FINITE-DIMENSIONALITY OF ATTRACTORS FOR
DEGENERATE EQUATIONS OF ELLIPTIC-PARABOLIC TYPE

A. MIRANVILLE! AND S. ZELIK?

1 Université de Poitiers
Laboratoire de Mathématiques et Applications
UMR 6086
SP2MI
Boulevard Marie et Pierre Curie
86962 Chasseneuil Futuroscope Cedex, France

2 University of Surrey
Department of Mathematics
Guildford, GU2 7XH, United Kingdom

ABSTRACT. Our aim in this article is to study the long time behavior, in terms of
finite-dimensional attractors, of degenerate triply nonlinear equations. In particular,
we are interested in the case where the equation becomes elliptic in some region.

INTRODUCTION.

We are interested in this article in the study of the long time behavior (in terms
of finite-dimensional attractors) of triply nonlinear parabolic equations of the form

0¢B(u) = div(a(Vzu)) — f(u) + ¢, (0.1)

in a bounded regular domain of R®. Such equations occur, e.g., in the study of
phase separation, and, in particular, in models of Allen-Cahn equations based on a
microforce balance and an anisotropic free energy (see [Gu], [Mi] and [TC])).

The study of equations of the form (0.1) can be found in [AL], [Ba], [D1], [DG],
[DS], [DV], [EMR], [ER], [EfZ2], [GM], [Mi], [R] and [S] (actually, some of these
works also consider the more general case of differential inclusions).

Here, we are more particularly interested in the case where the equation is elliptic
when u < 0. Such a situation has been considered, e.g., in [DG], [DV] and [O].
However, there is, to the best of our knowledge, no result concerning the long time
behavior of the solutions of (0.1) in that case; more precisely, our aim here is to
prove the existence of finite-dimensional attractors.
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It is worth noting that, in spite of a very large number of results concerning the
finite-dimensionality of attractors (see, e.g., [BV], [T] and the references therein),
the validity of any finite-dimensional reduction for equations with singularities or
degenerations in the leading terms (such as porous media type equations, elliptic-
parabolic problems, ...) has been completely unclear for a long time. The main
obstacle here is the lack of regularity (and of smoothing) near the degeneration
points, which prevents from using classical methods. Furthermore, as it has recently
been established, the problem is far from being just technical and the degenerations
can lead to essentially new types of attractors which are not observable in “regular”
equations in bounded domains. Indeed, as shown in [EfZ1], the global attractor
of the simplest degenerate analogue of the real Ginzburg-Landau equation in a
bounded domain €2, namely,

o = Ay (u?) +u — u?, 0,

ufpg =
is infinite-dimensional (to the best of our knowledge, this is the first example of
a physically relevant dissipative system in a bounded domain with an infinite-
dimensional global attractor). Furthermore, the “thickness” of this attractor (in
the sense of Kolmogorov’s e-entropy) is typical of Sobolev spaces embeddings and is
of the order of that of compact absorbing sets. Thus, this attractor is “huge”, even
in comparison with the infinite-dimensional global attractors of “regular” systems
in unbounded domains for which the typical thickness is usually of the order of
spaces of analytic functions embeddings, see, e.g., [Z2] and the references therein.

Nevertheless, a satisfactory finite-dimensional reduction still seems possible un-
der proper restrictions on the structure of the equations. Roughly speaking, these
conditions should prevent the energy income near the degenerations (the equations
must be exponentially stable near all the degeneration points). In particular, this
condition is violated for the above degenerate Ginzburg-Landau equation, since the
“linearization” near u = 0 reads

Ot = u

and is, obviously, not stable.

The validity of the finite-dimensional reduction (in terms of global and expo-
nential attractors) under such additional restrictions has been verified in [EfZ1]
for porous media equations. Furthermore, analogous results for degenerate doubly
nonlinear equations of the form

(0.2) B(0wu) = Agu — f(u) +g¢

(here, B degenerates) have recently been obtained in [EfZ2].

It is however worth emphasizing that, surprisingly, the semilinear equation (0.1)
considered in this article appears to be much more complicated than the, at least for-
mally, more difficult fully nonlinear problem (0.2). Indeed, even classical solutions
are available for equation (0.2) with a finite number of “reasonable” degeneration
points for B, see [EfZ2]. In contrast to this, only Holder continuous solutions are
to be expected for equation (0.1) with a finite number of degeneration points and,
e.g., in the elliptic-parabolic case, discontinuities are even to be expected. This
lack of regularity prevents from directly applying the techniques devised in [EfZ1]
and [EfZ2]. In particular, the lack of information on the time derivative d;u in the
regions where u < 0 (in the elliptic-parabolic case) is crucial here.
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Nevertheless, by using some proper combination of the results of [MZ] and the
so-called [-trajectories method (see [MP]), we are able to overcome the above men-
tioned difficulties and justify the finite-dimensional reduction under some natural
assumptions on B, a and f (point or elliptic-parabolic degenerations for B, stan-
dard ellipticity and non-degeneracy assumptions on a, plus some restrictions on
f yielding that there is no energy income near the degenerations, see Section 1
for details). Thus, the main result of this article is the existence (in that case) of
finite-dimensional global and exponential attractors for the semigroup associated
with problem (0.1), see Theorem 2.2.

This article is organized as follows. In Section 1, we give the main assumptions
and prove the existence and uniqueness of solutions. Then, in Section 2, we prove
the existence of the global attractor and, under some additional assumptions on
B, we prove, in Section 3, the existence of an exponential attractor, which yields
that the global attractor has finite fractal dimension. Finally, we give, in Section
4, some remarks and possible extensions.

§1 A PRIORI ESTIMATES, EXISTENCE AND UNIQUENESS OF SOLUTIONS.

We consider the following problem in a bounded smooth domain Q C R3:

{ 0¢B(u) = div(a(Vgu)) — f(u) + ¢,

(1.1) =0, B(u)|,_, = bo,

“‘asz

where v = u(t,z) is an unknown function, B, a and f are given functions and
g € L°°(2) corresponds to given external forces.

We assume that the nonlinearity a derives from a strictly convex potential A €
C?(R3?), i.e.,

(1.2) { 1. a(z) :==V,A(2), a(0)=0,

2. k1 < A"(2) < kg, K1, K3 >0.
We also assume that the second nonlinearity f € C'(R) is dissipative,

(1.3) liminfﬁ > ap >0,

|z]| 200 2

and has the following structure:

(1.4) f(2) = fo(2) + #(B(2)),

where the functions fo and ¢ also belong to C*(R) and fy is monotone,

(1.5) fo(z) > 0.

Finally, the third nonlinearity B is assumed to be smooth enough, namely, B €
C'(R), and monotone, B’(z) > 0, and to satisfy one of the following classes of
assumptions:

(Assumptions (A)) { 1. B(0)=0, B(z)#0, z#0,

2. k1|z|P < B'(2) < kalz|P, k1, Ky > 0;
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or
1. B(2)=0, 2<0, B'(z)>0, z>0,

Assumptions (B
( p (B)) { 2. k1|z|P < B'(2) < k2|z|P, 2>0, K1, k2 > 0;

where p > 0 is some fixed number. Thus, when assumptions (A) are satisfied, we
have a parabolic system (1.1) with at most one degeneration point for B at z =0
and, when assumptions (B) are satisfied, (1.1) is parabolic for v > 0 and elliptic
for u < 0.

As usual, in order to study the degenerate case, we approximate problem (1.1)
by non-degenerate ones,

{ 0¢B(u) + edyu = div(a(Vzu)) — f(u) + g,

1.6
(1.6) U‘E)Q =0, (B(u)+eu bo,

o

where 0 < ¢ <« 1 is a small parameter. Equation (1.6) is a non-degenerate
second-order parabolic problem which, obviously, has a unique solution v = u. €
W1214([0,T] x Q), for every ¢ < oo, see, e.g., [LSU] (if B and by are smooth
enough, say, B, by of class C?; the existence of solutions for less regular initial
data then follows from the a priori estimates obtained below and standard approx-
imation arguments). Our aim is now to obtain uniform with respect to e a priori
estimates on u and then obtain a solution of (1.1) by passing to the limit e — 0.
We start with a uniform dissipative L>°-estimate for the solutions of (1.6).

Theorem 1.1. Let the above assumptions hold and the initial datum by be such
that there exists ug € L>°(Q) such that

(1.7)  B(ug) = bo, t.e., by € L=(Q), and, when assumptions (B) hold,

we assume that, in addition, bo(x) > 0.
Then, the solution u = u. of equation (1.6) satisfies the following estimate:

(1.8) [u®llz=(@) < C(1+llgllz= (@) + Qlbollz=(2))e ™",

where the positive constants C' and o and the monotonic function (Q are independent
of e = 0.

