
THE TRAJECTORY ATTRACTOR FOR ANONLINEAR ELLIPTIC SYSTEM IN A CYLINDRICALDOMAIN WITH PIECEWISE SMOOTH BOUNDARY
Introdu
tionIn the half{
ylinder 
+ = R+ � !, where ! is a bounded polyhedral domain inRn , we 
onsider the following ellipti
 system(0.1) � a(�2t u+�u) + 
�tu� f(u) = g(t)�nuj�! = 0 ; ujt=0 = u0Here (t; x) 2 
+, � - is Lapla
ian with respe
t to the variable x = (x1; � � � ; xn),u = u(t; x) = (u1; � � � ; uk) { is unknown ve
tor fun
tion, f = (f1; � � � ; fk) andg = (g1; �; gk) are given fun
tions, a { is a given positive selfadjoint matrix (a 2L(Rk ;Rk )) a = a� > 0and 
 is an arbitrary 
onstant matrix.Re
all that ! is plyhedral if any of its boundary points b is either regular or thereare a polyhedron H � Rn , a non regular boundary point b1 of H, open subsets U ,V of RN with b 2 U , b1 2 V , and a di�eomorphizm � : U ! V su
h that �(b) = b1and �(! \ U) = H \ V .We suppose that the nonlinear term f(u) satis�es the following 
onditions(0.2) 8><>: 1: f 2 C(Rk ;Rk )2: f(u):u � �C1 + C2jujp ; 2 + 4n�3 > p > 23: jf(u)j � C(1 + jujp�1)Here and below we denote by u:v the usual s
alar produ
t of ve
tors u and v in thespa
e Rk .The right-hand side g is supposed to belong to the spa
e [L2(
T )℄k for all T � 0where 
T = (T; T + 1)� ! and to have a �nite norm(0.3) jgjb = supT�0 jjg;
T jj0;2 <1We suppose also that the initial data u0 belongs to the spa
e V0 of restri
tions withrespe
t to ft = 0g of fun
tions from the spa
e F+0 = [HQ;b(
+)℄k (see Appendix 1)and the right-hand side g is translation 
ompa
t in L2 (see x3).The fun
tion u(t; x) is said to be a solution of the problem (0.1) if u belongs tothe spa
e [HQ;b(
+)℄k and satis�es the equation (0.1) in a sense of distributions.1991 Mathemati
s Subje
t Classi�
ation. Primary ; Se
ondary.Key words and phrases. . Typeset by AMS-TEX1



2 x1 A priori estimatesIn this Se
tion we obtain some a priori estimates for the solutions of our problem(0.1). We will use these estimates in the next Se
tions in order to prove the solutionsexistense and 
onstru
t the traje
tory attra
tor of the problem (0.1).Theorem 1.1. Let u { be a solution of the problem (0.1). Then the followingestimate is valid(1.1) ku;
Tk21;2 � C(ku0kpV0�(1� T ) + 1 + kg;
T�1;T+2k20;2)Here 
T�1;T+2 = [maxf0; T � 1g; T + 2℄� !, �(z) is Heviside fun
tion (�(z) = 0for z < 0 and �(z) = 1 for z � 0) and C does not depend on u.Remark 1.2. Due to the results of Appendix 1 the nonlinear term f(u) belongsto the spa
e �L2lo
(
+)�k and so the equation (0.1) 
an be 
onsidered as equality inthis spa
e.Proof. By the de�nition of the spa
e V0 there exists a fun
tion v 2 HQ;b(
+) su
hthat supp v � 
0, v��t=0 = u0 and(1.2) kv;
0kQ � Cku0kV0where the 
onstant C does not depend on u0.Let us rewrite our problem with respe
t to a new unknown fun
tion w = u� v(1.3) � a(�tw +�xw)� 
�tw � f(w + v) = g(t) + a(�tv +�xv)� 
�tv � h(t)w��t=0 = 0It follows from the 
hoi
e of v that(1.4) kh;
Tk0;2 � C(kg;
Tk0;2 + �(1� T )ku0kV0)Let �(t) = �T (t) be the following 
ut{of fun
tion�(t) = � (jt� T + 1=2j � 1) 2pp�2 ; for t 2 [T � 1=2; T + 3=2℄0 ; for t =2 [T � 1=2; T + 3=2℄It is very easy to 
al
ulate that �0 2 L1(R) and the following estimate is valid(1.5) j�0(t)j � C�(t) 12+ 1p ; t 2 RLet us multiply the equation (1.3) in Rk by the fun
tion �w and integrate over 
+(1.6) 
a�2tw; �w�+ ha�xw; �wi � h
�tw; �wi � hf(v + w); �wi = hh; �wiIt follows from the positivness of a and from the estimate (1.5) that(1.7) � 
a�2tw; �w� � C1 
�j�twj2; 1�� hj�0jj�twj; jwji �� C1 
�j�twj2; 1�� C12 
�j�twj2; 1�� C D�2=pjwj2; 1E �� C2 
�j�twj2; 1�� C D�2=pjwj2; 1E



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 3Applying Holder inequality to the se
ond term of (1.6) we obtain(1.8) j h
�tw; �wi j � � 
�j�twj2; 1�+ C� 
�jwj2; 1� �� � 
�j�twj2; 1�+ C� D�2=pjwj2; 1EThis estimate is valid for any positive �.Due to the 
onditions to our nonlinear fun
tion f(u)(1.9) hf(w + v); �wi = hf(w + v):(w + v); �i � hf(w + v); v�i �� �C + C1 h�jw + vjp; 1i � C 
1 + jw + vjp�1; �v� �� �C2(1+ h�jvjp; 1i)+C3 h�jwjp; 1i � �C4(1+�(1� T )ku0kpV0)+C3 h�jwjp; 1iHere we've used the embedding (A.11) and the estimate (1.2).Using the positiveness of a we obtain after integrating by part(1.10) �ha�xw; �wi � C 
�jrwj2; 1�And due to the estimate (1.4) and Holder inequality(1.11) j hh; �wi j � 
�jhj2; 1�+ 
�jwj2; 1� �� C(
�jgj2; 1�+ �(1� T )ku0k2V0) + C1 D�2=pjwj2; 1ERepla
ing all terms of equality (1.6) by their estimates (1.7){ (1.11) we get aftersimple 
al
ulations(1.12) 
�j�twj2; 1�+ 
�jrwj2; 1�+ h�jwjp; 1i � C D�2=pjwj2; 1E �� C1(1 + 
�jgj2; 1�+ �(1� T )ku0kV0)Let us estimate the last term at the left{hand side of (1.12) by Holder inequalityD�2=pjwj2; 1E = Dj�1=pwj2; 1E � C h�jwjp; 1i2=p � � h�jwjp; 1i+ C�for any positive �. Let us take � > 0 suÆ
iently small and apply this estimate tothe inequality (1.12)(1.13) 
�j�twj2; 1�+
�jrwj2; 1�+h�jwjp; 1i � C2(1+
�jgj2; 1�+�(1�T )ku0kV0)Re
all that by de�nition �(t) > C0 > 0 for t 2 [T; T +1℄. Hen
e it follows from theestimate (1.13) that(1.14) kw;
Tk21;2 � C(1 + �(1� T )ku0kpV0 + kg;
T�1;T+1k20;2)Theorem 1.1 is proved.Remark 1.3. It follows also from the estimate (1.13) that(1.15) ku;
Tkp0;p � C(�(1� T )ku0kpV0 + kg;
T�1;T+2k20;2)



4Theorem 1.4. Let u be a solution of the equation (0.1) then for every T � 0 thefollowing estimate is valid(1.16) ku;
Tk2(p�1)0;2(p�1) �� C(1 + kg;
T�1;T+2k20;2 + ku;
T�1;T+2kp0;p + �(1� T )ku0k2(p�1)V0 )Here the exponent p were de�ned in (0.2).Proof.Let us �x some T � 0 and de�ne another 
ut{o� fun
tion '(t) 2 C10 (R), su
hthat '(t) = 1 for t 2 [T; T + 1℄ and '(t) = 0 for t =2 [T � 1; T + 2℄, 0 � '(t) � 1.Multiplying the equation (1.3) by the fun
tion 'wjwjp�2a , where jwja � (aw:w)1=2and integrating over 
+ we obtain the following equality(1.17) 
a(�2tw +�xw); �wjwjp�2a � == 
'
�tw;wjwjp�2a �+ 
'f(w + v):w; jwjp�2a �+ 
'h;wjwjp�2a �Re
all that due to the the spa
e HQ de�nition �2tw + �xw 2 L2 and due to theembedding (A.11) fun
tions wjwjp�2a and f(w+v) are also from the spa
e L2 hen
eall of the integrals in (1.17) are 
orre
tly de�ned. Moreover due to Theorem A.7wjwjp�2a 2 H1;2(
T�1;T+2) hen
e we 
an integrate by part the left{hand side of(1.17).(1.18) 
a�2tw; �wjwjp�2a � = � 
a�tw; �t(�wjwjp�2a )� == �1p h�0; �t(jwjpa)i � 
�j�twj2a; jwjp�2a �� (p� 2) 
�(a�tw:w)2; jwjp�4a � == 1p h�00; jwjpai � 
�j�twj2a; jwjp�2a �� 4(p� 2)p2 D��t(jwjp=2a ); �t(jwjp=2a )E �� C1kw;
T�1;T+2kp0;p � C2 D��t(jwjp=2a ); �t(jwjp=2a )EAnalogously 
a�xw; �wjwjp�2a � � �C2 D�rx(jwjp=2a );rx(jwjp=2a )EHen
e(1.19) � 
a(�2tw +�xw); �wjwjp�2a � � C1kw;
T�1;T+2kp0;p++ C2 �D��t(jwjp=2a ); �t(jwjp=2a )E+ D�rx(jwjp=2a );rx(jwjp=2a )E�It follows from Holder inequality that(1.20) j 

�tw; �wjwjp�2a � j � �D��t(jwjp=2a ); �t(jwjp=2a )E+ C� h�jwjp; 1iand(1.21) j 
h; �wjwjp�2� j � �D�jwj2(p�1); 1E+ C� 
�jhj2; 1� �� �D�jwj2(p�1); 1E+ C�(kg;
T�1;T+2k20;2 + �(1� T )ku0k2V0)



