THE TRAJECTORY ATTRACTOR FOR A
NONLINEAR ELLIPTIC SYSTEM IN A CYLINDRICAL
DOMAIN WITH PIECEWISE SMOOTH BOUNDARY

INTRODUCTION

In the half-cylinder 2, = R, X w, where w is a bounded polyhedral domain in
R", we consider the following elliptic system

a(02u + Au) + y0u — f(u) = g(t)
(0.1)

Onulow =0 5 ult=0 = ug
Here (t,z) € Q4 , A - is Laplacian with respect to the variable z = (z!,---,2™),
u = u(t,r) = (ul, -+ ,u¥) — is unknown vector function, f = (f%,---,f*) and

)
= (g%, -, %) are given functions, a — is a given positive selfadjoint matrix (a €

a=a" >0
and -y is an arbitrary constant matrix.

Recall that w is plyhedral if any of its boundary points b is either regular or there
are a polyhedron H C R™, a non regular boundary point by of H, open subsets U,
V of RN with b € U, by € V, and a diffeomorphizm y : U — V such that x(b) = by
and x(wNU)=HNV.

We suppose that the nonlinear term f(u) satisfies the following conditions

1. feCRERF)
(0.2) 2. fu)u>—-Ci+Colulf, 24+ 25 >p>2

3. |f(uw)] < CL+ JuP™)
Here and below we denote by u.v the usual scalar product of vectors u and v in the
space R,

The right-hand side g is supposed to belong to the space [Ly(Qr)]" for all T > 0
where Qp = (T,T + 1) X w and to have a finite norm

(0.3) lg]e = sup ||g, Qrl[o,2 < o0
T>0

We suppose also that the initial data uy belongs to the space Vj of restrictions with
respect to {t = 0} of functions from the space F" = [H@,b(Q+)]k (see Appendix 1)
and the right-hand side g is translation compact in Lo (see §3).

The function u(t, ) is said to be a solution of the problem (0.1) if u belongs to
the space [HQ,b(QJF)]k and satisfies the equation (0.1) in a sense of distributions.
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61 A PRIORI ESTIMATES

In this Section we obtain some a priori estimates for the solutions of our problem
(0.1). We will use these estimates in the next Sections in order to prove the solutions
existense and construct the trajectory attractor of the problem (0.1).

Theorem 1.1. Let u — be a solution of the problem (0.1). Then the following
estimate s valid

(1.1) lu, @77 2 < C(lluollfyx(1 = T) + 1+ llg, r—1,7+2

6,2)

Here Qr_1 742 = [max{0,T — 1}, T + 2] X w, x(2) is Heviside function (x(z) =0
for z <0 and x(z) =1 for z>0) and C does not depend on u.

Remark 1.2. Due to the results of Appendix 1 the nonlinear term f(u) belongs

to the space [LZ

1OC(Q+)]k and so the equation (0.1) can be considered as equality in
this space.

Proof. By the definition of the space Vj there exists a function v € Hg (€24 ) such
that suppv C Qo, U‘t:o = ugp and
(1.2) 10, Qollo < Clluollvy

where the constant C' does not depend on wuy.
Let us rewrite our problem with respect to a new unknown function w = u — v

(1.3) { a(Opw + Ayw) — yoyw — f(w + v) = g(t) + a(0w + Agv) — vOv = h(t)

w‘t:o =0
It follows from the choice of v that
(1.4) 1A, Qrllo,2 < C(llg, Qrllo2 + x(1 = T)l[uollvy)

Let ¢(t) = ¢r(t) be the following cut—of function

¢(t)_{(|t—T+1/2|—1)% , forte[T—1/2,T+3/2
B 0 , fort¢ [T —1/2,T+3/2

It is very easy to calculate that ¢’ € Lo (R) and the following estimate is valid
(L5) ¢/()] < Co1)*F7 . tER
Let us multiply the equation (1.3) in RF by the function ¢w and integrate over Q.
(1.6)  (adfw, pw) + (alyw, pw) — (yduw, pw) — (f (v + w), pw) = (h, pw)
It follows from the positivness of a and from the estimate (1.5) that
(17) (a0, dw) > Cy (gloww]?, 1) — (|¢/]|dwo], [wl) >

> Cy (p|opw|®, 1) — % (Blopw|?,1) = C <¢2/p|w|27 1> >

> Cy (plovwf’,1) = € (¢*/7|w]?, 1)
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Applying Holder inequality to the second term of (1.6) we obtain

(1.8) | (youw, pu) | < (gl l?, 1) + Cp (gl 1) <
< w(glonf®,1) + Gy (97wl 1)

This estimate is valid for any positive pu.
Due to the conditions to our nonlinear function f(u)

(1.9)  {f(w +v),dw) = (f(w +v).(w +v), $) = {f(w + v),v¢) >
> —C+ Cy {plw+ 0P, 1) = C(1+ |w+ |, ¢v) >
> —Cy(1+(d[v|P, 1)) + C3 (Blw|", 1) > —=Ca(1+ x(1 = T)lluoll},) + C3 (plwl]?, 1)