Proof. As usual, the proof of estimate (1.8) is based on the comparison principle.
We first derive the upper L°°-bound on the solution u. To this end, we note that,
due to the dissipativity assumption (1.3), there exists a sufficiently large constant
K > 0 such that

(1.9) fu) >1/2ap0(u—K), u>0; f(u)<1/2a0(u+ K), u<0.

Let now y = y () be solution of the following first-order ODE:

d
(1.10) —(B(y) +ey) +1/2a0(y — K) = [|g]| (@), y(0) = max{K, sugU(O,fv)}-
TE
Then, y(t) > K and, consequently, y(¢) is a supersolution for equation (1.6). The
comparison principle (for the non-degenerate second-order parabolic problem (1.6))
reads

(1.11) u(t,z) <y(t), (t,z)e Ry x Q.
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Using now the fact that, when both (A) and (B) hold, the function B(z) grows
monotonically as z — +00, one can easily deduce from (1.10) that
(1.12) y(t) < C(L+ [lgllz=(0)) + QUbollL=(0))e™, ¢ >0,
for proper positive constants C' and a and monotonic function () which are in-
dependent of €. This gives the upper L°°-bound on the solution u of the form
(1.8).

We now check the lower bound. Arguing analogously, we establish that the
solution y = y_ () of the following ODE:

d . .
(1.13) = (B(y)+ey)+1/200(y+K) = —llgllz=(0), y(0) = min{-K, inf u(0,2)},
gives a subsolution of problem (1.8) if K is large enough and we have

(1.14) u(t,z) > y(t), (t,z) € Ry x Q.

Then, when assumptions (A) hold, the situation is completely analogous to the
previous case and we have the analogue of (1.12) for the solution —y(¢), which
gives (1.8) and finishes the proof in that case.

Let us now assume that conditions (B) hold. In that case, we have B(y(t)) =0,
since y(t) < —K < 0. Moreover, due to (1.7), we have by > 0, which, in turn,
implies that «(0) > 0 and y(0) = —K. So, (1.13) reads

(1L15) e () + 1/200(0(0) + K) = gl v(0) = K,

which can be solved explicitly,
y(t) = =K — |lgllz=o) (1 - 31), t>0.

Thus, y(t) > —K — ||g|lz~(), ¥t > 0, and estimate (1.8) is also verified under
assumptions (B). This finishes the proof of Theorem 1.1.

Our next aim is to obtain uniform estimates on the derivatives of u. We state
them in three simple Lemmata below.

Lemma 1.1. Let the assumptions of Theorem 1.1 hold. Then, the solution u of
(1.6) satisfies

t+1
(1.16) /t ' IVou(s)|Z2 () ds < C(L+[|gllz=(0)) + QUboll L @))e ™",
where the positive constants C' and o and the monotonic function (Q are independent
of € and t.

Proof. Multiplying equation (1.6) by u and integrating over [t,t 4 1] x Q, we have
(1.17)  (B(u(t + 1)) = B(u(t)), 1) 2@y +&/2[[u(t + D720y — () 1720+

t+1
[ V(). Vo) 120 s =

t+1
[ 10w — (Fuo), ) sz s

where B(v) := [; B'(u)udu. Using now the L*-estimates for u obtained in the
previous theorem and the fact that a = V, A, for a strictly convex potential A (see
assumptions (1.2)), we obtain (1.16) and finish the proof of the lemma.

The next lemma gives a gradient-like energy inequality.
5



Lemma 1.2. Let the above assumptions hold. Then, the solution u of problem
(1.6) satisfies the following estimates:

t+1
(1.18) /t [(B' (u(s))su(s), Opu(s))r2(o) + €/2]|0pu(s) |12 (o)) ds+

t+1 .
IV2u(t) 220y < = (CO+ lgl2ey) + QUIbollze(@))e ™), £> 0, a >0,

where all the constants and the monotonic function () are independent of €. If, in
addition, u(0) € Wy (), then

1
(1.19) /0 [(B'(u(s))dru(s), du(s)) 12 (o) + ellOeu(s)||F2q)] ds + [[Vau(t) |72y <
<C (1 + 19117 () + QUIBoll L () + ||un(0)||%2(ﬂ)) :

Proof. Multiplying equation (1.6) by (¢ —T')0;u and integrating over [T, T + 2] x Q,
we have

T+2
(1.20) /T [(t — T)(B'(u(t))dyult), dpu(t)) 120y + /20|0pu(t) |32 )] di+

+(t = T)[Vou(t) |72y + (¢ = T)(F(u(t), 1) L2() <
T+2
< C/T [IVau(®)lZ2 () + (F(u(t), D2 @) dt + CllglL~ (),

for t € [T, T + 2]. This internal estimate, together with the dissipative estimates
for |lu(t)|| L) and [Jul[z2(r,r41],w12()) obtained in Theorem 1.1 and Lemma
1.1, respectively, give the desired estimate (1.18). Estimate (1.19) can be proven
analogously, but is much simpler, since we only need to multiply the equation by
Oiu. This finishes the proof of Lemma 1.2.

In the third lemma, we state the W?22-regularity result.

Lemma 1.3. Let the above assumptions hold. Then, the solution u(t) of problem
(1.6) satisfies the following estimate:

A 2 t+1 2 —at
(121) [ @) aam ds < == (COF Il ) + QU] @)™

t >0, where C, a > 0 and Q) are independent of €.

Proof. We rewrite (1.6) as an elliptic boundary value problem for every fixed ¢,
(1.22) div(a(Vzu(t))) = 0:B(u(t)) +ediu(t) + f(u(t)) — g := H,(t), u(t)‘aQ = 0.

Then, according to the H2-L2-regularity result for second-order quasilinear elliptic
equations (see, e.g., [Mi]), we have

(1.23) [u(®)llw=2(0) < CllHu(t)llz2(2),

where the constant C' is independent of u. Using now estimates (1.8) and (1.18) to
estimate the L?-norm of H,, we obtain (1.21) and finish the proof of the lemma.

Finally, we formulate an L!-Lipschitz continuity result based on the Kato in-
equality.
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Lemma 1.4. Let the above assumptions hold and let uy(t) and us(t) be two solu-
tions of problem (1.6). Then, the following estimates hold:

(1.24) |B(ua(t)) = Bluz(t))l|Lr (o) + ellua(t) —u2(®)llrr@) <
< Ce™* ([1B(u1(0)) = B(u2(0)l|1() + ellut (0) — u2(0) |y () -

where the constants C' and K depend only on the L°°-norms of uy and us.

Proof. We set v(t) = u1(t) — ug(t). This function solves

(1.25)  0¢[B(u1(t)) — B(usa(t)) + ev(t)] = div[a(Vyui () — a(Vyusa(t))]—

= [fo(ur(t)) = fo(uz(t))] = [#(B(u1(t)) — ¢(B(uz2(?))]-
Multiplying this equation by sgnwv(t) = sgn(B(u1(t)) — B(usz(t))) and using the
Kato inequality (this multiplication can be easily justified in a standard way, since

(1.6) is non-degenerate and the solutions w; and ug are sufficiently regular), we
have

(1.26)  3[l| B(ua(t)) = B(uz(t))l|zr (o) +ello®) |z o))+
+ (fo(ua(t)) — fo(ua(t)), sgn(ua(t)) — sgn(uz(t)))L2(@) <
< ((B(ua(t)) — (B(ua(t))),sgn(B(us(t)) — B(uz(t))))r2()-

Using now assumptions (1.4) and (1.5) for the functions f, and ¢, together with
the L°°-bounds for u; and us, we deduce that

O[l| B(u(t)) — B(ua(t)) |21 @) +ellv(®)l[Lr@)] < Kl B(u(t)) — Bluz(t))l|lLr (o),

which, together with the Gronwall inequality, give (1.24) and finish the proof of the
lemma.

We are now able to formulate the solvability result for the limit degenerate
problem (1.1), which can be considered as the main result of this section.

Theorem 1.2. Let the assumptions of Theorem 1.1 hold. Then, for every by €
L>(Q), by > 0, problem (1.1) has at least one solution u(t) belonging to the follow-
ing class:

(1.27) we L>®([0,T] x Q), B(u) € C([0,T], L*(Q)),
w e L®([0,T], Wy *(Q)) N L*([t, T], W>*(2)),

OR(u) € L*([t,T] x Q), t >0, R(v / vV B'(u) du.

