=2 ku(t)� �u(t)k2W 1;2(
) dt � CkB(u)�B(�u)k2L1([T0;T0+�=2℄�
):In order to dedu
e (3.25) from (3.27), it is suÆ
ient to note that, expressing�t(B(u) � B(�u)) from equation (3.2) and using the fa
t that the L1-norms ofu and �u 
an be 
ontrolled, we have(3.28) k�t(B(u(t))� B(�u(t)))k2W�1;2(
)++ krx(B(u(t))� B(�u(t)))k2L2(
) � Cku(t)� �u(t)k2W 1;2(
);where the 
onstant C only depends on the L1-norms of u and �u. Thus, Corollary3.1 is proven.We are now ready to �nish the proof of Theorem 2.2 by verifying the assumptionsof Proposition 2.1 for some proper dis
rete semigroup asso
iated with equation19



(1.1). In order to 
onstru
t it, we �rst 
onstru
t a semi-invariant absorbing set Bfor the semigroup S(t) asso
iated with equation (1.1). As shown in the proof ofTheorem 2.1, the ball(3.29) B0 := fb0 2 L1(
) \W 1;2(
); kb0kL1(
) + kb0kW 1;2(
) � Rgis an absorbing set for this semigroup if R is large enough, but it is not ne
essarilysemi-invariant. In order to over
ome this diÆ
ulty, we transform this set in thefollowing standard way:(3.30) B = � [t�0 S(t)B0�L1(
);where [�℄V denotes the 
losure in the spa
e V . Then, on the one hand, this newabsorbing set remains bounded in L1(
) \ W 1;2(
) (due to Theorem 1.1 andLemmata 1.2{1.3), i.e., for every traje
tory u(t) starting from B(u(0)) = b0 2 B,(3.31) ku(t)kL1(
) + ku(t)kW 1;2(
) + k�tB(u)kL2([t;t+1℄�
) � C;where the 
onstant C is independent of u and t � 0. On the other hand, this setis, obviously, semi-invariant with respe
t to S(t),(3.32) S(t)B � B:Then, a

ording to Proposition 1.1, there exists � > 0 su
h that, for every traje
toryu(t) starting from B and every time interval [T; T + 1℄ of length one, there exists asubinterval [T0; T0 + � ℄ � [T; T + 1℄ of length � on whi
h the L2-norm of �trxu is
ontrolled as follows:(3.33) Z T0+�T0 k�trxu(t)k2L2(
) dt � C;where C is independent of the traje
tory u starting from B. Thus, it is suÆ
ientto 
onstru
t the required exponential attra
tor on the absorbing set B only.Let us now �x � = 1=N , where N 2 N is large enough so that(3.34) 1=N � �=3;and introdu
e the following spa
es of fun
tions depending on x and t:(3.35) H := L1([0; �=2℄� 
);H1 :=W 1;2([0; �=2℄;W�1;2(
)) \ L2([0; �=2℄;W 1;2(
)):Then, H1 is 
ompa
tly embedded into H (see, e.g., [LSU℄). We also introdu
e thetraje
tory analogue of the absorbing set B as follows:(3.36) Btr := fB(u(t)); t 2 [0; �=2℄; u(t) solves (1.1) with B(u(0)) 2 Bg � Hand de�ne the �=2-shift map S on Btr by(3.37) (Sv)(t) := S(�=2)v(t); v 2 Btr:20