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 5Here � is an arbitrary positive number.Arguing as in redusing (1.9) we obtain(1.22) 
f(w + v); �wjwjp�2a � � �C1(1 + D�jvj2(p�1); 1E) + C2 D�jwj2(p�1); 1E �� �C3(1 + �(1� T )ku0k2(p�1)V0 ) + C2 D�jwj2(p�1); 1ERepla
ing all of the terms in equality (1.17) by their estimates (1.19){(1.22) andtaking suÆ
iently small � > 0 we obtain after simple 
al
ulations(1.23) D�jwj2(p�1); 1E �� C(1 + kw;
T�1;T+2kp0;p + kg;
T�1;T+2k20;2 + �(1� T )ku0k2(p�1)V0 )Theorem 1.4 is proved.Remark 1.5. It follows immediately from the estimates (1.16) and (1.15) that(1.24) kf(u);
Tk0;2 � C �1 + kg;
T�1;T+2k0;2 + �(1� T )ku0kp�1V0 �Theorem 1.6 (The main estimate). Let u{be a solution of the problem (0.1).Then the following estimate is valid(1.25) ku;
TkQ � C(ku0kp�1V0 �(1� T ) + 1 + kg;
T�1;T+2k0;2)Proof. Let us rewrite the equation (1.3) in the following form(1.26) ( �2t ('w) + �('w) = hw(t)'w��maxfT�1;0g = 0 ; 'w��T+2 = 0 ; �n('w)���! = 0Here ' is the same as in Theorem 1.4 and(1.27) hw(t) = '00w + 2'0�tw � a�1('h(t) + 'f(u)� 
�tw)Due to the (1.24) and (1.1) we have the following estimate(1.28) jjhw;
T�1;T+2jj0;2 � C(ku0kp�1V0 �(2� T ) + 1 + kg;
T�2;T+3k0;2)Due to the L2{regularuty Theorem (see Appendix 1)(1.29) kw;
+ \ 
T kQ � C1k'w;
T�1;T+2kQ �� Ckhw;
T�1;T+2k0;2 � C2(ku0kV0�(2� T ) + 1 + kg;
T�2;T+3k0;2)Theorem 1.6 is proved.Remark 1.7. Let the 
ondition (0.3) be valid. Then any solution u of the problem(0.1) from the spa
e H lo
2;Q(
+) is automati
ally bounded with respe
t to t!1 i.e.(1.30) kukb � supT�0 ku;
TkQ � C(1 + ku0kp�1V0 + jgjb) <1Indeed the estimate (1.31) follows immediately from the estimate (1.25)



6 x2 The solution existen
e.In this Se
tion we prove the solvability of the problem (0.1). For the �srt wesolve the following auxiliary problem in �nite 
ylinder(2.1) � a(�2t u+�xu) + 
�tu� f(u) = g(t)u��t=0 = u0 ; u��t=M = u1Here u0; u1 2 V0 and u 2 H2;Q(
0;M).We'll get solution u of the main problem (0.1) as a limit of solutions uM of the
orresponding auxiliary problems (2.1) when M !1.Theorem 2.1. Let u { be the solution of the problem (2.1). Then the followingestimate is valid uniformly with respe
t to M !1(2.2) ku;
Tk2;Q �� C(1 + �(1� T )ku0kp�1V0 + �(T �M + 1)ku1kp�1V0 + kg;
T�1;T+2 \ 
0;Mk0;2)The proof of this estimate is the same as the proof of estimate (1.25) given inthe previuos Se
tion for the 
ase of semibounded 
ylinder.Theorem 2.2. The problem (2.1) has at least one solution for any u0; u1 2 V0.Proof. Let us introdu
e the spa
e(2.3) W = �w 2 H2;Q(
0;M ) : w��t=0 = w��t=M = 0	and rewrite the problem (2.1) as an equation in the spa
e W . For the �rst werewrite our problem with respe
t to new fun
tion w = u � v, where w 2 W ,v 2 H2;Q(
0;M ).(2.4) � �2tw +�xw = a�1(�
�tw + f(v + w) + g1(t))w��t=0 = w��t=M = 0Here g1 = �a(�2t v +�xv)� 
�tv + g.Let's denote by A the inverse operator for the Lapla
ian with respe
t to vari-ables (t; x) 2 
0;M and appropriate boundary 
onditions (w��t=0 = 0,w��t=M = 0,�nw��x2�! = 0). Then due to results of Appendix 1(2.5) A : L2(
0;M)!WAplying the operator A to both sides of equation (2.4) we obtain(2.6) w + F (w) = h � �A(�2t v +�xv)where F (w) = �Aa�1(�
�tw + f(v + w) + g � 
�tv)We'll use Leray{Shauder prin
iple in the following form (see [10℄)



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 7Leray{Shauder prin
iple. Let D be a bounded open set of B-spa
e W and letF : D ! W be a 
ompa
t 
ontinious operator. Let also the point h 2 D be su
hthat(2.7) w + sF (w) 6= h forall w 2 �D and s 2 [0; 1℄Then the equation w + F (w) = hhas at least one solution in D.Let D { be a ball of suÆ
iently large radius in W and Let us suppose that(2.8) ws + sF (ws) = h for some s 2 [0; 1℄ and ws 2 �DEquation (2.8) 
an be written in the following form(2.9) � a(�2t us +�xus) + s
�tus � sf(us) = sg(t)us��t=0 = u0 ; us��t=M = u1Here us = ws + v.Equation (2.9) has the view (2.1). It is not diÆ
ult to see that the estimate (2.2)is uniform with respe
t to s 2 [0; 1℄. Hen
ejjwsjjW � Kfor all solutions of (2.9) uniform with respe
t to s 2 [0; 1℄. So 
ondition (2.7) isvalid if the radius of D is greater then K.Let's prove the 
ompa
tness of operator F . It is suÆ
ient to prove the 
om-pa
tness only for the nonlinear part Aa�1f(w + v) of this operator. To do thislet's de
ompose previous nonlinear operator in the 
omposition of three 
ontiniousoperators A Æ F2 Æ F1, and one of them is 
ompa
t (F1 : W ! L2(p�1) { em-bedding operator, wi
h is 
ompa
t be
ause 2(p � 1) < q (see Theorem A.7) andF2w = a�1f(v + w)). As known, operator F2 is 
ontinious from L2(p�1) to L2(due to 
onditions (0.2) and Krasnoselskiy theorem (see [11℄)). Hen
e operator Fis 
ompa
t and a

ording to Leray{Shauder prin
iple the problem (2.1) has at leastone solution. �Theorem 2.3. The problem (0.1) has at least one solution u 2 HQ;b(
+)Proof. Let's 
onsider a sequen
e uM of solutions of auxiliary problems (2.1) withM = 1; 2; : : : and u1��t=M = 0. It follows from Theorem 2.1 thatkuM ;
0;Nk2;Q � C(u0; N; g)uniform with respe
t toM � N (for every �xed N). So using Cantor diagonalizationpro
ess one 
an extra
t from uM a subsequen
e (whi
h will be denoted for simpli
ityas uM again) with the following propertyum��
0;N + u��
0;N in the spa
e H2Q(
0;N )



8for some u 2 HQ;b(
+). Let's prove that u is a solution of (0.1). It is suÆ
ient toprove that for every � 2 C10 (
+) the following equality is valid(2.10) �ha�tu; �t�i � harxu;rx�i+ h
�tu;�i � hf(u);�i = hg;�iIt follows from the de�nition of uM that(2.11) �ha�tuM ; �t�i � harxuM ;rx�i+ h
�tuM ;�i � hf(uM );�i = hg;�ifor suÆ
iently large M . Taking a limit M ! 1 in the equation (2.11) we obtain(2.10). Indeed the only nontrivial problem is to prove that(2.12) hf(uM);�i ! hf(u);�iLet's suppose that supp� � 
0;N . It follows from the 
onditions (0.2) and TheoremA.7 that embedding H2Q � L2(p�1) is 
ompa
t. Hen
e uM ! u in L2(p�1)(
0;N )and f(uM)! f(u) in L2(
0;N ). Theorem 2.3 is proved.x3 Traje
tory attra
tor of nonlinear ellipti
 system.In this Se
tion we 
onstru
t the traje
tory attra
tor for the problem (0.1). Re-
all shortly the main 
on
epts and de�nitions of the abstra
t theory of traje
toryattra
tors for dynami
al systems (see [6℄, [7℄ for 
omplete exposition ).De�nition 3.1. The right{hand side g of the problem (0.1) is said to be translation
ompa
t in the spa
e �+ = �L2lo
(R+ ; L2(!))�kif it's hull H+(g) = [Tsg; s � 0℄�+ ; (Tsg)(t) = g(t+ s)is a 
ompa
t set in �+. Here [�℄�+ means the 
losure in the spa
e �+ .The right{hand side g of the problem (0.1) is said to be weak translation 
ompa
tin the spa
e �+ if it's weak hullH+w(g) = [Tsg; s � 0℄(�+)wis a 
ompa
t set in (�+)w. Here and below (�+)w means the spa
e �+ endowed bya weak topology.Remark 3.2. It is di�
ult to prove (see [20℄) that if the fun
tion g is translation{
ompa
t (in a strong topology) then(3.1) H+(g) = H+w(g)Remark 3.3. It is evidant that t{periodi
 or quasi{periodi
 (or almost periodi
by Bo
hner in L2(!)) fun
tion g is translation 
ompa
t in the spa
e �+ (in strongtopology). So the 
on
ept of a translation{
ompa
t fun
tion is a some generalizationfor a 
on
ept of an almost{periodi
 fun
tion.



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 9Remark 3.4. It follows immediately from the hull's de�nition that(3.2) TsH+(g) � H+(g) and TsH+w(g) � H+w(g) for t � 0i.e the semigroup of shifts fTs; s � 0g a
ts in the spa
es H+(g) and H+w(g).Now we formulate the nessesary and suÆ
ient 
onditions of translation 
ompa
t-ness and weak translation 
ompa
tness in the spa
e �+.Theorem 3.5 [8℄.1. A fun
tion g is weak translation 
ompa
t in �+ if and only if it is boundedwith respe
t to t!1 i.e jgjb <1.2. A fun
tion g is translation 
ompa
t in �+ if and only if the following 
ondi-tions is valida) For every �xed t > 0 the set fR t+ss g(z) dz ; s 2 R+g is pre
ompa
t in thespa
e �L2(!)�k.b) There exists the fun
tion �(s), s � 0, �(s)! 0 when s! +0, su
h that(3.3) Z t+1t kg(z)� g(z + l)kL2(!) dz � �(jlj) ; 8t 2 R+ ; t+ l 2 R+Remark 3.6. Condition (3.3) is valid for example ifkTsg; [0; 1℄� !kÆ;2 � C ; 8s 2 R+for some Æ > 0.To 
onstru
t the traje
tory attra
tor for the problem (0.1) we 
onsider (togetherwith the equation (0.1)) family of problems of view (0.1) obtained by all positiveshifts of the initial problem (0.1) and their limits in the appropriate topology(3.4) � a(�2t u+�xu) + 
�tu� f(u) = �(t)� 2 �here we take � = H+(g) if g is translation{
ompa
t in a strong topology and elsewe take � = H+w(g).De�nition 3.7. For every fun
tion � from � we de�ne K+� of as a set of allsolutions for the equation (3.4) with a �xed � 2 � and with an arbitrary u0 2 V0.We denote by K+� the following set:K+� = [�2�K+�It follows from (3.2) that a semigroup fTs; s � 0g of all nonnegative shifts alongthe t{axis ((Tsv)(t) � v(t+ s)) a
ts in the spa
e K+� i.e.(3.5) TsK+� � K+� for s � 0We endowed the set K+� by the toplogy indu
ed from the embedding K+� � �+0 if� = H+(g) (the strong topology 
ase) and from the embedding K+� � (�+0 )w if� = H+w(g) (the weak topology 
ase) (see Apendix 1 for �+0 de�nition).