Furthermore, this solution satisfies all the estimates obtained in Lemmata 1.1-
1.3 and Theorem 1.1 and can be obtained in a unique way as the limit of the
corresponding solutions ue of the reqularized problems (1.6) as e — 0. Finally, for
every two such solutions uy(t) and ux(t) (corresponding to different initial data b}
and b2 ), the following global L'-Lipschitz continuity holds:

(1.28) || B(ua(t)) = B(uz(t))|1 () <

< CeM!| B(ur(0)) — Blus(0)121 (@) = C"*[1bh — 3121 c-
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where the constants C' and K only depend on the L™ -norms of by and bZ.

Proof. Let uy,(t) := ue, (t) be a sequence of solutions of the approximate problems
(1.6) with &, — 0 and with the same initial datum by. Then, due to Theorem 1.1
and Lemmata 1.1-1.3, we can assume, without loss of generality, that

(1.29) w, — u weakly-x in
L>([0,T] x Q) N L>=([t, T], Wy () N L2([t, T], W>%(Q)).

The main problem is, however, that, when assumptions (B) hold, we do not control
the time derivative dyu in the region v < 0 and, consequently, we cannot directly
extract the strong convergence u, — wu in a proper space from (1.29) (which is
essential for the passage to the limit n — oo in the nonlinear terms of equation
(1.6)). In order to overcome this difficulty, we use monotonicity arguments. We
first note that Lemma 1.2 allows to control the L?-norm of the time derivative of
the functions v, (t) := B(uy(t)) on every interval [¢t, T]. Furthermore, its z-gradient
can also be easily controlled, since ||V uy ()| 12 (o) is uniformly bounded on [t, T7.
Thus, the sequence v, is precompact in the strong topology of L2([t,T] x ) and,
without loss of generality, we can assume, in addition, that

(1.30) Y, — o strongly in C([t, T], L*(Q2)).
Let us prove that
(1.31) ¥ = B(u).

To this end, we use the standard fact that the operator z — B(z) is maximal
monotone in L2([t,T] x Q), since B'(2) > 0 (being pedants, we should first cut
off the function B for large z in order to make it well-defined as an operator in
L2([t,T] x Q), but, since we control the L°>°-norm of the solutions, this procedure
is not essential and is omitted). Thus, in order to verify (1.31), we only need to
check that

(1.32) (7,& - B(w),u - w)Lz([t7T]XQ) >0, Ywe Lz([t,T] X Q),

see, e.g., [Li]. There remains to note that the strong convergence (1.30) allows
to obtain (1.32) by a direct passage to the limit n — oo in the following obvious
inequality:

(1.33) (B(un) — B(w), un — w)r2(jt,7x0) = (¥n — B(w), un — w) 21, 71x02) > 0.
Thus, (1.31) is verified and, consequently,

B(uy) — B(u) strongly in C([t, T], L*(Q)),
which, in turn, implies that
(1.34) 0yB(uy) — 0;B(u) weakly in L*([t, T] x Q),
¢(B(uy)) — ¢(B(u)) strongly in C([t, T], L*(2)).

Moreover, arguing analogously, we have

(1.35) R(uy) — R(u) strongly in C([t,T], L*(Q2)).
Consequently, 0; R(u,) = /B’ (upn) 0, — 0:R(u) weakly in L2([t,T] x Q) and
(1.36) 10 R (u)l| L2 (1,17 0) < Timinf {10, R(un )| 2 (2,71 0) -

In order to pass to the limit in the right-hand side of (1.6), we need the following
lemma.
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Lemma 1.5. Let the above assumptions hold and let u,, and u be as above. Then,
(1.37) 0:B(u) = 0y R(u) - \/B'(u)
and, for everyt > 0,

(1.38) lim (0 B(un), un)r2(1t,11x) = (0B (1), u) L2, 71x Q)

n— 00

Proof of the lemma. Since Ozu,, is regular enough, we have

(1.39) 0, B () = 3R () - /B (tn).

We now recall that the weak convergences 0;B(u,) — 0:B(u) and 0;R(u,) —
O0¢R(u) have already been established. Thus, (1.37) will be proven provided that
we check that \/B’(u,) — /B’ (u) strongly in L([t,T] x Q). Let us first assume
that assumptions (A) hold. Then, the inverse function v — B~!(v) exists and is
even Hoélder continuous. Consequenlty, the strong convergence of B(u,,) to B(u)
implies the strong convergence of u,, to u and, therefore, \/B’(u,) also converges
strongly to y/B’(u), which, in turn, implies (1.37). Let now assumptions (B) be
satisfied. Then, since B(u) = 0 for v < 0 and is strictly monotone for u > 0, we have
a Holder continuous partial inverse function v — 7 (v) such that 7(B(u)) = u™ :=
max{u,0}. Thus, in that case, the strong convergence B(u,) to B(u) only implies
that u converges strongly to u*. Nevertheless, since now B’(u) = B'(u*), this
convergence is sufficient to conclude that \/B’(u,) converges strongly to \/B’(u)
and finish the proof of equality (1.37) for both assumptions (A) and (B).
In order to check (1.38), it is now sufficient to rewrite it in the form

lim (O R(un), /B’ (un) - tun) 28,71 0) = (O:R(u), / B'(u) - u) 12 (2, 1% 0)

n—00

and note that, analogously to the arguments given above, \/B'(uy,) - u, converges
strongly to \/B'(u) - u. This finishes the proof of Lemma 1.5.

It is now not difficult to finish the passage to the limit n — oo in equations (1.6)
for u, and verify that u solves indeed the limit degenerate problem (1.1). To this
end, we use the standard fact that the quasilinear differential operator

(1.40) A(w) == — div(a(Vau)) + folu)

is maximal monotone in L2([t, T], W,>?(2)) (we recall that fy is monotone). Then,
we rewrite equation (1.6) in the form

(1.41) A(un) = bn 1= g — 0, B(un) — ¢(B(un)).
According to the above convergences, we have

Vet = Vu, O, —0:=g— 0;B(u) — ¢(B(u)) weakly in L?([t, T] x Q).
Moreover, using (1.34) and (1.38), we see that

Tim (O, un) 2((e,yx) = (0, 0) L2, 11x ),
9



which, by monotonicity arguments, implies that A(u) = . Thus, the function u
solves indeed the limit degenerate problem (1.1).

Passing to the limit n — oo in the estimates of Theorem 1.1 and Lemmata 1.1—
1.4, it follows that these estimates hold for the solution of the limit problem as
well.

Thus, there only remains to check the uniqueness and the fact that the limit
solution u is such that B(u) € C([0,T], L*(2)). To this end, we take the difference
between equations (1.6) for w,, and u,,, respectively, multiply the resulting equation
by sgn(u, — ), use the fact that u,(0) = u,,(0) and argue as in Lemma 1.4 to
infer

(1.42)  Ou|B(un(t)) — Bum(t)llrri@) < KlIB(un(t)) — Bum ()1 @)+
+ Clen + em) (10run ()21 (@) + 10rum ()]l L1 (@)

Assume first that by is chosen in such a way that, in addition, u(0) € Wy"*(Q).
Then, according to estimates (1.18) and (1.19), we can control the derivatives in
the right-hand side of (1.42) and, using the Gronwall inequality, deduce that

(1.43) 1B (tn (£)) = Btm (£)] 210y < CeX(en + em) /2.

Thus, B(u,) is a Cauchy sequence in C([t,T],L}(2)) and, consequently, B(u) =
lim, o, B(ue) belongs to C([t, T], L*(€2)) and is determined in a unique way by the
solutions of the approximate equations (1.6). In the general case, i.e., by € L™ (),
bo > 0, it is sufficient to approximate u(0) by smooth initial data u,(0) in L*()
and pass to the limit n — oco. This yields that B(u) € C([0,T], L(Q)) for general
initial data as well and finishes the proof of the theorem.

Remark 1.1.

(i) It is worth emphasizing that we have proven the uniqueness of a solution u only in
the subclass of (1.27) of the solutions which can be obtained by passing to the limit
e — 0 in the non-degenerate approximate equations. The uniqueness of a solution
in the whole class (1.27) is much more delicate, since, for degenerate equations, the
validity of the Kato inequality is nontrivial and must be verified. Since, everywhere
in the sequel, we will only consider the solutions of equation (1.1) which can be
obtained by the above limit procedure, this uniqueness is not important for what
follows and we refer the reader to [O] for a more detailed exposition.

(ii) We also mention that we only consider initial data by € L°°(£2) in order to
exclude from the very beginning the ”pathological” singular solutions which may
appear in doubly nonlinear equations with less regular initial data, see, e.g., [D2]
and [EfZ2]. Moreover, it is worth noting that our assumption B’(z) ~ 2P is neces-
sary only near the degeneration point z = 0 and should not be considered as some
growth assumption as z — oo, for which we only need B'(z) > C > 0.