Here we’ve used the embedding (A.11) and the estimate (1.2).
Using the positiveness of a we obtain after integrating by part

(1.10) — (aAzw, pw) > C($|Vw|?, 1)
And due to the estimate (1.4) and Holder inequality

(L.11) | (hydw) | < (g]RI%, 1) + (glw]* 1) <
< C((glgl?, 1)+ x(1 = Dlluoly,) + C1 (67w, 1)

Replacing all terms of equality (1.6) by their estimates (1.7)— (1.11) we get after
simple calculations

(112)  ($lo],1) + (9T, 1) + ($luf, 1) — O (¢*/7wl 1) <
< C1(1+ (#1917, 1) + x(1 = T)uollve)

Let us estimate the last term at the left—hand side of (1.12) by Holder inequality

(#70P. 1) = (87w, 1) < C (gl 1*7 < p (gl 1) +C,

for any positive p. Let us take p > 0 sufficiently small and apply this estimate to
the inequality (1.12)

(1.13) (glopw]?, 1) +(d|Vwl*, 1) +(glw|", 1) < Co(1+(lg|*, 1) +x(1—T)]luollv;)

Recall that by definition ¢(t) > Cy > 0 for ¢ € [T, T + 1]. Hence it follows from the
estimate (1.13) that

(1.14) lw, Q7 2 < CA+ x(1 = T)l|uolly;, + llg, 21,7415 2)

Theorem 1.1 is proved.

Remark 1.3. It follows also from the estimate (1.13) that

(1.15) lu, @[l < COx(L = T)luollf, + llg, Qr—1,742[15 )
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Theorem 1.4. Let u be a solution of the equation (0.1) then for every T > 0 the
following estimate is valid

2(p—1
(1.16) [ju, Q[0 Y <

2(p—1
< C(L+ g, Qo1 rralB o + 1wy Qr—1 rsallh, + X(1 = T) ol 5 ")

Here the exponent p were defined in (0.2).

Proof.

Let us fix some 7" > 0 and define another cut—off function ¢(t) € C5°(R), such
that o(t) =1 for t € [T,T+ 1] and (t) =0 for t ¢ [T — 1,T + 2], 0 < o(t) < 1.
Multiplying the equation (1.3) by the function pw|w|P=2, where |w|, = (aw.w)'/?
and integrating over {24 we obtain the following equality

(1.17)  {(a(dfw + Ayw), pw|w[t=?) =
= (py0uw, wlw|f?) + (o f(w +v).w, |wF=?) + {ph, ww[7~?)

Recall that due to the the space Hg definition 07w + Ay,w € Ly and due to the
embedding (A.11) functions w|w|?=2 and f(w+wv) are also from the space L? hence
all of the integrals in (1.17) are correctly defined. Moreover due to Theorem A.7

wlwP~2 € HY2(Qr_1,742) hence we can integrate by part the left—hand side of
(1.17).

(1.18)  {(adfw, pw|w[t~?) = — (adyw, O (pw|w|k~?)) =

(@, 0e(Jwlh)) — (Glovwl, [wlh ™) — (p — 2) (p(adpw.w)?, lw]f ™) =

1
p
= 2" k) — (@loulz. ulz ) - X222 (gl 0w <

< Cil|lw, Qr 17426, — C2 <¢8t(|w|§/2), 3t(|w|€/2)>

Analogously

(08gw, gulw|272) < —Cs ($Vallw[2/?), Va(lw[2/?))
Hence
(1.19) — <a(8tzw + Azw), ¢w|w|§_2> > Ctljw, Qr—1, 7425 ,+

+ Ca ((90u(w]2), 0([w]2/?)) + (69 ([wl’2), Va(lw]2/?)))

It follows from Holder inequality that
(120) [ (y0w, pulwls=2) | < 90u(wl2?), 0(jwl/)) + Cy ($lw]?, 1)
and
(1.21) [ (B, gwlwl=2) | < p{glw2=0,1) + C, ($lh[2,1) <

< {9l P70,1) + Culllg, Qr-vzsall 2 + x(1 = T)luo )
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Here p is an arbitrary positive number.
Arguing as in redusing (1.9) we obtain

(122)  (fw+v),gwlwli?) > ~Ci(1+ ($loPP7,1)) + Gy (w2, 1) >
> —C3(1+ x(1 = T)|Juoll? ™) + Co <¢|w|z<p—1>7 1>

Replacing all of the terms in equality (1.17) by their estimates (1.19)—(1.22) and
taking sufficiently small p > 0 we obtain after simple calculations

(1.23)  (glwD,1) <

< 0(1 + ||w’ QT—l,T+2Hg,p + ||gv QT—I,T—i-2

2(p—1
125+ x(1—T)[Juoll5F~)
Theorem 1.4 is proved.