10De�nition 3.8. The (global) atrra
tor of the semigroup fTs; s � 0g a
ting intopologi
al spa
e K+� is 
alled the traje
tory attra
tor of the family (3.4) i.e. a setA� � K+� is the traje
tory attra
tor of (3.4) if the following 
onditions are valid(1) A� { is a 
ompa
t set in K+�(2) A� is stri
tly invariant with respe
t to the semigroup Ts a
tion, i.e.TsA� = A�(3) A� is an attra
ting set for the semigroup fTs; s � 0g, i.e. for everyneighbourhood O(A�) in K+� topology there exist su
h number SO that(3.6) TsK+� � O(K) for every s � SO.Remark 3.9. Usually one requare that the attra
ting property be valid only forbounded (in some sen
e) subsets of K+� but due to the estimate (1.26) the set T1K+�is bounded (as in �+0 so in F+0 ). Hen
e the attra
ting property (3.6) is automati
allyvalid for all subsets of K+� with the same 
onstant SO (see also [22℄).Theorem 3.10 [8℄. Let the following 
onditions be valid:1) There exists a 
ompa
t attra
ting set P � K+� for the semigroup fTs; s � 0g.2) The set K+� is 
losed in the spa
e �+0 (or sequentially 
losed in the spa
e(�+0 )w in the weak topology 
ase).Then the family (3.6) possesses a traje
tory attra
tor A = A� in K+� .De�nition 3.11. The traje
tory attra
tor A w for the family (3.6) with � = H+w(g)(weak topology 
ase) is said to be a weak traje
tory attra
tor of the initial problem(0.1).Analogously the traje
tory attra
tor A = A s for the family (3.6) with � = H+(g)(strong topology 
ase) is said to be a (srong) traje
tory attra
tor of the initial prob-lem (0.1).Theorem 3.12.1. Let the 
ondition (0.3) be valid. Then the problem (0.1) possesses a weaktraje
tory attra
tor A w .2. Let the right{hand side g be translation{
ompa
t in �+ (with the strong topol-ogy). Then the problem (0.1) possesses a strong traje
tory attra
tor A = A s .Proof. Let us verify the 
onditions of previous Theorem.Lemma 3.13. The set K+� is (sequentially) 
losed in the spa
e (�+0 )w.Proof. Let un 2 K+�n , un ! u in (�+0 )w. Due to the 
ompa
tness of � in (�+)wwe may suppose without loss of generality that �n + � �+. It is nessesary toprove that u 2 K+� . By de�nition the fun
tions un(t) are bounded solutions of thefollowing problems(3.7) � a(�2t un +�xun) + 
�tun � f(un) = �n(t)unjt=0 = u0n ; un 2 V0



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 11Taking a limit n!1 in (3.4) we obtain now (as in the proof of Theorem 2.3) thatu 2 K+� . �So the se
ond 
ondition of Theorem 3.10 is valid. Let us verify the �rst one. Itfollows from the estimate (1.25) that the setP = BR \K+� ; s > 0where BR is suÆ
iently large ball in the spa
e F+0 is an attra
ting (and evenabsorbing) set for the semigroup fTs; s � 0g. Let us 
onsider �rstly the weaktopology 
ase. Then as known the set BR is a 
ompa
t and metrizable subset of(�+0 )w Indeed the ball BR is bounded in �+0 and �0 is re
exive separable F{spa
ehen
e BR is semi
ompa
t and metrizable in a weak topology and metrizable. Hen
edue to the 
onvexivity BR is a metrizable 
ompa
t in a weak topology. It followsfrom Lemma 1 now that the set P also 
ompa
t in a weak topology.Let us suppose now that the right{hand side g of the problem (0.1) is translation{
ompa
t in strong topology.Lemma 3.14. Let the previous 
ondition be valid. Then for every s � 0 the setTsP is 
ompa
t in the spa
e �+.Proof. Without loss of generality we 
an suppose that s = 1. Let un 2 BR \K+�nbe an arbitrary sequen
e. Due to the 
ompa
tness of the set P in a weak topologywe 
an extra
t from fung a subsequen
e (for simplisity we denote it also by fung)weakly 
onvergent to some u 2 K+� and due to the 
ompa
tness of the hull � in�+ (in a strong topology) we 
an suppose that �n ! � in �+.To prove Lemma it is suÆ
ient to prove that un ! u in [H2;Q(
T )℄k for anarbitrary T � 1.By de�nition the fun
tions un satisfy the equations (3.7) Let's multiply (3.7) bythe 
ut{o� fun
tion � 2 C10 (R), su
h that � � 1 if t 2 [T; T + 1℄ and � � 0 ift =2 [T � 1; T + 2℄. We obtain(3.8) 8><>: �2t (�un) + �(�un) = a�1(��n + �f(un)� 
��tun)++ 2�t��tun + (�2t �)un = hn(t)�unjt=T�1 = 0 ; �unjt=T+2 = 0 ; �n(�un)jx2�! = 0Arguing as in the proof of Theorem 2.3 we prove that f(un)! f(u) and �tun ! �tuin �+. So hn ! h in the spa
e [L2(
T�1;T+2)℄k and by de�nition (see Appendix1) �un ! �u in G hen
e, un ! u in [H2;Q(
T )℄k�So all assumptions of Theorem 3.10 is valid. Theorem 3.12 is proved.Corollary 3.15. Let the right{hand side g be strongly translation 
ompa
t in �+.Then dist2;Q(�t1;t2TsK+� ; �t1;t2A ) ! 0 when s! +1wheredist2;Q(M;N) = supx2M infy2N kx� y;
t1;t2k2;QHere by �t1;t2 we denote the restri
tion operator to the segment t 2 [t1; t2℄.Indeed, the assertions of this Corollary follows immediately from the attr
tor'sde�nition.



12Corollary 3.16. Let the right{hand side g be weakly translation 
ompa
t in �+.Then distH3=2+";2(
t1;t2 ) ��t1;t2TsK+� ; �t1;t2A � ! 0 when s! +1anddistLq(
t1;t2) ��t1;t2TsK+� ; �t1;t2A � ! 0 when s! +1Where " > 0 is a suÆ
iently small positive number and q < 2n+1n�3 .Indeed, the assertions of this Corollary follows from the 
ompa
tness of embed-dings H2Q � H3=2+";2 and H2Q � Lq whi
h have been proved in Appendix 1.Now we investigate the stru
ture of traje
tory attra
tor A 
onstru
ted in theprevious Theorem.De�nition 3.17. Let !(�) be the !{limit set (attra
tor) of the semigroup fTs; s �0g a
ting in the 
ompa
t spa
e �. As known (see [2℄) it is not empty and 
ould berepresented in the following form!(�) = \t�0 [[s�t�℄�Here [�℄� means the 
losure in the spa
e �.De�nition 3.18. A fun
tion �(t), t 2 R is said to be a 
omplete symbol of (3.4)in the spa
e !(�) if �+�s(�) 2 !(�) ; 8s 2 RHere �s(t) = �(t+ s), and �+ is the restri
tion operator to the semiaxis t � 0.The set of all 
omplete symbols of (3.4) we denote by Z(�).Lemma 3.19 [8℄. For every � 2 !(�) there exists a 
omplete symbol � 2 Z(�)su
h that �+� = �.De�nition 3.20. Let � 2 Z(�) be a 
omplete symbol of (3.4). Let us denote byK� { the set of all (bounded) solutions of the equation (3.4) in the whole axis t 2 R,in whi
h we repla
e �(t) by �(t).Theorem 3.21 [8℄. The attra
tor A has the following stru
ture:(3.9) A = �+ [�2Z(�) K�Corollary 3.22 [20℄. Let the right{hand side g of the equation (0.1) be stronglytranslation{
ompa
t in �+. Then the weak traje
tory attra
tor of the problem (0.1)
on
ides with it's strong attra
tor A s = A w



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 13x4 Stabilization of solutions when t ! 1In this Se
tion we ivestigate the long-time solutions behaviour in the 
ase whenright-hand side g(t) of (0.1) 
an be represnted in the following form(4.1) g(t; x) = g+(x) + g1(t; x)when g+ 2 L2(!) doesn't depend on t and g1 satis�es the following 
ondition(4.2) Tsg1 ! 0 , when s! +1in the spa
e �+ or in the spa
e or (�+)w. It is not diÆ
ult to 
he
k that in the�rst 
ase the fun
tion g is strong translation 
ompa
t in �+ and in the se
ond 
aseit is weak translation 
ompa
t.Theorem 4.1. Let the 
ondition (4.2) be valid. Then the equation (0.1) with theright{hand side (4.1) possesses a strong (weak) treje
tory attra
tor A = A g whi
h
onsides with the attra
tor of the limit autonomous equation(4.3) a(�2t u+�xu)� 
�tu� f(u) = g+i.e(4.4) A g = A g+Proof. The attra
tor existan
e follows immediatly from Theorem 3.12. Let us 
he
kthe equality (4.4).It is easy to redu
e from the 
ondition (4.2) thatZ(g) � Z(�) = w(�) = g+Here � is the strong (weak) hull of the right{hand side g in the spa
e �+ (seeSe
tion 3). Hen
e formula (4.4) is valid due to Theorem 3.21. Theorem 4.1 isproved.Let us suppose now that the nonlinear term f(u) in the left{hand side of theequation (0.1) is gradient-like(4.5) f(u) = �rF (u); F 2 C(Rk ;R)For every u 2 HQ;b(
+) we introdu
e the fun
tion Fu(t) by the following formula(4.6) Fu(t) = 12(a�tu(t); �tu(t))� 12(arxu(t);rxu(t)) + (F (u(t)); 1)� (g+; u(t))where (�; �) denotes the s
alar produ
t in the 
ross-se
tion spa
e L2(!).