Then, the semi-invarian
e (3.32) implies that the set Btr is also semi-invariant withrespe
t to the shift map S,(3.38) S : Btr ! Btr:Our next task is to verify the 
onditions of Proposition 2.1 for the map (3.38).Indeed, estimate (1.28) immediately implies that the map S is globally Lips
hitz
ontinuous on Btr and we only need to verify the se
ond assumption of Proposition2.1 and inequality (2.9). Indeed, due to our 
hoi
e of the number �, for everytraje
tory u(t) starting from B (or, equivalently, for every traje
tory of the dis
retesemigroup S(n) starting from �b0 := fB(u(t)); t 2 [0; �=2℄g), at least one of theintervals(3.39) [0; �℄; [�; 2�℄; � � � ; [(N � 1)�;N�℄(let it be the interval [n0�; (n0 + 1)�℄) belongs to the regularity interval of u, i.e.,estimate (3.33) is satis�ed on [n0�; (n0+1)�℄. Thus, due to Corollary 3.1, we have(3.40) kSw � S�vkH1 � Kkw � �vkH; 8�v 2 Btr;where w = S(2n0)�b0. So, the se
ond assumption of Proposition 2.1 holds for Swith N0 = 2N .Thus, we have proven that the dis
rete semigroup S(n) generated by the itera-tions of the shift operator S possesses an exponential attra
tor Mtr � Btr whi
his �nite-dimensional and satis�es properties 1){4) of Proposition 2.1.We now re
all that, due to estimate (3.26), the proje
tion map �,(3.41) � : Btr ! B; �v = v(�=2); v 2 Btr;is globally Lips
hitz 
ontinuous. Consequently, proje
ting the traje
tory attra
torMtr onto B, we obtain an exponential attra
tor Md := �Mtr for the dis
retesemigroup fS(n�=2); n 2 Ng on B whi
h satis�es all properties 1){4) of Proposition2.1 with H = L1(
).Thus, there only remains to pass from the exponential attra
tor Md of thesemigroup S(n�=2) with dis
rete times n 2 N to the semigroup S(t) with 
ontinuoustimes t 2 R+ . To this end, we note that the map (t; b0) 7! S(t)b0 is uniformly H�older
ontinuous with respe
t to (t; b0) 2 [0; �=2℄�B with H�older exponent 1=2. Indeed,the H�older (and even the Lips
hitz) 
ontinuity of S(t)b0 with respe
t to b0 is animmediate 
onsequen
e of (1.28) and the H�older 
ontinuity with respe
t to t followsfrom the following simple estimates:(3.42) kB(u(t+ s))� B(u(t))kL1(
) = k Z t+st B0(u(�))�tu(�) d�kL1(
) �� Z t+st (B0(u(�)); j�tu(�)j)L2(
) d� � �Z t+st B0(u(�)) d��1=2�� Z �=20 (B0(u(�))�tu(�); �tu(�))L2(
) d�!1=2 � Cs1=2:Thus, the required exponential attra
torM for 
ontinuous times 
an be 
onstru
tedby the following standard formula:(3.43) M := � [t2[0;�=2℄ S(t)Md�L1(
) � B;see [EFNT℄ for more details. So, our main theorem on the existen
e of an expo-nential attra
tor for the degenerate equation (1.1) is proven.21



x4 Generalizations and 
on
luding remarks.In this 
on
luding se
tion, we dis
uss possible generalizations of the results ob-tained above and indi
ate several alternative methods to prove the �nite-dimensio-nality of attra
tors.Remark 4.1. To start with, we note that assumption (1.2)2 requires the nonlin-earity a(rxu) to have a linear growth. However, this assumption is not essentialand 
an be repla
ed by a standard polynomial growth of order p:(4.1) �1(1 + jzjp�2) � A00(z) � �2(1 + jzjp�2);for some �xed p � 2 and positive 
onstants �1 and �2. In that 
ase, of 
ourse,we will, thanks to energy inequalities, 
ontrol the W 1;p-norm of the solution u(instead of the usual W 1;2-norm). Indeed, an a