We conclude this section by some kind of additional regularity for the time
derivative d;u which will be crucial for our theory.

Proposition 1.1. Let the above assumptions hold and let u(t) be a solution of
(1.1) as constructed in the previous theorem. Assume also that the nonlinearity B
belongs to C?(R) and satisfies the additional condition

(1.44) |B"(2)|*® < CB'(2), zeI, YICR bounded.
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Then, there exists a positive constant 7, 0 < 7 < 1, depending only on the L°°-norm
of the initial datum by, such that, for every time interval [T, T + 1], there exists
To € [T, T + 1] (depending on the solution u) such that

To+T
(145) (O R@O) e+ [ 10T ds < Qlllzx(o)

for all t € [Ty, To + 7|, where the monotonic function Q is also independent of the
concrete choice of u.

Proof. We only give below the formal derivation of estimate (1.44), which can be
justified in a standard way by considering the approximate solutions of (1.6) and
passing to the limit € — 0.

We first note that, according to Lemma 1.2, we have

T+1
| B ) 0m(e). ds)) o0 s < Qlballe @), T > 1/2

Consequently, (B'(u(t))0su(t), dpu(t))r2(q) is finite for almost all ¢ and, for every
time interval [T, T + 1], there exists at least one point Ty = Ty(u,T') € [T, T + 1]
such that

(1.46) (B'(u(T0))0pu(To), 0ru(To)) r2(0) < 2Q([[boll 1= (0))-

Since equation (1.1) is autonomous, then, without loss of generality, we may assume
that TO = 0.

We now differentiate equation (1.1) with respect to ¢t and set v = dyu. Then, we
have

B'(u(t))dyo(t) + B (u(t))|v(t)|* = div(a(Vou(t)) Vau(t)) -
— fo(u(®))v(t) — ¢'(B(u(t)) B'(u(t))v(t).

Multiplying this equation by v, integrating with respect to x € €2 and using the
fact that a and f are monotonic, we have

(1.47)  9u(B'(u(t)v(t), v(t)) r2(0) + 20| Vav(t)]|Z2 () <
< C(B'(u(t)v(t), v(t)) r2() + (|B" (w(t))|, [v(6)*) 2 (),

for some positive constant 6. Let I,(t) := (B'(u(t))v(t),v(t))r2(q). Then, using
Theorem 1.1, assumption (1.44) and the Sobolev embedding W12(Q) C L°(Q), we
can estimate the last term in the right-hand side of (1.47) as follows:

(1B" (W), [0*) 220y = (1B" (w)] - [0]*/2, [v]*/?) 20y <
< (1B" ()%, Jo]2) sty 0] 2oy <
< C(B'(u), o) 3k IVavllFarg) < OlIVav]3agq) + CL2,
where C' = C(|bo[|~(q)). Thus, (1.47) reads

(1.48) 0eLu(t) + 0IVav(t)l|72() < CLult) + Lu(t)®).
11



Moreover, due to (1.46) and owing to the fact that T, = 0, we have

(1.49) 0 < 1,(0) < 2Q(Iboll ().

We can note that the differential inequality (1.48) is not strong enough in order
to obtain global in time estimates for I, (t). Nevertheless, it is sufficient for the
required local in time ones. Indeed, due to the comparison principle, we have

(1.50) L,(t) < y(t),

where y solves

(1.51) y'=Cly+y®), y(0)=2Q(lbollL~(e))-

Therefore, the local solvability result for the ODE (1.51) gives the existence of a
time interval [0, 7], with 7 > 0 only depending on ||bo ||z (@), such that

(1.52) I (t) < y(t) < Qu(llbollr= (o)),

where @) is also independent of the concrete choice of u. Integrating now (1.48)
with respect to ¢t € [0, 7] and using (1.52), we deduce the required estimate for the
integral norm of Vv and finish the proof of Proposition 1.1.

Remark 1.2. Obviously, assumption (1.44) is automatically satisfied in the non-
degenerate case (which corresponds to assumptions (A) and p = 0). However, in
the degenerate case p > 0, this gives rather essential restrictions on the regularity
of the function B near the degeneration point. In particular, it is not difficult to
verify that (1.44) implies that p > 4 if p > 0. This assumption will be satisfied,
e.g., if the function B is of class C® near the degeneration point z = 0.

§2 SEMIGROUPS AND ATTRACTORS.

In this section, we show that the semigroup associated with the degenerate equa-
tion (1.1) possesses the global attractor in an appropriate phase space and formulate
the main result of the article, namely, the existence of an exponential attractor for
this semigroup, which will be proven in the next section.

We first define the phase space ® for problem (1.1) as follows:

(2.1) @ :={by € L*°(R2), and, when assumptions (B) hold,
bo(xz) >0, z € Q, also}

and we define the semigroup S(t) associated with equation (1.1) by the following
natural expression:

(2.2) S(t)by := B(u(t)), where u(t) solves (1.1) with B(u(0)) = bo.

Remark 2.1. We see that, in contrast to the usual situation, the semigroup S(t)

does not map u(0) onto u(t), but B(u(0)) onto B(u(t)). This naturally reflects the

fact that the solution w(t) is uniquely defined by B(u(0)) and that the equation

may become elliptic in some regions; when assumptions (A) hold, we can actually

consider the usual framework. We also emphasize once more that, by a ”solution”
12



of equation (1.1), we always mean a solution constructed in Theorem 1.2 by the
limit procedure, no matter whether or not problem (1.1) has other ”pathological”
solutions which are automatically dropped out of our analysis.

We now recall the definition of the global attractor for the semigroup S(t)
adapted to our framework.

Definition 2.1. A set A C & is the global attractor for the semigroup S(t) asso-
ciated with the degenerate problem (1.1) if

1) it is compact in L*(Q2) and bounded in L>(Q);

2) it is strictly invariant, i.e., S(¢t)A = A, Vt > 0;

3) it attracts the images of all bounded (in the L°-topology) subsets of ® in the
topology of L1(Q), i.e., for every bounded subset B of ® and every neighborhood
O(A) of the set A in L(Q), there exists T'= T(B,.A) such that

(2.3) St)BcC O(A), forallt>T.

Remark 2.2.

(i) According to Definition 2.1, the attractor A attracts the bounded subsets of
® = L°°(Q) in the weaker topology of L(Q) and, thus, coincides with the so-called
(LY(€2), L°°(Q2))-attractor in the terminology of Babin and Vishik, see [BV]. We also
note that, since the trajectories of S(t) are bounded in L% (), the space L'(Q)
in the formulation of the attraction property can be replaced by L?(f2), for every
finite p. However, the case p = oo, which coincides with the standard definition of
the global attractor, is more delicate and requires estimates on the solutions of the
degenerate system (1.1) in Holder spaces which, to the best of our knowledge, are
not known for the elliptic-parabolic problem when assumptions (B) hold.

(ii) The attraction property can also be formulated via the Hausdorff semi-distance
between subsets of ®. More precisely, let

(2.4) disty (X,Y) := sup inf ||z — y||v
reX YeY

be the non-symmetric Hausdorff distance between X and Y in a Banach space V.
Then, the attraction property reads: for every bounded subset B C @,

(2.5) lim dist 11 (o) (S()B, A) = 0.

The next theorem gives the existence of the above global attractor for the semi-
group S(t) associated with the degenerate problem (1.1).

Theorem 2.1. Let the assumptions of Theorem 1.2 hold. Then, the semigroup
S(t) defined by (2.2) possesses the global attractor A in the sense of Definition
2.1 which is bounded in L>(2) N W12(Q) and possesses the following standard

description:

(2.6) A=B(K|,_,),

where I C L= (R x Q) is the set of all solutions of (1.1) which are defined for all
t € R and are globally bounded.

Proof. According to standard results on the existence of the global attractor (see,
e.g, [BV] and [T]), we need to check that
13



1) the semigroup S(t) is continuous in the L!-topology on every bounded subset
of ®;

2) the semigroup S() possesses a bounded in L>®(Q) and compact in L(Q)
absorbing set.

The first assumption is an immediate corollary of the global Lipschitz continuity
of the semigroup S(t), see estimate (1.28). Moreover, it follows from estimates (1.8)
and (1.18) that the R-ball in the space L>(2) N W12(Q) is an absorbing set for
the semigroup S(t) if R is large enough. Since this ball is, obviously, compact in
the topology of L!(€2), the existence of the global attractor A follows, see [BV] and
[T]. Its boundedness is now a consequence of the fact that the global attractor is
contained in any absorbing set and description (2.6) follows from the standard de-
scription of the global attractor via bounded complete trajectories of the associated
semigroup, see [BV]. This finishes the proof of Theorem 2.1.