14Theorem 4.2.1. The fun
tion Fu is well-de�ned for every u 2 HQ;b(
+) and belonges to thespa
e H1;1b (R+ ).2. Let us suppose that u is a solution of the problem (0.1). Then(4.7) dFu(t)dt = �(
�tu(t); �tu(t)) + (g1(t); �tu(t))Proof. Let us suppose that u 2 HQ;b(
+). Then due to the embedding (A.20) the�rst, the se
ond and the fourth term in the right-hand side of (4.6) are well{posed.It remains to 
he
k the third term. It follows from (A.16) and (4.5) that(4.8) jF (u)j � C(1 + jujp)Then due to the embedding (A.16) and Krasnoselskij Theorem(F (u(t)); 1) 2 Cb(R+ )Hen
e the de�nition of Fu(t) is 
orre
t.Let us 
al
ulate it's derivative. It is not diÆ
ult to obtain using the ordinarymethods of distributions theory that Fu 2 H1;1b (R+) and(4.9) ddtFu(t) = (�tu; a(�2t u+�xu)� f(u)� g+)Hen
e the �rst part of Theorem 4.2 is proved.Let us suppose now that u is a solution of the problem (0.1). Then (4.5) followsimmediately from the formula (4.9). Theorem 4.2 is proved.Theorem 4.3. Let the 
onditions of previous Theorem be valid. Let us supposealso that the matrix 
 in the left-hand side of (0.1) is sign-de�ned
 + 
� > 0 or 
 + 
� < 0and fun
tion g1(t) = g1(t; x) from (4.1) satis�es at least one of the following 
on-ditions(4.10) 8><>: 1: R10 kg1(t)k0;2 dt <12: �tg1 2 Llo
1 (R+ ; L2(!)) and R10 k�tg1(t)k0;2 dt <13: P1N=0 kG1;
Nk0;2 <1 for some G1 su
h that �tG1 = g1Then every solution u of the problem (0.1) possesses the �nite dissipative integral(4.11) Z 10 k�tu(t)k20;2 dt <1Proof. Let us integrate (4.6) over t 2 [0; T ℄Z T0 (
�tu; �tu)dt = Fu(0)�Fu(T ) + Z T0 (g1; �tu) dt



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 15It follows now from the sign-de�ness of matrix 
 that(4.12) Z T0 k�tu(t)k20;2 dt � CjFu(T )�Fu(0)j+ C�� Z T0 (g1; �tu) dt��Theorem 4.2 implies that fun
tion Fu(T ) is bounded with respe
t to T !1 hen
eit suÆ
ient to obtain the boundness of the integral in the right-hand side of (4.12).Let the �rst 
ondition of (4.10) be valid. Then(4.13) �� Z T0 (g1; �tu) dt�� � Z T0 kg1(t)k0;2k�tu(t)k0;2 dt �� supt2[0;T ℄ k�tu(t)k0;2 Z T0 kg1(t)k0;2 dt � kukb Z 10 kg1(t)k0;2 dtSo j R T0 (g1; �tu) dtj is bounded with respe
t to T !1.Let the se
ond 
ondition of (4.10) be valid. Then applying the partial integrationformula we obtain(4.14) �� Z T0 (g1; �tu) dt�� � j(g1(T ); u(T ))j+ j(g1(0); u(0))j+ �� Z T0 (�tg1(t); u(t)) dt��The integral in the right-hand side of (4.14) estimates in the same way as in (4.13).To estimate the �rst to terms in the previous formula it is suÆ
ient to prove thatunder above assumptions g1 2 Cb(R+ ; L2(!)). Let us 
onsider an arbitrary segment[N;N + 1℄ � R+ and let [T; t℄ be in this segment. Then(4.15) kg1(T )k0;2 � kg1(t)k0;2 + kg1(T )� g1(t)k0;2 �� kg1(t)k0;2 + Z Tt k�tg1(t)k0;2dt � kg1(t)k0;2 + Z 10 k�tg1(t)k0;2 dtLet us integrate the inequality (4.15) over t 2 [N;N + 1℄kg1(T )k0;2 � Ckg1;
Nk0;2 + Z 10 k�tg1(t)k0;2dt � jg1jb + k�tg1kL1(R+;L2(!))But the 
onstant N was 
hoosen arbitraryly hen
e g1 2 Cb(R+ ; L2(!)).Let the third 
ondition of (4.10) be valid. Then applying the partial integrationformula again we obtain�� Z T0 (g1; �tu) dt�� � j(G1(T ); �tu(T ))j+ j(G1(0); �tu(0))j+ �� Z T0 (G1(t); �2t u(t)) dt��The �rst two terms in the right-hand side 
an be estimated as in the previous 
ase.Let us estimate the integral�� Z T0 (G1(t); �2t u(t)) dt�� � Z T0 kG1(t)k0;2k�2t u(t)k0;2dt ��X[T ℄N=0 kG1;
Nk0;2k�2t u;
Nk0;2 � CkukbX1N=0 kG1;
Nk0;2Theorem 4.3 is proved.



16Theorem 4.4. Let the all asumptions of previous Theorem be valid. Let us supposealso that the limit problem in the 
ross se
tion !(4.16) � a�xv+ � f(v+(x)) = g+(x)�nv+��x2�! = 0has the �nite number of solutions(4.17) v+ 2 V+ = fv1+(x); � � � ; vl+(x)gThen for every solution u of the problem (0.1) there exists an equlibria vN+ (x) 2 V+su
h that(4.18) (Tsu)(t; x)! vN+ (x) in the spa
e �+ , when s! +1Here by �+ we denote the spa
e �+0 if g is strong translation 
ompa
t in � and�+ = (�+0 )w if g is weak translation 
ompa
t.Remark. As known (see for instan
e [2℄) there exists an open den
e set in L2(!)su
h that the set V+ is �nite for every g+ from this set.Proof. Let u be a solution of the problem (0.1). Let us 
onsider the !-limit set!(u) of the point u 2 �+ under the fTs; s � 0g semigroup a
tion. Re
all thatu+ 2 !(u) if and only if there exists the sequen
e fsj; j 2 Ng, sj !1 su
h that(4.19) Tsju! u+ in the spa
e �+Theorem 4.1 implies that fTs; s � 0g possesses an atra
tor A in K+� � �+ hen
e(see [2℄) w(u) is nonempty 
onne
ted 
ompa
t set in �+. Let u+ be in !(u). Itmeans that there exists a sequen
e sj 2 R+ su
h that for every T 2 R+Tsju + u+ in the spa
e H2Q(
T ), when sj !1Parti
ulary kTsj�tu� �tu+;
Tk0;2 ! 0 , when sj !1But it follows from the dissipative integral (4.11) existan
e thatkTsj�tu;
Tk0;2 = k�tu; Tsj
Tk0;2 ! 0 , when sj !1Hen
e k�tu+;
Tk0;2 = 0 and u+(t; x) � u+(x).It follows now from the 
ondition (4.2) and from Lemma 3.3 that u+(x) is asolution of the limit problem (4.16). So(4.20) w(u) � V+But the set w(u) must be 
onne
ted and the set V+ is des
rete hen
e(4.21) w(u) = fvN+ g for some N 2 f1; � � � ; lgThe attra
ting property for fTs; s � 0g (see x3) implies immediately now that (4.18)is valid. Theorem 4.4 proved



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 17Corollary 4.5. Arguing as in the prove of Corollary 3.16 we obtain as in the 
aseof strong translation 
ompa
tness of g as in the weak one 
ondition (4.20) impliesthat(4.22) � limt!+1 ku(t; �)� vN+ (�)k0;p0 ! 0 , when t!1limt!+1 k�tu(t; �)k";2 ! 0where the exponent p0 is given in Corollary A.1.Corollary 4.6. Let the fun
tion g+ satis�ed the 
onditions of Theorem 4.4. Thenany solution u(t), t 2 R of the equation (4.4) in the whole 
ylinder 
 = R � ! is ahetero
lini
 orbit i.e. there exist two different equilibria w+u and w�u from the setV+ su
h that(4.23) Tsu! w+u when s! +1 and Tsu! w�u when s! �1Indeed due to the estimate (1.25) (see Remark 1.7) any solution of the problem(4.4) is bounded as with respe
t to t ! 1 so with respe
t to t ! �1. So the
onvergen
e (4.23) follows now from Theorem 4.4. Hen
e it remains to prove thatw+u 6= w�u . Integrating the formula (4.7) with g1 � 0 over R we obtain that(4.24) Fu(+1)�Fu(�1) = Fw+ � Fw� = ZR(
�tu; �tu) dt 6= 0Thus w+ 6= w�.Let us give now some examples of the pertrubation term g1(t; x) satisfying the
onditions of previous Theorem.Example 4.7. Let(4.25) g1(t; x) = '(t)g0(x)where g0 2 L2(!) and(4.26) '(t) = j sin(t2)j1 + t2Then it is not diÆ
ult to 
he
k that this fun
tion satis�es the �rst 
ondition of(4.10) and 
ondition (4.2) is valid for the strong topology 
hoi
e.Example 4.8. Let the fun
tion g1 have the form (4.25) with the following fun
tion'(t)(4.27) '(t) = t1 + t2Then it is not diÆ
ult to 
he
k that this fun
tion satis�es the se
ond 
ondition of(4.10) and 
ondition (4.2) is valid for the strong topology 
hoi
e.Example 4.9. Let the fun
tion g1 have the form (4.25) with the following fun
tion'(t)(4.28) '(t) = sin(t3)