urate analysis shows that theglobal boundedness of A00(u) has been used only in the proof of Corollary 3.1and only in order to obtain the 
ontrol of the W�1;2-norm of �t(B(u)�B(�u)), seeestimate (3.28). In the general 
ase p > 2, this estimate fails and should be repla
edby an appropriate estimate of the Lq-norm, with 1p + 1q = 1,(4.2) k�t(B(u)� B(�u))k2Lq([S;T ℄;W�1;q(
)) � ka(rxu)� a(rx�u)k2Lq([S;T ℄�
)++ kf(u)� f(�u)k2Lq([S;T ℄�
) � C(kukLp([S;T ℄;W 1;p(
)) + k�ukLp([S;T ℄;W 1;p(
)))p�2�� (a(rxu)� a(rx�u);rxu�rx�u)L2([S;T ℄�
) + Cku� �uk2Lq([S;T ℄�
) �� C1(1 + jT � Sjp�2)(a(rxu)� a(rxu);rxu�rx�u)L2([S;T ℄�
);where we have used estimates (4.1), together with the fa
t that the L1(W 1;p)-norms of u and �u 
an be 
ontrolled. There remains to note that the s
alar produ
tin the right-hand side of (4.2) 
an be 
ontrolled by an analogue of Proposition 3.1,see estimate (3.3). Thus, the estimate of Corollary 3.1 remains true if we repla
ethe L2(W�1;2)-norm by the Lq(W�1;q)-norm and, 
onsequently, the spa
e H1 in(3.35) should be repla
ed byH1 :=W 1;q([0; �=2℄;W�1;q(
)) \ L2([0; �=2℄;W 1;2(
)):Sin
e this 
hange does not destroy the 
ompa
tness of the embedding H1 � H,the remaining of the proof of Theorem 2.2 does not 
hange as well. Therefore, themain result of this arti
le (Theorem 2.2 on the existen
e of a �nite-dimensionalexponential attra
tor) remains true under the more general assumption (4.1).Remark 4.2. We now dis
uss the regularity assumptions of the domain 
. Indeed,although we have assumed the boundary �
 to be smooth, this assumption has beenused only in Lemma 1.3 (in order to verify the L2(W 2;2)-regularity of the solutions)and in Theorem 1.2 (in order to make sure that the solutions un of the approximateproblem (1.6) are regular enough). However, the W 2;2-regulartity of the solutionsis, in fa
t, nowhere used in the sequel and all the other estimates do not require thedomain 
 to be regular. Indeed, we have fa
tually only used the Sobolev embeddingW 1;20 (
) � L6(
) and some interpolation inequalities whi
h do not require anyregularity of the boundary (due to our 
hoi
e of Diri
hlet boundary 
onditions;for Neumann boundary 
onditions, the Lips
hitz 
ontinuity of the boundary is22



required). Thus, analyzing the solutions of the approximate problems (1.6) ina more a

urate way, we see that the main results of the arti
le hold, e.g., forLips
hitz domains (and even for some non-Lips
hitz ones).Remark 4.3. We now note that the above results are also valid (with a lot ofsimpli�
ations) in the non-degenerate 
ase(4.3) B0(u) � � > 0as well. Indeed, in that 
ase, assumption (1.44) is automati
ally satis�ed (for Bof 
lass C2) and assumption (1.4) also holds automati
ally, sin
e, now, B(z) � znear zero. However, our method may seem arti�
ial in this situation. Indeed,under assumption (4.3), equation (1.1) 
an be rewritten in the form of a quasilinearse
ond-order paraboli
 equation,(4.4) �tu = [B0(u)℄�1A00ij(rxu)�xi�xju� [B0(u)℄�1(f(u)� g):The analyti
 properties of su
h equations in the non-degenerate 
ase are verywell understood, see, e.g., [LSU℄, and we 
an use the 
lassi
al and powerful reg-ularity theory of su
h equations. Indeed, in parti
ular, if B; a 2 C2(R) andg 2 C�(
), for some � > 0, then, due to the interior regularity estimates, equa-tion (4.4) (or, equivalently, equation (1.1)) possesses an absorbing ball in the spa
eC1+�=2;2+�([T; T + 1℄� 
),(4.5) kukC1+�=2;2+�([T+1;T+2℄�
) � Q(ku(T )kL1(
));see, e.g., [LSU℄, Chapter 6, Se
tions 1-6. Having this estimate, one 
an verify the�nite-dimensionality of the global attra
tor, e.g., by the 
lassi
al volume 
ontra
tionmethod and verify the existen
e of an exponential attra
tor by proving the followingsimpler smoothing property for the di�eren
e of two solutions:(4.6) kS(t)b10 � S(t)b20kH1(
) � C eKtpt kb10 � b20kL2(
); t > 0;instead of the 
ompli
ated version of su
h an inequality formulated in Proposition2.1. Thus, our arti
le is mainly oriented towards the degenerate 
ase when (4.3)fails and when the redu
tion to (4.4) and the regularity (4.5) also fail (see also thenext remark).Remark 4.4. We now dis
uss an alternative method to prove the �nite-dimensio-nality of the global attra
tor in the degenerate 
ase (when assumption (4.3) isnot satis�ed). In 
ontrast to the regular 
ase, one 
annot expe
t the existen
e of
lassi
al solutions or/and the smothing property (4.5) to hold in the degenerate
ase (even if all the terms are of 
lass C1) and the best regularity whi
h 
an beexpe
ted for our equation is the following H�older 
ontinuity:(4.7) kukC�=2;�([T+1;T+2℄�
) � Q(ku(T )kL1(
)); T > 0; � > 0;see [D2℄, [DUV℄ and the referen
es therein for pre
ise 
onditions whi
h guaranteeH�older 
ontinuity results for degenerate se
ond-order paraboli
 equations.However, there exists a general method (suggested in [EfZ1℄) whi
h allows toextra
t the �nite-dimensionality (and the existen
e of an exponential attra
tor)from this H�older 
ontinuity and the L1-Lips
hitz 
ontinuity with respe
t to theinitial data. The appli
ation of this method to our problem gives the followingresult. 23