Our next task is to establish the existence of an exponential attractor for the
semigroup S(t) associated with equation (1.1), which implies, in particular, the
finite-dimensionality of the global attractor constructed in the previous theorem.
We first give the definition of an exponential attractor adapted to our framework.

Definition 2.2. A set M C @ is an exponential attractor for the semigroup S(t)
associated with problem (1.1) if the following conditions are satisfied:

1) it is bounded in ® and compact in L!(Q);

2) it is semi-invariant, S(¢)M C M, Vt > 0;

3) it has finite fractal dimension in L(£2),

dims (M, LY(Q)) < C < oo;

4) it attracts exponentially the images of all bounded subsets of @, i.e., there ex-
ists a positive constant a and a monotonic function @ such that, for every bounded
subset B of the phase space ®, there holds

(2.7) dist 1 () (S(#) B, M) < Q(||B|| L (0)) e,

for all t > 0.
The following theorem can be considered as the main result of this article.

Theorem 2.2. Let the assumptions of Theorem 1.1 hold and let, in addition, the
nonlinearity B belong to C%(R) and satisfy assumption (1.44). Then, the semigroup
S(t) associated with the degenerate problem (1.1) possesses a finite-dimensional
exponential attractor M in the sense of Definition 2.2 which is bounded in L>°(£2)N
Wi2(Q).

The proof of this theorem will be completed in the next section. In the remaining
of this section, we formulate an abstract result on the existence of an exponential
attractor which is close to that given in [MZ] (see also [EfMZ]) and is the main
technical tool to prove Theorem 2.2.

Proposition 2.1. Let Hi and H, H1 C H, be two Banach spaces such that the
embedding Hi1 C H is compact and let C be a closed bounded subset of H. Assume
also that there exists a map S : C — C which satisfies the following properties:

1) it is globally Lipschitz continuous on C, i.e., for every ¢y, co € C, there holds

(2.8) |Ser = Sea|ln < Lifer — eal|a,
14



where the Lipschitz constant L is independent of the choice of ¢1 and co belonging
to C;

2) there exists an integer No such that, for every ¢ € C, there exists n = n(c) €
{0,---, Nog — 1} such that, for every c; € C, there holds

(2.9) |Sc1 — Seal|ln, < Kl|ler — eal|ln, c2:=S8(n)c,
where the discrete semigroup generated on C by the iterations of S is denoted by
{8(l), I € N} and the constant K is independent of ¢ and c;.

Then, the discrete semigroup S(l) possesses an erponential attractor M on C,
i-e., there exists a set M C C which satisfies the following properties:

1) it is a compact subset of C;

2) it is semi-invariant, S(H)M C M, VI € N;

3) it has finite fractal dimension in H,

(2.10) dims (M, H) < Ci;
4) it attracts exponentially the images of C in the metric of H,
(2.11) dist# (S(1)C, M) < Cye™ VI € N.

Moreover, the positive constants Cy, Cs and « can be expressed explicitly in terms
of K, L, Ny and some qualitative characteristics of the embedding H, C H.

The proof of this proposition repeats word by word that given in [MZ] and is
therefore omitted.

§3 PROOF OF THE MAIN RESULT.

In this section, we complete the proof of Theorem 2.2 and establish the existence
of a finite-dimensional exponential attractor for the semigroup S(t) associated with
the degenerate equation (1.1). To this end, we need the following result.

Proposition 3.1. Let the assumptions of Theorem 2.2 hold, let u be a solution
of problem (1.1) and let [Ty, To + p] belong to one of the reqularity intervals found
in Proposition 1.1. The latter means that, on this time interval, we can control
the L?-norm of 0;Vu by (1.44). Then, for every other solution u(t), t > Ty, of
equation (1.1), the following estimate holds:

To+u
(3.1) /T o lu(t) = @) 1§20 dt < ClIB(u(To)) — B(@(To))lI7: @)

where the constant C' only depends on p and the L°°-norms of u and u and is
independent of the concrete choice of u and u.

Proof. As in Proposition 1.1, we only give below the formal derivation of estimate
(3.1), which can be easily justified by using the approximate equations (1.6).
We set v(t) := u(t) — u(t). Then, this function obviously solves

(3.2) G[B(u(t)) — B(u(t))] = div[a(Vau(t)) — a(Vau(t))] — [f(u(t) — f(u(t))]-
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Multiplying this equation by v(t), integrating with respect to z € Q and using the
monotonicity of a and assumption (1.4), we have

(3.3)  (9:(B(u(t)) — B(u(t))), v(t))r2(0) + 1/2(a(Vali) — a(Vau), Vo) r2(0)+
+20[|Vo0(t) 120y < C(IB(a(t)) — B(u(t))], [v(t)]) 2@y, 0 > 0.

The right-hand side of (3.3) can be estimated as follows:

(3.4)  (IB(a(t)) — B(u(t))], [o(t)) r2() =
(1B(a(t)) — B(u(t))[Y2, | B(a(t)
< C||B(a(t)) — B(u(t))||io, o), <
<OV a0(t)[|220) + CrI B(a(t) — B(u(t))||210)-

) = Bu(O)? - o(t)]) z2(0) <
|

In order to transform the left-hand side of (3.3), we use the following identity:
(3.5) O[B(u(t)) — B(u(t))] - v(t) = 0tZLy,a(t) + Opu(t) - Tualt),

where

(3.6)

with G(v) := [ B(u) du. Inequality (3.3) reads, in view of (3.4) and (3.5),

(3.7) Oh(Tua() D)oy + OIVar (D220 <
< ClIB(t)) ~ B(u(t)lBs o + Cdhuld)], [ Tuald)) 2.

In order to estimate the terms Z and J, we need the following lemma.

Lemma 3.1. Let the above assumptions hold. Then, the functions I, 4 and T4
satisfy the following estimates:

1) Iu,ﬂ, 2 0,
(3.8) 2) |Juul < CTYZ - Ju—l,
3) Zuu < C|B(u) — B(@)|"/2 - |u —al*/2,

where |u| + |u] < R and the constant C = Cr depends on R, but is independent of
u, u € R.

Proof. Since G is of class C? and G”(2) = B’(z) > 0, we have

(3.9) Tuu— /0 Bsu+ (1 — $)7) — B(@)]ds - (u— ) =

/ / (s1(su+ (1 — 8)@) + s11) dsy ds - |u — > > 0.



Thus, (3.8), is verified. Let us now check (3.8), and (3.8),. Let first assumptions
(A) for the nonlinearity B be satisfied. Then, since B'(u) ~ |ulP, estimate (3.9)
can be rewritten as follows:

(310) Co(B'(w) + B'(@)) - Ju— il > L0 >
> Cllul? + [af?)| - [u— 4> > Cy(B'(u) + B/ (@) - [u— af?,

see [Z1] for details. Analogously, using, in addition, (1.44), we can estimate J, 4
as follows:

1 1
(3.11) |Ju,u|:/ / B (s1(su + (1 — 8)@) + 517)| ds1 ds - |u — a2 <
o Jo
11
§C’/ / |B'(s1(su+(1—s)a)+s1@)|*>*ds; ds < C1(B'(u)+B'(0))** |u—ul|?
o Jo

and, concerning the difference B(u) — B(u), we have
(3.12) |B(u) — B(a)| > C(B'(u) + B'(a)) - |u — .

Since 1/2 < 3/4, estimates (3.10)—(3.12), together with the fact that |u| + |u| < R,
imply estimates (3.8), and (3.8);. Thus, when assumptions (A) hold, Lemma 3.1
is proven.

Let us now consider assumptions (B). To this end, we note that, if v > 0 and
u > 0, we have exactly the same situation as with assumptions (A), so that all
the estimates of the lemma are already verified. The case u < 0 and u < 0 is also
obvious since, in that case, both sides of inequalities (3.8) are identically equal to
zero. So, we only need to consider the following two cases:

1) u >0 and u < 0;

2) u <0 and u > 0.

Let us consider case 1). Then, (3.8) reads

2) B'(u)(u— 1)~ B(u) < G(w)'/? - |u—al,
(8:13) { 3) G(u) < B(u)'/? . |ju— a2

We note that, in that case, |u —u| > |u|. Moreover, since B’(u) ~ |ulP, p > 0, then,
G(u) < CB(u)}?u3/2 near u = 0, which implies (3.13),. In order to verify (3.13),,
it suffices to note that (1.44) implies

(3.14) B'(u) < C[B'(w)]** - |u|, G(u)> CB'(u)-|ul?