18Then as known Ts'! 0 when s!1 in a weak topology of the spa
e L2([T; T+1℄)for every T 2 R+ hen
e g1 satis�es 
ondition (4.2) with the weak topology 
hoi
e.Let us 
he
k that this fun
tion satis�es the third 
ondition of (4.10). Let G1 be thefollowing fun
tionG1(t; x) = �(t)g0(x) , where �(t) = � Z 1t sin(s3) dsWe must 
he
k that(4.29) X1N=0 k�; [N;N + 1℄k0;2 <1In order to do it we represent � in the following equivalent form�(t) = 13 
os(t3)t�2 � 29 Z 1t3 
os vv5=3 dvIt follows immediately from this representation that�(t) = O(t�2) , when t!1Hen
e k�; [N;N + 1℄k0;2 = O(N� 32 )and so (4.29) is valid.Part 2. Asymptoti
s in the three-dimensional 
aseIn the se
ond part, we des
ribe the asymptoti
s of solutions to the linear system(0.??) in 
ase the half-
ylinder 
+ = R+ � ! is three-dimensional and 
on
ludefrom this depi
tion the existen
e of the traje
tory attra
tor for the singular part ofthe solutions to the nonlinear ellipti
 system (0.1).5. Ellipti
 regularity for the Neumannproblem for the Lapla
e operatorBefore dis
ussing ellipti
 regularity for the Neumann problem for the Lapla
eoperator on the half-
ylinder 
+ = R+ � !, we dis
uss ellipti
 regularity for theNeumann problem for the Lapla
e operator on the in�nite 
one � � R2 and thein�nite wedge R � � � R3 . Sin
e in this se
tion we shall make use of the Fouriertransformation, in 
ontrast to the rest of the paper fun
tions appearing are 
omplex-valued. Sin
e all di�erential operators 
onsidered have real-valued 
oeÆ
ients, the
on
lusions are easily spe
i�ed to the real-valued 
ase. When speaking about asolution to the Neumann problem, we always mean a variational solution that isin parti
ular in H1. Further, subs
ripts b, lo
 in the notation of Sobolev spa
eson a 
ylinder or half-
ylinder have the same meaning as before, while subs
ript Nindi
ates the subspa
e of fun
tions satisfying the homogeneous Neumann boundary
ondition, where it makes sense, i.e., on ��, R � ��, �!, R � �!, and R+ � �!,respe
tively. We shall also employ notation with subs
ript Q to designate the spa
eof all variational solutions to the 
orresponding Neumann problem with right-handside in L2. We always have H2Q � H2N . If � or at least one of the 
oni
al points of! has an obtuse angle, then H2Q 6= H2N , otherwise H2Q = H2N .
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eforth let � � R2 be an open 
one with opening �. Sin
e it turns outthat for � < � we have H2-regularity, we shall suppose that � > �. Further lety = (y1; y2) be eu
lidian 
oordinates in R2 , while (r; �) denote polar 
oordinates.We assume that � = f(r; �); 0 < � < �g. We �x a 
ut-o� fun
tion  2 C10 (�),depending only on the radial 
oordinate r, su
h that  (r) = 1 in a neighbourhoodof 0 and  is supported suÆ
iently 
lose to 0. The model 
one � arises through
atting out the boundary of ! near a 
oni
al point of �!, i.e, through introdu
ingsuitable lo
al 
oordinates. To deal with su
h a situation, on � we shall 
onsider theoperator 1 � �y �M(y; �y), where M(y; �y) = Pj
j�2 b
(y)�
y is a se
ond-orderpartial di�erential operator with 
oeÆ
ients from C1(�) subje
t to the following
onditions:(a) kb
kL1(�) � Æ for 
 2 N2 , j
j � 2;(b) b
(0) = 0 for 
 2 N2 , j
j = 2;(
) k�rb
kL1(supp ) � Æ for 
 2 N2 , j
j = 2for a 
ertain Æ > 0 suÆ
iently small.The proof of the following lemma shows that H2Q(�) de�ned as the spa
e ofsolutions v to(5.1) (1��y �M(y; �y))v = g in �, �nvj �� = 0with right-hand side g 2 L2(�) is a
tually independent of the operator M(y; �y)satisfying (a){(
) provided that Æ > 0 is small enough. For the 
ase M(y; �y) � 0it is known that(5.2) H2Q(�) = H2N (�)� spanfSg; S(y) =  (r)r�=� 
os(��=�);see [9℄, [13℄. Noti
e that S 2 H1+�=��"(�) for any " > 0, but S =2 H1+�=�(�).Lemma 5.1. For Æ > 0 suÆ
iently small, the di�erential operator(5.3) 1��y �M(y; �y):H2Q(�)! L2(�)realizes an isomorphism, where H2Q(�) is the spa
e given in (5.2). Moreover, ifv 2 H2Q(�) and (1 � � � M(y; �y))v = g, then v is the unique solution to theproblem (5.1).Proof. It is known that 1�� is an isomorphism from H2Q(R � �) onto L2(R � �).Furthermore, it is readily seen that M(y; �y) maps H2Q(�) into L2(�), where

1���M(y; �y)

H2Q!L2 � C(Æ)with some 
onstant C(Æ) > 0, and C(Æ)! 0 as Æ ! 0. Now 
hoose Æ > 0 so smallthat 

M(y; �y)

H2Q(�)!L2(�) < 

(1��)�1

L2(�)!H2Q(�);where (1��)�1 stands for the inverse to 1��:H2Q(�)! L2(�). This shows thatthe di�erential expression 1���M(y; �y) in (5.3) realizes an isomorphism.From Theorem A.3 (and its 
orresponding version for model 
ones) we infer thatsolutions to the problem (5.1) belong to H3=2+"(�) for a 
ertain " > 0. Thus in



20de�ning the spa
e of variational solutions to (5.1) we may repla
e the quadrati
form by the di�erential expression yielding the 
oin
iden
e of the spa
es H2Q(�) fordi�erent M(y; �y). �Remark. (a) The same proof yields that H2Q(�) = H2N (�) when � < �. In subse-quent dis
ussions we again assume that � > �.(b) From (5.2) it follows that ea
h v 2 H2Q(�) 
an uniquely be written in theform(5.4) v = v0 + dS;where v0 2 H2(�), d 2 C . Hen
e an equivalent norm on H2Q(�) is given by�kv0k2H2(�) + jdj2	1=2. Moreover, for v being a solution to (5.1) we get the es-timate(5.5) �kv0k2H2(�) + jdj2	1=2 � C kgkL2(�);where the 
onstant C > 0 is independent of the operator M(y; �y) as long as therequirements (a){(
) with the same Æ, Æ > 0 as small as in Lemma 5.1, are ful�lled.(
) Noti
e further that the 
oeÆ
ient d in (5.4) is independent of the parti
ular
hoi
e of the 
ut-o� fun
tion  , i.e., in 
hoosing another 
ut-o� fun
tion possessingthe same properties as  we obtain the same d as before.Now we want to dis
uss the spa
e H2Q(R � �) of solutions v to the problem(5.6) (1� �2t ��y �M(y; �y))v = g in R � �, �nvjR��� = 0with right-hand side g 2 L2(R��), where M(y; �y) is a se
ond-order partial di�er-ential operator as above. Again it turns out that the spa
eH2Q(R��) is independentof the operator M(y; �y) provided that Æ > 0 is small enough.We need the following result in the 
ases s = 2, s = 0. For a proof, see [9℄, [17℄.Lemma 5.2. Let � � R2 be an open 
one, s 2 R. Then an equivalent norm onHs(R � �) is given by(5.7) kukHs(R��) = (ZRh�i2s

�(�)�1bu(�)

2Hs(�) d�)1=2;where bu(�) = Ft!�u(�), �(�) = �h�i, h�i = (1 + j� j2)1=2, and��u(y) = �u(�y); � > 0; y 2 �;for u 2 Hs(�).Noti
e that f��g�>0 is a strongly 
ontinuous group on Hs(�). It 
onsists ofisometries when s = 0.
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one as above. Then we have(5.8)H2Q(R��) = H2N (R��)�nF�1�!t�h�i (rh�i)(rh�i)�=� 
os(��=�)bd(�)	; d 2 H2(R)o:Proof. Let v be solution to (5.6) with right-hand side g 2 L2(R��). Upon applyingthe Fourier transformation Ft!� and afterwards the group a
tion �(�)�1 we obtainthe equation(5.9)�1���M� (y; �y)��(�)�1bv(�) = h�i�2�(�)�1bg(�) in �; �n��(�)�1bv(�)�j �� = 0with parameter � 2 R, where M� (y; �y) = h�i�2M(h�i�1y; h�i�y). Now it is easilyseen that the operator M� (y; �y) = Pj
j�2h�i�2+j
jb
(h�i�1y)�
y satis�es the setof requirements (a){(
) with the same Æ > 0 as M(y; �y).Hen
e we 
on
lude from Eq. (5.9) together with (5.1), (5.4) that(5.10) �(�)�1bv(�) = �(�)�1bv0(�) + bd(�)S(y); S(y) =  (y)r�=� 
os(��=�):Moreover, from (5.5) we derive the estimatek�(�)�1bv0(�)k2H2(�) + jbd(�)j2 � C2 h�i�4k�(�)�1bg(�)k2L2(�);i.e.,ZRh�i4k�(�)�1bv(�)k2H2(�) d� + ZRh�i4jbd(�)j2 d� �� C2 ZR k�(�)�1bg(�)k2L2(�) d� = kgk2L2(R��)showing that v0 2 H2(R � �), d 2 H2(R) by Lemma 5.2. From (5.10) we �nallyget(5.11) v = v0 + F�1�!t�bd(�)(�(�)S)(y)	yielding the de
omposition (5.8) by further noting that the sum on the right-handside of (5.8) is dire
t and is obviously 
ontained in H2Q(R � �). �Remark. The proof of Lemma 5.3 shows thatkuk0H2Q(R��) = �ZRh�i4

�(�)�1bu(�)

2H2Q(�) d��1=2is an equivalent norm on H2Q(R � �). Sin
e H2Q(�) is a 
one Sobolev spa
e offun
tions possessing asymptoti
s of a 
ertain dis
rete asymptoti
 type near y = 0,H2Q(R � �) is in fa
t a wedge Sobolev spa
e in the sense of B.-W. S
hulze, see[15℄{[17℄.Next we turn our attention to the 
ase of the 
ylinder R � ! and of the half-
ylinder 
+ = R+ � !, respe
tively. In the following, let ! be a bounded andpolyhedral domain in R2 . The boundary �! is in parti
ular smooth ex
ept for



22a �nite number of 
oni
al points. For H2-regularity holds up to 
oni
al pointswith an a
ute angle, see (a) in the remark following the proof of Lemma 5.1, only
oni
al points of �! obeying an obtuse angle have to be regarded spe
i�
ally. Letfb1; : : : ; b�g denote the set of these 
oni
al points. Let �j be the size of the angleat bj, �j > �. For every j, 1 � j � �, we 
hoose an open 
one �j � R2 , opensubsets Uj , Vj in R2 with Uj 3 bj , Vj 3 0, and a di�eomorphism �j :Uj ! Vjsu
h that �j(bj) = 0 and �j(! \ Uj) = �j \ Vj . Re
all that y = (y1; y2) areeu
lidian 
oordinates in R2 , while (r; �) denote polar 
oordinates. We assume that�j = f(r; �); 0 < � < �jg. Furthermore, we suppose that the di�eomorphisms�j are 
hosen to preserve the standard eu
lidian stru
ture 
entered at bj up to
ubi
 terms. Note that this assumption implies that (�j)�� = � + Mj(y; �y)
lose to y = 0, where Mj(y; �y) is a se
ond-order di�erential operator with smooth
oeÆ
ients and Mj(0; �y) = 0. Moreover, up to translation and rotation, the fa
esof �j 
an be viewed as being tangential to ! at bj . By shrinking Uj , if ne
essary, wemay suppose that Mj(y; �y) is a di�erential operator on �j with 
oeÆ
ients fromC1(�j) satisfying, for � = �j and Æ > 0 suÆ
iently small, the assumptions (a){(
)previous to Lemma 5.1.Further let U0 � R2 be an open set not meeting fb1; : : : ; b�g su
h that fU0g [fUjg�j=1 forms an open 
overing of !. Let f�0g [ f�g�j=1 be a partition of unitysubordinated to this 
overing, �0 +P�j=1 �j = 1 on !, �j = 1 in a neighbourhoodof bj for all j, 1 � j � �. Eventually we assume that, for 1 � j � �,  j = (�j)��jonly depends on the radial variable r, i.e.,  j =  j(r).Remark. For 
ompleteness we noti
e that an intrinsi
 interpretation of (5.4) 
an begiven asserting that there is a short exa
t split sequen
e(5.12) 0 ����! H2N (!) ����! H2Q(!) ����! Q�j=1 C ����! 0with the surje
tion assigning to ea
h fun
tion u 2 H2Q(!) its sequen
e (d1; : : : ; d�)of singular 
oeÆ
ients. Thereby, dj is explained as the 
oeÆ
ient appearing in (5.4)in front of S, for v = (�j)�(�ju) and � = �j . To see that (5.12) is 
orre
tly de�nedone has to observe that the 
oeÆ
ient dj is not only independent of the 
hoi
e ofthe 
ut-o� fun
tion  j , see (
) in the remark following the proof of Lemma 5.1,but also independent of the 
hoi
e of the di�eomorphism �j meeting all of theassumptions above. A splitting of (5.12) is obtained via (5.2) after having �xed thedi�eomorphisms �j and the 
ut-o� fun
tions  j . More pre
isely, we may writeu = u0 + �Xj=1 dj (�j)�� j(r)r�=�j 
os(��=�j)�for u 2 H2Q(!), where u0 2 H2N (!), dj 2 C are uniquely determined. Noti
e furtherthat the 
oeÆ
ients dj 
an be 
al
ulated using the formula(5.13) dj = limr!0+ ��2j � r��=�j�(�j)�(�ju)(r; �)� u(bj)�; 
os(��=�j)��L2(0;�j);where � �; � �L2(0;�j) denotes the s
alar produ
t in L2(0; �j), u(bj) is the value of uat bj, and �j = nR �j0 ��
os(��=�j)��2 d�o1=2. Noti
e that u(bj) = (�j)�(�ju)(0) iswell-de�ned by Theorem A.3.
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e noti
e that an equivalent norm on H2Q(R � !) is given by(5.14) 

u

H2Q(R�!) = 8<:

�0u

2H2(R�!) + �Xj=1 

(�j)���ju�

2H2Q(R��j)9=;1=2 :This follows from the fa
t that u 2 H2Q(R � !) if and only if �lu 2 H2Q(R � !) forall l, 0 � l � �, and obviously �0u 2 H2Q(R � !) if and only if �0u 2 H2(R � !),while, for 1 � j � �, �ju 2 H2Q(R � !) if and only if (�j)���ju� 2 H2Q(R � �j).From Lemma 5.3 and (5.14) we 
on
lude that(5.15) H2Q(R � !) = H2N (R � !)�� �Xj=1(�j)��F�1�!t�h�i j(rh�i)(rh�i)�=�j 
os(��=�j)bdj(�)	�; dj 2 H2(R); 1 � j � ��On the analogy of (5.12) we have the following lemma.Lemma 5.4. For ! � R2 being a bounded, polyhedral domain as above, there is ashort exa
t split sequen
e(5.16)0 ����! H2N (R � !) ����! H2Q(R � !) (�1;:::;��)������! Q�j=1H1��=�j (R) ����! 0;where the operators �j are given by(5.17)�ju(t) = limr!0+ ��2j � r��=�j�(�j)�(�ju)(t; r; �)� u(t; bj)�; 
os(��=�j)�L2(0;�j):Moreover, a splitting of (5.16) is given by the mapping(5.18) (d11; : : : ; d�1) 7! �Xj=1(�j)��F�1�!tf j(rh�i)bdj1(�)g r�=�j 
os(��=�j)�:Proof. A

ording to (5.10) and the short exa
t sequen
e (5.12), the fun
tions dj 2H2(R) appearing in the representation of u 2 H2Q(R � !) asu = u0 + �Xj=1(�j)��F�1�!t�h�i j(rh�i)(rh�i)�=�j 
os(��=�j)bdj(�)	�;= u0 + �Xj=1(�j)��F�1�!t� j(rh�i)bdj1(�)	r�=�j 
os(��=�j)�where u0 2 H2N (R�!), are uniquely determined, independently of the 
hoi
e of thedi�eomorphisms �j and the 
ut-o� fun
tions  j . Likewise, the same is then true forthe fun
tions dj1 = hDi1+�=�jdj 2 H1��=�j(R). Therefore, the surje
tion in (5.16)is well-de�ned. Moreover, it be
omes 
lear that (5.16) is exa
t and a splitting of itis provided by (5.18).



24 Thus it remains to deal with (5.17). From (5.13), applied to � = �j , v =(�j)�(�ju), and Eq. (5.10), in whi
h d = dj , we 
on
lude thatbdj(�) = limr!0+ ��2j � r��=�j�h�i�1bv(�; rh�i�1; �)� h�i�1bv(�; 0)�; 
os(��=�j)�L2(0;�j)= limr!0+ ��2j � (rh�i)��=�jh�i�1�bv(�; r; �)� bv(�; 0)�; 
os(��=�j)�L2(0;�j);the latter line upon repla
ing r with rh�i, i.e.,bdj1(�) = h�i1+�=�j bdj(�) = limr!0+ ��2j � r��=�j (bv(�; r; �)� bv(�; 0)); 
os(��=�j)�L2(0;�j);dj1(t) = limr!0+ ��2j � r��=�j�(�j)�(�ju)(t; r; �)� u(t; bj)�; 
os(��=�j)�L2(0;�j):This proves Lemma 5.4 
ompletely. �Remark. (a) For the interpretation of the fun
tions dj1 2 H1+�=�j (R), 1 � j � �,as 
oeÆ
ients in the asymptoti
 expansion of u 2 H2Q(R � !) 
lose to the edgeR � fbjg, observe that F�1�!tf j(r�)bdj1(�)g = dj1(t) when r = 0.(b) From (5.17) we obtain in parti
ular that taking tra
es on an edge is a lo
aloperation. More pre
isely, we have supp(�ju) � supp(u) \ �R � fbjg� for u 2H2Q(R � !).(
) It 
an be shown that��2j � r��=�j ((�j)�(�ju)(t; r; �)� u(t; bj)); 
os(��=�j)�L2(0;�j) 2 H1(R)for u 2 H2Q(R � !), and 
onvergen
e in (5.17) takes pla
e in H1��=�j (R).The �nal goal in this se
tion is to 
on
lude the form of asymptoti
s when goingover from H2Q(R � !) to its fa
tor spa
e H2Q(R+ � !). This is a
hieved by 
on-stru
ting a suitable splitting of (5.16) in terms of a 
ontinuous proje
tion �2 inH2Q(R � !) by means of a reformulation of the asymptoti
 information.Theorem 5.5. Let ! � R2 be a bounded, polyhedral domain as above. Then thereexists a 
ontinuous proje
tion �2 in H2Q(R � !) obeying the following properties:(a) ker�2 = H2N (R � !);(b) Ts�2 = �2Ts for all s 2 R;(
) supp u � R� implies supp�2u � R�;(d) �2 is (H2Q;b(R � !); H2Q;b(R � !))-
ontinuous;(e) �2 is (H2Q;lo
(R � !); H2Q;lo
(R � !))-
ontinuous.In the proof of Theorem 5.5 we shall make use of the following result.Lemma 5.6. Let � � R2 be an open 
one. Further let  2 S(R),  1 2 S(R+),d1 2 H1��=�(R). Then(5.19)  1(r)F�1�!t�� (rh�i)�  (r�)� bd1(�)	 r�=� 
os(��=�) 2 H2N (R � �):



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 25Proof. Let u(t; r) =  1(r)F�1�!t�( (rh�i)� (r�)) bd1(�)	 r�=� 
os(��=�). Then wehave(5.20) 

u

H2N (R��) =�Z 1�1h�i2 

�(�)�1� 1(r)� (rh�i)�  (r�)�bd1(�) r�=� 
os(��=�)�

2H2N (�) d��1=2= �Z 1�1h�i2 jbd(�)j2 

 1(rh�i�1)� (r)�  �r�=h�i�� r�=� 
os(��=�)

2H2N (�) d��1=2� C �Z 1�1h�i2 jbd(�)j2 d��1=2 ;where d = hDi�1��=�d1 2 H2(R). Thereby,

 1(rh�i�1)� (r)�  �r�=h�i�� r�=� 
os(��=�)kH2N(�) � Cfor a 
ertain 
onstant C > 0 independent of � is seen from the fa
t that  2(r) 7! 2(r) r�=� 
os(��=�) 
onstitutes a bounded map from f 2 2 S(R+); 2(0) = 0g intoH2N (�), while f 1(rh�i�1)� (r)�  (r�=h�i)�; � 2 Rg for  2 S(R),  1 2 S(R+) isbounded in f 2 2 S(R+); 2(0) = 0g. Hen
e the right-hand side in (5.20) is �niteproving that u 2 H2N (R � �). �Proof of Theorem 5.5. By Lemma 5.6, we are allowed to repla
eF�1�!tfh�i j(rh�i)(rh�i)�=�j 
os(��=�j) ; bdj(�)gin (5.15) by  j1(r)F�1�!tf j(r�)bdj1(�)gr�=� 
os(��=�j) i.e., we haveH2Q(R � !) = H2N (R � !)� � �Xj=1(�j)�� j1(r)F�1�!tf j(r�)bdj1(�)gr�=�j 
os(��=�j)�;dj1 2 H1��=�j (R); 1 � j � ��;where, for ea
h j, 1 � j � �,  j 2 S(R),  j1 2 C10 (R+),  j(0) =  j1(0) = 1, and j1 is supported in Vj when 
onsidered as a fun
tion on �j . If espe
ially the  j are
hosen in a way su
h that suppF�1 j � R� holds for all j, then(5.21)�2u = �Xj=1(�j)�� j1(r)F�1�!tf j(r�)(�ju)b(�)g r�=�j 
os(��=�j)�; u 2 H2Q(R � !)is a proje
tion in H2Q(R � !) meeting all the requirements (a){(e). That �2 is aproje
tion follows from the fa
t that �j�2u = �ju holds for u 2 H2Q(R � !), (a),(
) are immediate, (b) is the lo
ality of the tra
e operator �j, see (5.17), and thetranslation invarian
e of the pseudo-di�erential operator d1 7! F�1�!t( j(r�)bd1(�)),