Proposition 4.1. Let the assumptions of Theorem 1.1 hold and let, in addition,a; B be of 
lass C2, the H�older 
ontinuity estimate (4.7) be satis�ed and the fol-lowing monotoni
ity assumption:(4.8) jf(z1)� f(z2)j � �jB(z1)�B(z2)j; � > 0;hold, for every z1 and z2 in a small neighborhood of all the degeneration points ofB. Assume also that g 2 C�(
), for some � > 0. Then, the global attra
tor A ofproblem (1.1) is �nite-dimensional and there exists an exponential attra
tor for thisproblem in the sense of De�nition 2.2.Sket
h of the proof. We brie
y re
all here the main idea of [EfZ1℄ by 
onsidering,for simpli
ity, the 
ase of one degeneration point for B at z = 0, i.e., assumptions(A) hold. In that 
ase, we 
an 
onsider the usual framework, i.e., S(t) maps u(0)onto u(t). Let B be an absorbing set of the semigroup S(t) (for whi
h the uniformH�older 
ontinuity holds due to (4.7)) and let B"(u0) be an "-ball in the metri
 ofL1(
) 
entered at u0 2 B. Then, sin
e u0 is 
ontinuous, we 
an split the domain 
into the union of two subdomains,(4.9) 
 = 
+(u0) [ 
�(u0); 
+ := fx 2 
; ju0(x)j > �g;
� := fx 2 
; ju0(x)j < 2�g;where � is a suÆ
iently small positive number. Moreover, sin
e the semigroup S(t)is globally Lips
hitz 
ontinuous in the L1-metri
 and the norm kukC�=2([0;T ℄�
)is uniformly bounded with respe
t to all traje
tories starting from B, then, for "suÆ
iently small, there exists T > 0 (whi
h is independent of u0 and ") su
h that,for every traje
tory u(t) su
h that u(0) 2 B"(u0)\ B, the following estimates hold:(4.10) � ju(t; x)j > �=2; (t; x) 2 [0; T ℄� 
+;ju(t; x)j < 3�; (t; x) 2 [0; T ℄� 
�:In other words, all the traje
tories starting from B"(u0)\B remain uniformly 
loseto the degeneration point z = 0 for x 2 
� and are uniformly non-degenerate forx 2 
+ if t � T . This simple observation is the key point of the method and is thepre
ise reason why we need an assumption on the H�older 
ontinuity.Furthermore, sin
e the above traje
tories are (uniformly) non-degenerate on[0; T ℄ � 
+, then, (4.3) holds on this domain and we 
an rewrite equation (1.1)in the form (4.4) on the domain 
+. Then, the paraboli
 regularity theorem men-tioned above yields that u 2 C1+�=2;2+�([0; T ℄� 
+) and the norm in this spa
eis uniform with respe
t to all traje
tories starting from B"(u0) \ B. Therefore, thedi�eren
e v(t) := u1(t)�u2(t) between two su
h solutions restri
ted to 
+ satis�esa linear se
ond-order paraboli
 equation with regular 
oeÆ
ients and, thus (roughyspeaking, see [EfZ1℄ for a pre
ise formulation), we have, for the 
+-
omponent ofthe di�eren
e v(t), a smoothing property whi
h is analogous to (4.6) (of 
ourse,v���
+ 6= 0, so that the pre
ise formulation should 
ontain some interior estimatesand 
ut-o� fun
tions).On the other hand, �xing � > 0 small enough so that inequality (4.8) holds, forall z1 and z2 with jzij � 3�; i = 1; 2, and applying the L1-Lips
hitz 
ontinuityestimate in the domain 
� to the equation for the di�eren
e v(t), we have(4.11) kB(u1(t))� B(u2(t))kL1(
�) � e��tkB(u1(0))�B(u2(0))kL1(
�); t � T24