This inequality, together with the fact that |u — @ > |u|, imply (3.13),. Thus,
Lemma 3.1 is also verified in case 1).
Let us now consider case 2). In that case, (3.8) reads

2) B(a) < C[B(@) (i —u) — G(@)]"? - @ — ul,

(3.15) { 3) B(u)(u—u) — G(u) < B(a)'/? - |a —ul3/2.

Since B'(u) ~ 4P and @ — u > 4, we have
(3.16) B(u)(@—u) —G(u) > B(u)u — G(u) =

1
= / sB'(su) ds - u® > CaP™ > C1G(a).
0
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Moreover, analogously to (3.14),

(3.17)  C1[B'(w)]**a® < B(u) < Cy[B' ()
CsB'(u)u < B(u) < CyB'(u)u, C5B’(a)a2 < G(u) < CeB'(u)u?.

Estimates (3.16) and (3.17) imply (3.15). Thus, estimates (3.8) are verified in all
cases and Lemma 3.1 is proven.

It is now not difficult to finish the proof of the proposition. To this end, we
multiply equation (3.7) by (t — Tp)* and set Z, 4(t) := (t — To)*(Zu,a(t), 1) 12()-
Then, we have
(3.18) 9 Zua(t) +0(t = To)* | Vav(t) 220y < 4((t = To)*, Zua(t)) 20+

+ (10su(t)], (t = To)*|Tua(®)]) £2(0) + (t = To)* || B(u(t)) — B(a(®))||71(q)-

Using (3.8);, we can estimate the first term in the right-hand side of (3.18) as
follows:

(3.19) ((t = T0)*, Tuw)ro) < C(IB(u) = B@|[Y2, (t = To)*o]*/?) 12 <
< G| B(u) = B(@)||h{q) (t = To)*|[vl[(, <
< Col| B(u) = B(@)|| 710y + 0/4(t — To)* IV 0|72 (-

Analogously, using (3.8), and the embedding W12(Q) C L5(€2), we can estimate
the second term in the right-hand side of (3.18),

(3.20)  (|0pul, (t — To)* Tu,a) L2y < C|10wul, (t — To) Tz - [v])22(0) <
< C0pul|po@) [(t = To)*(Zu,as 1) 2(0)) 2 (t — To)*||v]| 13y <
S C’||8tiu||%2(Q)Zu,g + 9/4(t - T0)4||V$1}||%2(Q)

Inserting these estimates into (3.18), we finally have

(3:21) 2 Zu.u(t) — ClOVou(t) 720y Zu,a(t) +0/2(t = To)*||Vav(t)]|72(q) <
< C'(1+ (t = To))IB(u(t)) — Ba®)I1: o)-

We recall that, due to our assumptions, the time interval [Ty, Ty + 7] is a regular
interval with respect to the solution wu, i.e., on this interval, Proposition 1.1 allows
to control the L2-norm of 9,V u,

To+p N

(3.22) /T 10:Vau(t)[| 720y dt < Q(l[ull L (0,11x))-
0

Moreover, according to estimate (1.28), we have

(3:23)  [IB(u(t)) = Ba(®)|lri(e) < CeXB(u(Ty)) — B(a(Th))ll: ).
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Applying the Gronwall inequality to (3.21) and using (3.22), (3.23) and the fact
that Z, 4(To) = 0, we deduce that

(3.24) Z,a4(t) <

< Q([ull Lo (0,11 2) + [l o< (jo.77x2) [ B(u(To)) — B(a(To)l1 10y
S [TO,TO + ,LI:],

for some monotonic function ) which is independent of the concrete choice of u
and 4. Integrating now inequality (3.21) with respect to t € [Ty + p/2, Tp + p] and
using (3.22-3.24), we obtain estimate (3.1) for the L*(W12?)-norm of v and finish
the proof of Proposition 3.1.

The next corollary is crucial in order to verify the second assumption of Propo-
sition 2.1 in our situation.

Corollary 3.1. Let the assumptions of Proposition 3.1 hold and let w, u and
[To, To + p] be the same as in this proposition. Then, the following estimates hold:

(3.25)  |0:B(u) — 0y B(W) || 2 (170 +4/2, To+1, W~ 1:2(2)) +
+[|B(uw) = B(W)||L2([Totn/2,To+u), w2 () < K[| B(u) — B(w)|| 21 (110, To+1/21x )

where the constant K only depends on p and the L -norms of u and 4, but s
independent of the concrete choice of u and .

Proof. We first note that, for every two solutions u and @ of equation (1.1) and
every 6 > 0, the following estimate holds:

(3.26) |1B(u(d)) — B(u(9))ll1 (@) < Csl|B(u) = B(@)||L1(0,6x )

where the constant Cs only depends on § and the L°°-norms of u and u. Indeed,
in order to prove this estimate, it suffices to multiply equation (3.2) by ¢ sgn(u(t) —
u(t)), integrate over [To, To + /2] x € and use the Kato inequality.

Combining the smoothing property (3.26) with Proposition 3.1, we check that
the following estimate holds:

To+up
(3.27) / Ju(t) = w(t) 5120y dt < ClIB(u) = B@) |31 7, 14 p0/21x )
To+p/2

In order to deduce (3.25) from (3.27), it is sufficient to note that, expressing
0¢(B(u) — B(u)) from equation (3.2) and using the fact that the L°°-norms of
u and u can be controlled, we have

(3.28)  [|0¢(B(u(t)) — B(@(t)))|I5-1.2(0)+

+ | Va(B(u(t)) — B(a(t)||72(q) < Cllut) — a(t)|[51.2(q),
where the constant C' only depends on the L*-norms of v and @. Thus, Corollary
3.1 is proven.

We are now ready to finish the proof of Theorem 2.2 by verifying the assumptions
of Proposition 2.1 for some proper discrete semigroup associated with equation
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(1.1). In order to construct it, we first construct a semi-invariant absorbing set B
for the semigroup S(t) associated with equation (1.1). As shown in the proof of
Theorem 2.1, the ball

(3.29) By := {by € L>®°(Q) N W(Q), ||bol|z=(q) + |[bollwr2) < R}

is an absorbing set for this semigroup if R is large enough, but it is not necessarily
semi-invariant. In order to overcome this difficulty, we transform this set in the
following standard way:

(330) B = [UtZO S(t)BO] L1(Q)’

where []y denotes the closure in the space V. Then, on the one hand, this new
absorbing set remains bounded in L () N W12(Q) (due to Theorem 1.1 and
Lemmata 1.2-1.3), i.e., for every trajectory u(t) starting from B(u(0)) = by € B,

(3.31) |w(t)]| oo () + [w(®)|lwr2@) + 0B (W) 2t t411x0) < C,

where the constant C' is independent of u and ¢ > 0. On the other hand, this set
is, obviously, semi-invariant with respect to S(t),

(3.32) S(t)B C B.

Then, according to Proposition 1.1, there exists 7 > 0 such that, for every trajectory
u(t) starting from B and every time interval [T, T + 1] of length one, there exists a
subinterval [Ty, Tp + 7] C [T, T + 1] of length 7 on which the L2-norm of 0;V u is
controlled as follows:

T0+T
(3.3) [ 1050y i < .
Ty

where C' is independent of the trajectory w starting from B. Thus, it is sufficient
to construct the required exponential attractor on the absorbing set B only.
Let us now fix y = 1/N, where N € N is large enough so that

(3.34) 1/N < 71/3,
and introduce the following spaces of functions depending on z and t:

H = L'([0, /2] x ),

(3.35) 1,2 -1,2 2 1,2
Ha o= W0, p/2], W22(Q)) N LA([0, /2], WH7(Q).

Then, H; is compactly embedded into H (see, e.g., [LSU]). We also introduce the
trajectory analogue of the absorbing set B as follows:

(3.36) By, :={B(u(t)), t € [0, /2], u(t) solves (1.1) with B(u(0)) € B} C H
and define the p/2-shift map S on By, by

(3.37) (Sv)(t) := S(p/2)v(t), v € By,
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Then, the semi-invariance (3.32) implies that the set By, is also semi-invariant with
respect to the shift map S,

(338) S: Btr — Btr-

Our next task is to verify the conditions of Proposition 2.1 for the map (3.38).
Indeed, estimate (1.28) immediately implies that the map S is globally Lipschitz
continuous on B;,. and we only need to verify the second assumption of Proposition
2.1 and inequality (2.9). Indeed, due to our choice of the number u, for every
trajectory u(t) starting from B (or, equivalently, for every trajectory of the discrete
semigroup S(n) starting from by := {B(u(t)), t € [0,1/2]}), at least one of the
intervals

(3.39) [0, p], [, 20], -+, [(N = 1), Ny

(let it be the interval [ngu, (ng + 1)u]) belongs to the regularity interval of u, i.e.,
estimate (3.33) is satisfied on [nou, (ng + 1)p]. Thus, due to Corollary 3.1, we have

(3.40) 1Sw — St||3, < K|jw — 9|3, Y € By,

where w = §(2ny)bg. So, the second assumption of Proposition 2.1 holds for S
with Ny = 2N.