26where r > 0 is regarded as a parameter, and (e), (f) 
ome from the observationthat  j1(r)F�1�!tf j(r�)(�ju)b(�)g r�=�j 
os(��=�j)belongs toH2Q;b(R��j ) andH2Q;lo
(R��j ), respe
tively, for u belonging toH2Q;b(R��j) and H2Q;lo
(R � �j), as an easy 
al
ulation reveals. �The following 
onsequen
es of Theorem 5.5 supply the proje
tion �+2 inH2Q;b(R+�!) onto its 
losed subspa
e 
omprising the asymptoti
 information as well as theshort exa
t sequen
es used in Se
tion 6.Theorem 5.7. Let ! � R2 be a bounded, polyhedral domain as above. Then thereexists a 
ontinuous proje
tion �+2 in H2Q;b(R+�!) obeying the following properties:(a) ker�+2 = H2N;b(R+ � !);(b) Ts�+2 = �+2 Ts for all s � 0.Moreover, �+2 is (H2Q;lo
(R+ � !); H2Q;lo
(R+ � !))-
ontinuous.Proof. It follows from Theorem 5.5 (a){(e) by 
ontinuous extension of the proje
tion�2 to H2Q;b(R � !) and its subsequent fa
torization to H2Q;b(R+ � !). �Noti
e that a proje
tion �+2 satisfying the requirements of Theorem 5.7 is(5.22)�+2 u = �Xj=1(�j)�� j1(r)F�1�!tf j(�r)((�ju)ext)b(�)g r�=�j 
os(��=�j)�; u 2 H2Q;b(R+�!);where  ,  j1 are as in (5.21). Here (�ju)ext means an arbitrary extension of �ju 2H1��=�jb (R+ ) to a fun
tion in H1��=�jb (R).Corollary 5.8. The short exa
t sequen
e (5.6) extends by 
ontinuity and fa
torssubsequently to short split exa
t sequen
es0 ����! H2N;b(R+�!) ����! H2Q;b(R+�!) (�1;:::;��)������! Q�j=1H1��=�jb (R+) ����! 0;0 ����!H2N;lo
(R+�!) ����!H2Q;lo
(R+�!) (�1;:::;��)������! Q�j=1H1��=�jlo
 (R+) ����! 0;where (�1; : : : ; ��) is the ve
tor of tra
e operators as before. A splitting of both isobtained from (5.22) by repla
ing �ju with d1j 2 H1��=�jb (R+) and H1��=�jlo
 (R+),respe
tively.6. Regular and singular part of the traje
tory attra
torIn this �nal se
tion we show that the traje
tory attra
tor A of the problem (0.1)de
omposes into a regular A reg and a singular A sing parts.Let us suppose for simpli
ity that the right{hand side G of the problem (0.1) isstrong translation 
ompa
t in �+. The 
ase of weak translation 
ompa
tness 
ouldbe treated analogously.Let K+ = K+� be the union of all solutions for the family (3.4) see De�nition3.7. and let �2 be the same as in Theorem 5.7. Then one 
ould de�ne regular andsingular parts of the union K+ by formulas(6.1) K+reg = �1K+ ; K+sing = �2K+ , where �1 = Id� �2
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e that by de�nition(6.2) K+reg � H2N (
+)and the topology at K+reg indu
ed by embedding K+reg � �+0 
on
ides with thetopology indu
ed by embedding (6.2).It follows from Theorem 5.7 that the semigroup of positive shifts fTs; s � 0ga
ts as in the spa
e K+reg so in the spa
e K+sing, i.e.(6.3) TsK+reg � K+reg and TsK+sing � K+sing for s � 0De�nition 6.1. The attra
tor A reg of the semigroup fTs; s � 0g a
ting in topo-logi
al spa
e K+reg is 
alled a regular traje
tory attra
tor for the problem (0.1), seeDe�nition 3.7.Analogously the attra
tor A sing of the semigroup fTs; s � 0g a
ting in topologi
alspa
e K+sing is 
alled a singular traje
tory attra
tor for the problem (0.1).Theorem 6.2. Let the previous assumptions be valid. Then the problem (0.1)possesses regular A reg and singular A sing traje
tory attra
tors. Moreover(6.4) A reg = �1A and A sing = �2Awhere A is a traje
tory attra
tor for the problem (0.1). So(6.5) A = A reg � A singProof. Let us 
he
k that A sing = �2A . The assertion A reg = �1A 
uold be 
he
kedanalogously.For the �rst let us verify the attra
ting property. Let O(�2A ) be an arbitraryneighbourhood of �2A in K+sing then due to Theorem 5.7 ��12 O(�2A ) is some(open) neighbourhood of A in K+. Hen
e from the attra
ting propery for A weobtain that there exists SO 2 R+ su
h that(6.6) TsK+ � ��12 O(�2A ) for s � SOApplying �2 to both sides of (6.6) and using the assertion (b) of Theorem 5.7 weobtain TsK+sing � �2��12 (�2A ) = O(�2A ) for s � SOThus the attra
ting property for �2A is valid.For the se
ond by the de�nition of A TsA = A for s � 0. Applying �2 to bothsides of this equality and using the assertion (b) of Theorem 5.7 again we obtainTs�2A = �2A for s � 0Thus �2A is stri
tly invariant under fTs; s � 0g a
tion.And �nally the 
ompa
tness for �2A in K+sing is an immediate 
orollary of theattra
or A 
ompa
tness and from the 
ontinuity of �2.Thus by de�nition �2A is a singular traje
tory attra
tor for the problem (0.1).Theorem 6.2 is proved.



28Corollary 6.3. Let �j, 1 � j � �, be the tra
e operators as given in Corollary 5.8.Then the semigroup fTs; s � 0g of positive shifts along the t{axis a
t in the spa
es�jK+ � H1��=�jlo
 (R+) and possess the attra
tors A j = �jA in them. Moreover thesingular attra
tor A sing possesses the futher de
omposition(6.7) A sing ' ��j=1A jThe assertion of this Corollary follows immediately from the topologi
al isomor-phizm (�1; � � � ; ��) : �+2 H2Q;b(R+ � !)! �Mj=1H1��=�jb (R+)obtained in Se
tion 5.Note that �+2 A depends on the 
hoi
e of the proje
tion �+2 , while �jA has aninvariant meaning.Finally we are 
on
erned with the question of stabilization of asymptoti
s in the
ase when stabilization of solutions takes pla
e, see Se
tion 4. For that we make allassumptions of Se
tion 4, in parti
ular f(u) = �rF (u) is a gradient like, see (4.5)and the limit equation(6.8) a�xv+ � f(v+) = g+; �nv+���! = 0has only a �nite number of solutions v+ = vN+ , N = 1; � � � ; L in H2Q(!).Let fdNj g�j=1 be the sequen
e of singular 
oeÆ
ients to vN+ (see Se
tion 5), i.e.(6.9) vN+ = vN0 + �Xj=1 dNj (�j)�(r�=�j j(r) 
os(��=�j))where vN0 = �1vN+ 2 H2N (!) and dNj 2 C k .Theorem 6.4. Let the assumptioms of Theorem 4.4 be full�led. Then for everysolution u(t) of the problem (0.1) there exists an equilibria vN+ su
h that(6.10) Tsu! vN+ as s!1 in resp. �+0 or (�+0 )win dependen
e whether the 
onvergen
e in (4.2) is strong or weak. Moreover(6.11) Ts�1u! �1vN+ = vN0 and Ts�2u! �2vN+and(6.12) Ts�ju! dNj as s!1 in resp. H1��=�jlo
 (R+) or H1��=�jlo
 (R+))wProof. The assertion (6.10) follows from Theorem4.4. The rest assertions are imme-diate 
orollaries of it and of the 
ontinuity of operators �1, �2 and �j in appropriatespa
es.
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 regularity.In this Se
tion we formulate and prove some auxilary results about the regularityof solution for a linear ellipti
 equation of vieu (0.1) in polyhedral domains.De�nition A.1. Let's de�ne G as the spa
e of all fun
tions u 2 H1;2(
T1�1;T2+1)su
h that u is a variational solution of the following equation(A.1) h�tu; �t�i+ hrxu;rx�i+ hu;�i = hg;�i ; 8� 2 H1;2(
T1�1;T2+1)with the right-hand side g 2 L2(
T1�1;T2+1). The norm in the spa
e G is(A.2) kuk2G � ku;
T1�1;T2+1k21;2 + kg;
T1�1;T2+1k20;2 � Ckg;
T1�1;T2+1k20;2(The last inequality in (A.2) follows immediately from the unique solvability ofvariational problem (A.1)).We de�ne H2Q(
T1;T2) as the spa
e of restri
tions of fun
tions from G to 
T1;T2with the following norm(A.3) kv;
T1;T2k2;Q � inffku;
T1�1;T2+1kG : u 2 G ; u��
T1;T2 = vgLet us denote by V0 the spa
e of restri
tions on t = 0 of fun
tions from the spa
eH2Q(
0) with the normku0kV0 = inffku;
0k2;Q : u��t=0 = u0gDe�nition A.2. We denote by �+0 = hH2Q;lo
(
+)ik the subspa
e of distributionspa
e D0(
+) with the following system of seminorms(A.30) P[T1;T2℄(u) = ku��
T1;T2 ; 
T1;T2k2;Q <1 ; [T1; T2℄ � [0;1)It is evidant that seminorms (A.30) generate in �+ the topology of metrizable F-spa
e (the topology of lo
al 
ompa
t 
onvergen
e).We denote by F+0 = [HQ;b(
T1�1;T2+1)℄k B-spa
e of fun
tions from �+0 whi
hhave the following norm �nitekukb = supT�0P[T;T+1℄(u)Corollary A.3 (Ellipti
 regularity). Let u be a (variational) solution of thefollowing problem 8>>>><>>>>: �2t u+�xu = gu��t=T1 = u1u��t=T2 = u2�nu��x2�! = 0where u1; u2 2 V0 and g 2 L2(
T1;T2).



30 Then u 2 H2Q(
T1;T2) and the following estimate is validku;
T1;T2k2;Q � C(kg;
T1;T2k0;2 + ku1kV0 + ku2kV0)Proof. By de�nition of V0 there exists a fun
tion v 2 H2Q(
T1;T2) whi
h satis�esthe following 
onditionsu��t=T1 = v��t=T1 and u��t=T2 = v��t=T2Moreover kv;
T1;T2k2;Q � C(ku1kV0 + ku2kV0)Let's prove that the fun
tion w = u� v 2 H2;Q(
T1;T2). This fun
tion satis�es theequation ( �2tw +�xw = g1 � g � (�2t v +�xv) 2 L2(
T1;T2)w��t=T1 = w��t=T2 = �nw��x2�! = 0Let's 
onsider the 
ut-o� fun
tion �(t) 2 C10 (R) su
h that �(t) = 0 for t 2 [T1; T2℄and �(t) = 1 for t =2 [T1 � "; T2 + "℄ where " < T2 � T1. It is easy to 
he
k that thefun
tion W (t) = �(t) bw(t) � �(t)8<:�w(2T1 � t) for t 2 (�1; T1)w(t) for t 2 [T1; T2℄�w(2T2 � t) for t 2 (T2;1)belongs to the spa
e G. Indeed�2tW +�xW = �(t)bg1(t) + 2�0(t)�t bw(t) + �00(t) bw(t) 2 L2(
)and W satis�es the appropriate boundary 
onditions.Hen
e a

ording to De�nition A.1 w 2 H2;Q(
T1;T2). �Theorem A.4. For all �1 � T1 < T2 < 1 the spa
e H2Q(
T1;T2) \ L1(
T1;T2)is dense in the spa
e H2Q(
T1;T2)Proof. It is suÆ
ient to prove that G \ L1(
T1�1;T2+1) is dense in G. Let us
onsider a fun
tion u 2 G and a fun
tion g 2 L2(
T1�1;T2+1) whi
h satisfy (A.1).Let gn 2 L1(
T1�1;T2+1) be a sequen
e of fun
tion with the following property(A.4) limn!1 gn = g in L2(
T1�1;T2+1)Let un 2 G be variational solutions of (A.1) withb right-hand sides gn. Then,a