(again, roughly speaking, sin
e v���
� 6= 0, and some 
ut-o� fun
tions are ne
es-sary).Thus, we have a uniform (with respe
t to all initial data belonging to B"(u0)\B)
ontra
tion of the 
�-
omponent of the di�eren
e of two solutions and a uniformsmoothing property for their 
+-
omponent. As shown in [EfZ1℄, this de
omposi-tion is suÆ
ient to verify that the image S(T )(B"(u0)\B) of an "-ball 
entered atu0 
an be 
overed by a �nite number N of 
"-balls in L1(
), with 
 < 1 and N inde-pendent of " and u0, and this last assumption implies the �nite-dimensionality andthe existen
e of an exponential attra
tor, see [EfZ1℄ for details. Thus, Proposition4.1 is proven.The essential advantage of the method introdu
ed above is that, in 
ontrast toour s
heme developed in Se
tions 2 and 3, where we fa
tually need the nonlinearityB to be of 
lass C5 near the degeneration points, this method does not require anyregularity on B near the degeneration points and B of 
lass C2 is ne
essary onlyoutside the degeneration points (i.e., in the domain 
+). Near the degenerationpoints (i.e., in 
�), we do not need any regularity assumption on B and only needthe monotoni
ity estimate (4.8) to be satis�ed.However, in 
ontrast to the 
lassi
al De Giorgi theory for non-degenerate se
ond-order paraboli
 equations, the H�older 
ontinuity for degenerate equations is a non-trivial and deli
ate fa
t whi
h 
an be even violated, e.g., for some ellipti
-paraboli
equations. In fa
t, we do not know whether or not the H�older 
ontinuity holdsunder assumptions (B) in the ellipti
-paraboli
 
ase. That is the reason why we
hose to give an alternative proof whi
h is based on relatively simple energy typeestimates in this arti
le.Remark 4.5. To 
on
lude, we note that it would be very interesting to provethe existen
e of exponential attra
tors when the fun
tion B(u) has singularities ordis
ontinuities (e.g., for Stefan-like problems). However, the above methods do notwork in this situation, sin
e inequalities of the form (4.8) 
annot be satis�ed if Bhas singularities and f is regular. The only type of singularities whi
h we are ableto treat are the dis
ontinuities of the derivatives of B.Indeed, let us 
onsider the following parti
ular 
ase of equation (1.1):(4.12) � �tB(u) = a�xu� f(u) + g;u���
 = 0; B(u)��t=0 = b0;where a > 0 is some �xed number and the fun
tion B is only Lips
hitz 
ontinuous,(4.13) �1jz1 � z2j2 � [B(z1)� B(z2)℄:(z1 � z2) � �2jz1 � z2j2;with positive 
onstants �1 and �2.Proposition 4.2. Let the nonlinearity B satisfy (4.13) and the nonlinearity f beLips
hitz and satisfy the dissipativity assumption (1.3). Then, the semigroup S(t)asso
iated with equation (4.12) via (2.2) possesses an exponential attra
tor M inthe sense of De�nition 2.2.Sket
h of the proof. Let u1(t) and u2(t) be two solutions of (4.12) starting from anabsorbing set in L1(
). Then, multiplying the equation for the di�eren
e of two25