Thus, we have proven that the discrete semigroup S(n) generated by the itera-
tions of the shift operator & possesses an exponential attractor My, C By which
is finite-dimensional and satisfies properties 1)-4) of Proposition 2.1.

We now recall that, due to estimate (3.26), the projection map II,

(3.41) IT: By — B, Tv=wv(p/2), veE DBy,

is globally Lipschitz continuous. Consequently, projecting the trajectory attractor
M, onto B, we obtain an exponential attractor My := IIM;, for the discrete
semigroup {S(nu/2), n € N} on B which satisfies all properties 1)-4) of Proposition
2.1 with # = LY(Q).

Thus, there only remains to pass from the exponential attractor M, of the
semigroup S(nu/2) with discrete times n € N to the semigroup S(¢) with continuous
times ¢ € Ry. To this end, we note that the map (¢, by) — S(t)b is uniformly Holder
continuous with respect to (¢, bg) € [0, /2] x B with H6lder exponent 1/2. Indeed,
the Holder (and even the Lipschitz) continuity of S(t)by with respect to by is an
immediate consequence of (1.28) and the Hélder continuity with respect to ¢ follows
from the following simple estimates:

t+s
(3-42) [|B(u(t + s)) — B(u(t))llLr @) = | t B'(u(k))dpu(k) dil| ) <

t+s

</ B ). [0y ) gy s < ( ) dn) e

2 1/2
X (/0 (B'(u(k))0pu(k), 0pu(k)) L2(0) dn) < Cs'/2,

Thus, the required exponential attractor M for continuous times can be constructed
by the following standard formula:

(3.43) M = [UtE[O,u/Q] S(t)Md]

see [EFNT] for more details. So, our main theorem on the existence of an expo-
nential attractor for the degenerate equation (1.1) is proven.
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§4 GENERALIZATIONS AND CONCLUDING REMARKS.

In this concluding section, we discuss possible generalizations of the results ob-
tained above and indicate several alternative methods to prove the finite-dimensio-
nality of attractors.

Remark 4.1. To start with, we note that assumption (1.2), requires the nonlin-
earity a(V,u) to have a linear growth. However, this assumption is not essential
and can be replaced by a standard polynomial growth of order p:

(4.1) Ru(L+[2P72) < A"(2) < ka1 +[2777),

for some fixed p > 2 and positive constants k1 and ko. In that case, of course,
we will, thanks to energy inequalities, control the W1 P-norm of the solution u
(instead of the usual W' 2-norm). Indeed, an accurate analysis shows that the
global boundedness of A”(u) has been used only in the proof of Corollary 3.1
and only in order to obtain the control of the W ~12-norm of d;(B(u) — B(u)), see
estimate (3.28). In the general case p > 2, this estimate fails and should be replaced
by an appropriate estimate of the L9-norm, with % + % =1,

(4.2)  [10:(B(u) = B@)|a(is.m,w-1a(y) < la(Veu) = (V@) || 1a(s 1100y T
+ (1 f () = F(@)Fa .m0y < Cllulloeqs,owrr@) + il Le s wir@))? 2%
x (a(Vyu) — a(Vii), Vou — Vi) p2 s mixe) + Cllu — ll7. (s mxa) <
< C1(1+|T = S[P7?)(a(Vau) — a(Vau), Veu — Vatl) 12 (1s,11x0),

where we have used estimates (4.1), together with the fact that the Lo (W1P)-
norms of u and % can be controlled. There remains to note that the scalar product
in the right-hand side of (4.2) can be controlled by an analogue of Proposition 3.1,
see estimate (3.3). Thus, the estimate of Corollary 3.1 remains true if we replace
the L2(W~=12)-norm by the LI(W ~%9)-norm and, consequently, the space H; in
(3.35) should be replaced by

Hy = WHA([0, /2], WHI(Q)) N L2([0, /2], WH(9)).

Since this change does not destroy the compactness of the embedding H, C H,
the remaining of the proof of Theorem 2.2 does not change as well. Therefore, the
main result of this article (Theorem 2.2 on the existence of a finite-dimensional
exponential attractor) remains true under the more general assumption (4.1).

Remark 4.2. We now discuss the regularity assumptions of the domain €2. Indeed,
although we have assumed the boundary 0€2 to be smooth, this assumption has been
used only in Lemma 1.3 (in order to verify the L?(W?*?)-regularity of the solutions)
and in Theorem 1.2 (in order to make sure that the solutions w, of the approximate
problem (1.6) are regular enough). However, the W2 2-regulartity of the solutions
is, in fact, nowhere used in the sequel and all the other estimates do not require the
domain €2 to be regular. Indeed, we have factually only used the Sobolev embedding
Wy?(Q) ¢ L8(Q2) and some interpolation inequalities which do not require any
regularity of the boundary (due to our choice of Dirichlet boundary conditions;
for Neumann boundary conditions, the Lipschitz continuity of the boundary is
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required). Thus, analyzing the solutions of the approximate problems (1.6) in
a more accurate way, we see that the main results of the article hold, e.g., for
Lipschitz domains (and even for some non-Lipschitz ones).

Remark 4.3. We now note that the above results are also valid (with a lot of
simplifications) in the non-degenerate case

(4.3) B'(u)> k>0

as well. Indeed, in that case, assumption (1.44) is automatically satisfied (for B
of class C?) and assumption (1.4) also holds automatically, since, now, B(z) ~ z
near zero. However, our method may seem artificial in this situation. Indeed,
under assumption (4.3), equation (1.1) can be rewritten in the form of a quasilinear
second-order parabolic equation,

(4.4) Opu = [B'(w)] ™ A (Vo) 0,00, — [B'(w)] 71 (f(u) — g).

The analytic properties of such equations in the non-degenerate case are very
well understood, see, e.g., [LSU], and we can use the classical and powerful reg-
ularity theory of such equations. Indeed, in particular, if B, a € C?(R) and
g € C*(Q), for some « > 0, then, due to the interior regularity estimates, equa-
tion (4.4) (or, equivalently, equation (1.1)) possesses an absorbing ball in the space
CH+e/22+o ([T, T + 1] x Q),

(4.5) [wllgrearzzvaqrit roxa) < QUIu(T)| L~ (@),

see, e.g., [LSU], Chapter 6, Sections 1-6. Having this estimate, one can verify the
finite-dimensionality of the global attractor, e.g., by the classical volume contraction
method and verify the existence of an exponential attractor by proving the following
simpler smoothing property for the difference of two solutions:

eK

t
(4.6) SO = SORlr @ < O = Bl ¢ >0,

instead of the complicated version of such an inequality formulated in Proposition
2.1. Thus, our article is mainly oriented towards the degenerate case when (4.3)
fails and when the reduction to (4.4) and the regularity (4.5) also fail (see also the

next remark).

Remark 4.4. We now discuss an alternative method to prove the finite-dimensio-
nality of the global attractor in the degenerate case (when assumption (4.3) is
not satisfied). In contrast to the regular case, one cannot expect the existence of
classical solutions or/and the smothing property (4.5) to hold in the degenerate
case (even if all the terms are of class C*) and the best regularity which can be
expected for our equation is the following Holder continuity:

(4.7) [ullgarz.arir,rroxe) < QUUT) L~ @), T >0, a>0,

see [D2], [DUV] and the references therein for precise conditions which guarantee
Holder continuity results for degenerate second-order parabolic equations.

However, there exists a general method (suggested in [EfZ1]) which allows to
extract the finite-dimensionality (and the existence of an exponential attractor)
from this Holder continuity and the L!-Lipschitz continuity with respect to the
initial data. The application of this method to our problem gives the following
result.
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Proposition 4.1. Let the assumptions of Theorem 1.1 hold and let, in addition,
a, B be of class C?, the Hélder continuity estimate (4.7) be satisfied and the fol-
lowing monotonicity assumption:

(4.8) (1) = f(z2)] 2 BB(21) - Blz2)l, x>0,

hold, for every zy and zs in a small neighborhood of all the degeneration points of
B. Assume also that g € C*(R2), for some a > 0. Then, the global attractor A of
problem (1.1) is finite-dimensional and there exists an exponential attractor for this
problem in the sense of Definition 2.2.