ording to (A.2)(A.5) un ! u in GHen
e, Theorem A.4 will be proved if we prove that un 2 L1(
T1�1;T2+1).To do this we shall use the Maximum prin
iple in the following form
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T1�1;T2+1 � Rn+1 { be a bounded polyhedral domain and letui 2 H1;2(
T1�1;T2+1) , i = 1; 2 be variational solutions of problem (A.1) withright-hand sides gi 2 H1;2(
T1�1;T2+1)�. Let the following inequallity be valid(A.6) hg1;�i � hg2;�i ; 8� 2 H1;2(
T1�1;T2+1)Then(A.7) u1(t; x) � u2(t; x) for almost all (t; x) 2 
T1�1;T2+1Proof. Let us 
onsider the fun
tion u = u1 � u2. Then(A.8) h�tu; �t�i+ hrxu;rx�i+ hu;�i � 0 ; 8� 2 H1;2(
T1�1;T2+1)Let us introdu
e the fun
tions u+(t; x) = maxfu; 0g and u�(t; x) = maxf�u; 0g .Then u = u+ � u�. It is known (see [21℄) that u+ 2 H1;2(
T1�1;T2+1) and(A.9) hu+; u�i = 0 ; hru+;ru�i = 0Let us repla
e an arbitrary fun
tion � in (A.4) by the fun
tion u� and use (A.5).We obtain(A.10) �h�tu�; �tu�i � hrxu�;rxu�i � hu�; u�i � 0Formula (A.10) implies that hu�; u�i = 0 or u+(t; x) = 0 for almost all (t; x) 2
T1�1;T2+1. Lemma A.5 is provedLemma A.6. Let 
 be the same as in previous Lemma and let u 2 H1;2 be thevariational solution of (A.1). Let us suppose also that g 2 L1(
T1�1;T2+1) . Thenu 2 L1(
T1�1;T2+1)Proof. Let �M � g(t; x) � M for almost all (t; x) 2 
T1�1;T2+1 . Let us 
onsiderthe following two fun
tions u�(t; x) = �M and u+(t; x) = M Then Lemma A.5implies that u�(t; x) � u(t; x) � u+(t; x) for almost all (t; x) 2 
. Lemma A.6 isproved. Theorem A.4 is proved.Theorem A.7. The following embedding is valid(A.11) H2Q(
T1;T2) � Lq0(
T1;T2)Here(A.12) q0 � q = 2n+ 1n� 3and if q < q0 then this embedding is 
ompa
t.Moreover if u 2 H2Q(
T1;T2) then ujuj q�22 2 H1;2(
T1;T2) and the following esti-mate is valid kujuj(q�2)=2;
T1;T2k1;2 � Cku;
T1;T2kq=22;Q



32Proof. Let u 2 H2Q(
T1;T2). Due to the de�nition A.1 it means that there existsthe fun
tion bu 2 H1;2(
T1�1;T2+1), bu��
T1;T2 = u, su
h that(A.13) h�tbu; �t�i+ hrxbu;rx�i+ hbu;�i = hbg;�i ; 8� 2 H1;2(
T1�1;T2+1)with the right-hand side bg 2 L2(
T1�1;T2+1) andku;
T1;T2k2;Q � Ckbg;
T1�1;T2+1k0;2Let's approximate bg 2 L2(
T1�1;T2+1) by a sequen
e bgm ! bg in L2(
T1�1;T2+1),gm 2 L1(
T1�1;T2+1). Let bum { be a solution of variational problem (A.13)with the right-hand side bg repla
ed by bgm. Then due to Lemma A.6 bum 2L1(
T1�1;T2+1). Hen
e the fun
tion � = bumjbumjl�2 is in the spa
eH1;2(
T1�1;T2+1)where l � 2 = 4n�3 = (q � 2)=2. Repla
ing in (A.13) bu by bum and � by bumjbumjl�2and arguing as in redu
ing the estimate (1.19) we obtain the following inequality(A.14) kbumjbumj(l�2)=2;
T1�1;T2+1k21;2 � C(1 + j 
bgm; bumjbumjl�2� j)It follows from Sobolev embedding theorem (H1;2 � Lr for r = 2nn�2 ) thatkbum;
T1�1;T2+1kl0;q = kbumjbumj(l�2)=2;
T1�1;T2+1k20;r �� Ckbumjbumj(l�2)=2;
T1�1;T2+1k21;2Applying Holder inequality to the last term into the right{hand side of (A.14) weobtainj 
bgm; bumjbumjl�2� j � kg;
T1�1;T2+1k0;2kbum;
T1�1;T2+1kl�10;q �� �kbum;
T1�1;T2+1kl0;q + C�kgm;
T1�1;T2+1kl0;2for an arbitrary positive �.Applying these estimates to inequality (A.14) and taking suÆ
iently small � > 0we get(A.15) kbum;
T1�1;T2+1kl0;q + kbumjbumj(l�2)=2;
T1�1;T2+1k21;2 �� Ckgm;
T1�1;T2+1kl0;2We know that bgm ! bg in L2(
T1�1;T2+1), hen
e the sequen
e bum is bounded inthe spa
e Lq(
T1�1;T2+1). Without loss of generality we 
an think that bum + bu inthe spa
e Lq(
T1�1;T2+1). So bu 2 Lq(
T1�1;T2+1) andku;
T1;T2k0;q � kbu;
T1�1;T2+1k0;q � Ckbg;
T1�1;T2+1k0;2 � C1ku;
T1;T2k2;QThe embedding ujujl�2 2 H1;2(
T1;T2) 
ould be proved analogously.Let us prove the 
ompa
tness of embedding (A.11) for q0 < q. Indeed due to theinterpolation inequality between H1;2 and LqH2Q(
T1;T2) � H";q0(
T1;T2)for some positive ". It is well known that the embedding H";q0 � Lq0 is 
ompa
t.Theorem A.7 is proved.



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 33Corolary A.8. The following embedding is valid(A.16) H2Q(
T1;T2) � C([T1; T2℄; Lp0(!))Here p0 = 2l = 2 + 4n�3 { the maximum of p exponent in (0.2).Indeed it follows from the se
ond embedding of Theorem A.7 and Sobolev em-bedding theorem that ujuj(l�2)=2 2 C([T1; T2℄; L2(!)) if u2H2Q(
T1;T2). Moreoverwe know from the embedding H2Q � H1;2 that u 2 C([T1; T2℄; L2(!)) Arguing inthe following as in the proof of Krasnoselski Theorem (see [11℄) we obtain thatu 2 C([T1; T2℄; Lp0(!)).Theorem A.9. Let u 2 H2Q(
T1;T2). Then �2t u 2 L2(
T1;T2), �trxu 2 L2(
T1;T2)and the following estimate is valid:(A.17) k�2t u;
T1;T2k20;2+k�trxu;
T1;T2k20;2+k�xu;
T1;T2k20;2 � Cku;
T1;T2k22;QProof. By de�nition there exists a fun
tion bu 2 G su
h that bu��
T1;T2 = u whi
hsatis�es the equation(A.18) 8><>: �2t bu+�xbu� bu = g(x)�nbu���! = 0bu��t=T1�1 = 0 ; bu��t=T2+1 = 0for some fun
tion g 2 L2(
T1�1;T2+1) and kg;
T1�1;T2+1k0;2 � Cku;
T1;T2k2;Q.We give below only formal redu
ing of the estimate (A.17). The rigorous proof
ould be obtained by using (for example) Galerkin approximations method.Let us multiply the equation (A.18) by �2t bu and integarte over 
T1�1;T2+1. Weobtain after integration by part(A.19) 
j�2t buj2; 1�+ 
j�trxbuj2; 1�+ 
j�tbuj2; 1� = 
g; �2t bu�Applying Holder inequality
g; �2t bu� � 12 
jgj2; 1�+ 12 
j�2t buj2; 1�to the right{hand side of the equation (A.19) we obtain the inequality (A.17).Theorem A.9 is proved.Corollary A.10. It follows from the previous Theorem thatu 2 H1;2([T1; T2℄; H1;2(!)) \H2;2([T1; T2℄; L2(!))if u 2 H2Q(
T1;T2) hen
e(A.20) H2Q(
T1;T2) � C([T1; T2℄; H1;2(!)) \ C1([T1; T2℄; L2(!))So the fun
tions k�tu(t)k0;2 and ku(t)k1;2 are 
orre
tly de�ned and 
ontinious forevery u 2 H2Q



34Corollary A.11. Let D(A) be the domain of de�nition for the Lapla
e operatorAu = ��xu + u in L2(!) with Newmann boundary 
onditions. Then it followsfrom Theorem A.9 that(A.21) H2Q(
T1;T2) = H2;2([T1; T2℄; L2(!) \ L2([T1; T2℄; D(A))Hen
e due to the interpolation theory and abstra
t tra
e theorems (see [12℄ and [19℄)the spa
e V0 possesses the following des
ription(A.22) V0 = D(A 34 )Let us suppose that ! has a smooth boundary �! then as known (see [19℄ for ex-ample) the spa
e D(A 34 ) 
ould be des
ribed expli
itly(A.23) V0 = D(A 34 ) = �u0 2 H 32 ;2(!) : Z! d�1(x)jBn(x)u0(x)j2 dx <1�Here d(x) = infy2�! jx� yj and Bn(x) =Pni=1 bi(x)�xi some 
ontinious extentionof the normal derivative operator from the boundary �! in ! (Bn(x)���! = �n).Remark A.12. In the 
ase when ! { is smooth domain all results of this Se
tionare trivial 
orrolaries of L2{regularity theorem for Lapla
e operator (see [19℄)(A.24) H2Q(
T1;T2) = fu 2 H2;2(
T1;T2) : �nu���! = 0gand Sobolev embedding theorems. But for polyhedral domains the equality (A.24) isnot valid in general (see Se
tion 5 for example).Theorem A.13. Let w be a polyhedral domain and let A be the same as in Corol-lary A.11. Then there exists some positive 0 < " = "(!) � 12 su
h that(A.25) D(A) � H 32+";2(!)The proof of this Theorem is given in [9℄.Corollary A.14. Let w be polyhedral domain. Then the following embedding isvalid(A.26) H2Q(
T1;T2) � H 32+";2(
T1;T2)where " = "(!) depends only on !.Indeed (A.26) follows from (A.25) and (A.21).Corollary A.15. Let u be in H2Q(
T1;T2). Then it follows from (A.26) and Sobolevembedding theorem that �nu���! 2 H";2([T1; T2℄� �!)Using Green's formula (see [12℄) it is not diÆ
ult to obtain now that �nu���! = 0for every u 2 H2Q(
T1;T2). Thus the solutions u of the problem (0.1) from the spa
e�+0 satisfy the homnogeneous Newmann boundary 
onditions in ordinary sense.
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