solutions u1 and u2 by (��x)�1(B(u1) � B(u2)) and using (4.13), together withthe Lips
hitz 
ontinuity of f , we have(4.14) ddtkB(u1)�B(u2)k2H�1(
)++ �kB(u1)�B(u2)k2L2(
) � CkB(u1)� B(u2)k2H�1(
);with some positive 
onstants C and � whi
h are independent of u1 and u2. Fixingnow some T > 0, multiplying (4.14) by t and integrating over [0; T ℄, we dedu
e that(4.15) kB(u1(T ))�B(u2(T ))k2H�1(
) � CT kB(u1)�B(u2)k2L2([0;T ℄;H�1(
)):Integrating then relation (4.14) with respe
t to t 2 [T; 2T ℄ and using (4.15), weinfer(4.16) kB(u1)� B(u2)kL2([T;2T ℄;L2(
)) � CT kB(u1)�B(u2)kL2([0;T ℄;H�1(
));with some 
onstant CT depending on T . Finally, we dedu
e, from the equation forthe di�eren
e between u1 and u2, together with (4.13) and the Lips
hitz 
ontinuityof f , that(4.17) k�tB(u1)� �tB(u2)kL2([T;2T ℄;H�2(
)) � CkB(u1)� B(u2)kL2([T;2T ℄;L2(
)):Thus, 
ombining (4.16) and (4.17), we have(4.18) kB(u1)� B(u2)kW 1;2([T;2T ℄;H�2(
))\L2([T;2T ℄;L2(
)) �� CT kB(u1)�B(u2)kL2([0;T ℄;H�1(
));with some positive 
onstant CT whi
h is independent of the 
hoi
e of the traje
toriesu1 and u2 starting from the absorbing set.Sin
e the embeddingW 1;2([0; T ℄; H�2(
)) \ L2([0; T ℄; L2(
)) � L2([0; T ℄; H�1(
))is 
ompa
t, inequality (4.18) allows indeed to 
onstru
t an exponential attra
torfor the semigroup S(t) in the topology of H�1(
) by the l-traje
tories method,see [MP℄. Sin
e the H1-norm 
an be 
ontrolled on the absorbing set, we obtain, byinterpolating between H�1(
) and H1(
), the existen
e of an exponential attra
torin the topology of L2(
) (and even Lp(
), p �nite) as well and Proposition 4.2 isproven.Example 4.1. Although the result of Proposition 4.2 does not apply to the Ste-fan problem, it gives however the �nite-dimensionality of attra
tors for some freeboundary problems. In parti
ular, the following free boundary problem:(4.19) 8><>: �tu = a1�xu� f1(u); u > 0;�tu = a2�xu� f2(u); u < 0;u��+ = u���; �nu��+ + �nu��� = 0; u = 0;where a1; a2 > 0, the fun
tions fi; i = 1; 2; satisfy the dissipativity assumption(1.3) and f1(0) = f2(0) = 0, 
an be rewritten in the form (4.12), withB(z) = � a�11 z; z > 0;a�12 z; z < 0; f(z) = � a�11 f1(z); z > 0;a�12 f2(z); z < 0:Thus, all the assumptions of Proposition 4.2 are satis�ed and, 
onsequently, problem(4.19) possesses a �nite-dimensional exponential attra
tor in the phase spa
e L2(
).A
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