Sketch of the proof. We briefly recall here the main idea of [EfZ1] by considering,
for simplicity, the case of one degeneration point for B at z = 0, i.e., assumptions
(A) hold. In that case, we can consider the usual framework, i.e., S(t) maps u(0)
onto u(t). Let B be an absorbing set of the semigroup S(¢) (for which the uniform
Holder continuity holds due to (4.7)) and let B.(ug) be an e-ball in the metric of
LY(€) centered at ug € B. Then, since ug is continuous, we can split the domain
into the union of two subdomains,

(4.9) Q=0Q4(u) UQ_(ug), Qy:={r€Q, |up(r)| > B},
Q_={zx€Q, |uy(z)| <28},

where 3 is a sufficiently small positive number. Moreover, since the semigroup S(t)
is globally Lipschitz continuous in the L'-metric and the norm ||ul|ca/z(o r)x0)
is uniformly bounded with respect to all trajectories starting from B, then, for ¢
sufficiently small, there exists T' > 0 (which is independent of ug and €) such that,
for every trajectory u(t) such that u(0) € B.(ug) N B, the following estimates hold:

{ lu(t,z)| > /2, (t,z) € [0,T] x Qq,

(4.10) lu(t,x)| < 38, (t,z) €[0,T] x Q_.

In other words, all the trajectories starting from Be(ug) N B remain uniformly close
to the degeneration point z = 0 for z € {2_ and are uniformly non-degenerate for
x € Q4 if t <T. This simple observation is the key point of the method and is the
precise reason why we need an assumption on the Holder continuity.

Furthermore, since the above trajectories are (uniformly) non-degenerate on
[0,T] x Q4, then, (4.3) holds on this domain and we can rewrite equation (1.1)
in the form (4.4) on the domain Q. Then, the parabolic regularity theorem men-
tioned above yields that v € C1+®/2:2+([0, T] x ) and the norm in this space
is uniform with respect to all trajectories starting from B.(ug) N B. Therefore, the
difference v(t) := uq (t) — ua(t) between two such solutions restricted to Q. satisfies
a linear second-order parabolic equation with regular coefficients and, thus (roughy
speaking, see [EfZ1] for a precise formulation), we have, for the ,-component of
the difference v(t), a smoothing property which is analogous to (4.6) (of course,
v‘ 00, # 0, so that the precise formulation should contain some interior estimates
and cut-off functions).

On the other hand, fixing 8 > 0 small enough so that inequality (4.8) holds, for
all z; and 2o with |z;| < 38, i = 1, 2, and applying the L-Lipschitz continuity
estimate in the domain Q_ to the equation for the difference v(t), we have

(4.11) [IB(u1(t)) = B(uz(®)llz1 ) < e™™[|B(u1(0)) — B(u2(0))lz1ay, t<T
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(again, roughly speaking, since v‘ a0 7 0, and some cut-off functions are neces-

sary).

Thus, we have a uniform (with respect to all initial data belonging to B.(ug)NB)
contraction of the {2_-component of the difference of two solutions and a uniform
smoothing property for their Q,-component. As shown in [EfZ1], this decomposi-
tion is sufficient to verify that the image S(T)(B.(up) N B) of an e-ball centered at
ug can be covered by a finite number N of ye-balls in L1(Q), with y < 1 and N inde-
pendent of € and g, and this last assumption implies the finite-dimensionality and
the existence of an exponential attractor, see [EfZ1] for details. Thus, Proposition
4.1 is proven.

The essential advantage of the method introduced above is that, in contrast to
our scheme developed in Sections 2 and 3, where we factually need the nonlinearity
B to be of class C® near the degeneration points, this method does not require any
regularity on B near the degeneration points and B of class C? is necessary only
outside the degeneration points (i.e., in the domain Q). Near the degeneration
points (i.e., in Q_), we do not need any regularity assumption on B and only need
the monotonicity estimate (4.8) to be satisfied.

However, in contrast to the classical De Giorgi theory for non-degenerate second-
order parabolic equations, the Holder continuity for degenerate equations is a non-
trivial and delicate fact which can be even violated, e.g., for some elliptic-parabolic
equations. In fact, we do not know whether or not the Holder continuity holds
under assumptions (B) in the elliptic-parabolic case. That is the reason why we
chose to give an alternative proof which is based on relatively simple energy type
estimates in this article.

Remark 4.5. To conclude, we note that it would be very interesting to prove
the existence of exponential attractors when the function B(u) has singularities or
discontinuities (e.g., for Stefan-like problems). However, the above methods do not
work in this situation, since inequalities of the form (4.8) cannot be satisfied if B
has singularities and f is regular. The only type of singularities which we are able
to treat are the discontinuities of the derivatives of B.

Indeed, let us consider the following particular case of equation (1.1):

(4.12) { 0y B(u) = alAzu— f(u)+ g,

:0, B(’LL :bo,

u‘asz )‘tzo

where a > 0 is some fixed number and the function B is only Lipschitz continuous,
(413) Iﬁ',1|Z1 — Z2|2 S [B(Zl) — B(Zz)].(zl — 22) S Iﬁ}2|21 — Z2|2,

with positive constants k1 and Ks.

Proposition 4.2. Let the nonlinearity B satisfy (4.13) and the nonlinearity f be
Lipschitz and satisfy the dissipativity assumption (1.3). Then, the semigroup S(t)
associated with equation (4.12) via (2.2) possesses an exponential attractor M in
the sense of Definition 2.2.

Sketch of the proof. Let uq(t) and uz(t) be two solutions of (4.12) starting from an
absorbing set in L°°(£2). Then, multiplying the equation for the difference of two
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solutions u; and us by (—A;) " (B(u1) — B(uz)) and using (4.13), together with
the Lipschitz continuity of f, we have

d
(4.14)  —[|B(u1) — B(us)|| 31 (o) +
+0||B(ur) = B(uz)l|72 () < C|IB(u1) — Bluz)llFr-1 (0,

with some positive constants C' and € which are independent of vy and us. Fixing
now some T > 0, multiplying (4.14) by ¢ and integrating over [0, T'], we deduce that

(4.15)  [|B(ua(T)) = B(uz(T)lz-1 0y < CrllB(ur) — B(uz) |22 (10,17, ()

Integrating then relation (4.14) with respect to ¢ € [T,2T] and using (4.15), we
infer

(4.16) || B(u1) — B(u2)l|L2((r,211,2(2)) < Crl|B(u1) — B(u2)|l 220,17, H-1 ()5
with some constant C'r depending on T'. Finally, we deduce, from the equation for

the difference between u; and wus, together with (4.13) and the Lipschitz continuity
of f, that

(4.17) |0:B(u1) — 0 B(u2)|| L2 (1,21, 5-2(0)) < Cl|B(u1) — B(u2)|| 12 (7,277,22(0))-
Thus, combining (4.16) and (4.17), we have
(4.18)  [|B(u1) — B(u2)llwr2(r,2r,m5-2@)nL2 (121,02 (Q) <

< Cr||B(u1) — B(u2)llz2(jo,11,1-1 (2))>
with some positive constant Cr which is independent of the choice of the trajectories

u1 and wus starting from the absorbing set.
Since the embedding

WhA([0,T], H=2()) N L*([0,T], L*()) € L*([0,T], H™())

is compact, inequality (4.18) allows indeed to construct an exponential attractor
for the semigroup S(t) in the topology of H~1(Q) by the I-trajectories method,
see [MP]. Since the H'-norm can be controlled on the absorbing set, we obtain, by
interpolating between H~1(2) and H'(f2), the existence of an exponential attractor
in the topology of L?(Q) (and even LP(), p finite) as well and Proposition 4.2 is
proven.

Example 4.1. Although the result of Proposition 4.2 does not apply to the Ste-
fan problem, it gives however the finite-dimensionality of attractors for some free
boundary problems. In particular, the following free boundary problem:

Opu = arAzu — fi(u), u>0,
(4.19) Opu = agAzu — fa(u), u <0,

u‘_l_ = u‘_, 8nu‘+ -|-0nu‘_ =0, u=0,
where a1, as > 0, the functions f;, ¢ = 1, 2, satisfy the dissipativity assumption
(1.3) and f1(0) = f2(0) = 0, can be rewritten in the form (4.12), with

{ a1_12’ z >0, 1(z) = { al_lfl(z), z >0,
L2, 2 <0, a3 f2(2), z < 0.

Thus, all the assumptions of Proposition 4.2 are satisfied and, consequently, problem
(4.19) possesses a finite-dimensional exponential attractor in the phase space L2(£2).

B(z) =

Qg
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