Remark 1.5. [t follows immediately from the estimates (1.16) and (1.15) that

(1.24) 1f(u), Qrllo2 <C (1 + 11, Qr—1, 742

-1
lo.2 + x(1 = T)Juoll?; ")

Theorem 1.6 (The main estimate). Let u—be a solution of the problem (0.1).
Then the following estimate is valid

(1.25) lu, zllg < Cllluollfy ' x(1 = T) + 1+ llg, Qr—1,742]l0,2)

Proof. Let us rewrite the equation (1.3) in the following form

{ 02 (pw) + Apw) = hyy(t)

1.26
( ) gow‘max{T—l,O} =0 QD’!U‘T+2 =03 a"(gow)‘aw =0

Here ¢ is the same as in Theorem 1.4 and
(1.27) ho(t) = @"w + 20" 0w — a~ (h(t) + o f (u) — yO;w)
Due to the (1.24) and (1.1) we have the following estimate

(1.28)  [lhw, Qr—1,r42llo2 < Cllluollty 'x(2 = T) + 1+ llg. Qr—2,7+43

lo.2)
Due to the L2-regularuty Theorem (see Appendix 1)

(1.29)  |lw, Q4 N Q7o < Cillpw, Qr_1 7420 <
< Ol b, Qr—1,17+42l0,2 < Ca([|wollvex(2 —=T) + 1+ ||g, Qr—2,7+3

lo,2)
Theorem 1.6 is proved.

Remark 1.7. Let the condition (0.3) be valid. Then any solution u of the problem
(0.1) from the space Hé‘?@(Q_F) is automatically bounded with respect to t — oo i.e.

(1.30) Jull = sup [l rlo < 1L+ ol +lah) < o0

Indeed the estimate (1.31) follows immediately from the estimate (1.25)



§2 THE SOLUTION EXISTENCE.

In this Section we prove the solvability of the problem (0.1). For the fisrt we
solve the following auxiliary problem in finite cylinder

2.1) { a(0}u + Agu) + y0u — f(u) = g(t)

:ul

u‘t:o =uo ; u‘t:M

Here ug,u; € Vp and u € HQ’Q(QO,M).
We’ll get solution u of the main problem (0.1) as a limit of solutions uys of the
corresponding auxiliary problems (2.1) when M — oc.

Theorem 2.1. Let u — be the solution of the problem (2.1). Then the following
estimate s valid uniformly with respect to M — oo

(

2.2)  |lu,Qrll20 <
< CA+x(1=T)uollfrt + x(T = M+ 1) [Jus | "+ [lg, Qr—1,742 N Qo,ar

lo,2)

The proof of this estimate is the same as the proof of estimate (1.25) given in
the previuos Section for the case of semibounded cylinder.

Theorem 2.2. The problem (2.1) has at least one solution for any ug,u, € V.

Proof. Let us introduce the space
(2.3) W = {w € Hyo(Qo,0) - w‘t:o = w‘t:M = 0}

and rewrite the problem (2.1) as an equation in the space W. For the first we
rewrite our problem with respect to new function w = uw — v, where w € W,
(IS HQ’Q(QO,M).
(24) {3Ew+Amw = a~ (=70 + f(v+w) + g1 (1)
wl,_g =w[,_p =0
Here g; = —a(02v + Azv) — y0 + g.

Let’s denote by A the inverse operator for the Laplacian with respect to vari-
ables (t,z) € Qo m and appropriate boundary conditions (w‘ o = 0w =0,
8nw‘ 0). Then due to results of Appendix 1

t=M
TEdw -

(25) A LZ(QO,M) — W
Aplying the operator A to both sides of equation (2.4) we obtain
(2.6) w+ F(w) = h = —A(02v + Ayv)

where
F(w) = —Aa" Y (—y0uw + f(v +w) + g — y0sv)

We’ll use Leray—Shauder principle in the following form (see [10])
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Leray—Shauder principle. Let D be a bounded open set of B-space W and let
F : D — W be a compact continious operator. Let also the point h € D be such
that

(2.7) w + sF(w) # h forallw € 0D and s € [0, 1]

Then the equation
w+ F(w)=h

has at least one solution in D.

Let D — be a ball of sufficiently large radius in W and Let us suppose that
(2.8) ws + sF(ws) = h for some s € [0,1] and ws € 0D

Equation (2.8) can be written in the following form

(2_9) { a’(atzus + Awus) + S'Yat’u,s — sf(us) = Sg(t)

“S‘t:o =Uo ; US‘t:M =u

Here u, = wy + v.
Equation (2.9) has the view (2.1). It is not difficult to see that the estimate (2.2)
is uniform with respect to s € [0, 1]. Hence

lws[lw < K

for all solutions of (2.9) uniform with respect to s € [0,1]. So condition (2.7) is
valid if the radius of D is greater then K.

Let’s prove the compactness of operator F. It is sufficient to prove the com-
pactness only for the nonlinear part Aa™!f(w + v) of this operator. To do this
let’s decompose previous nonlinear operator in the composition of three continious
operators A o Fy o Fy, and one of them is compact (Fy : W — L@~ — em-
bedding operator, wich is compact because 2(p — 1) < ¢ (see Theorem A.7) and
Fow = a ' f(v 4+ w)). As known, operator Fy is continious from L2~ to L2
(due to conditions (0.2) and Krasnoselskiy theorem (see [11])). Hence operator F'
is compact and according to Leray—Shauder principle the problem (2.1) has at least
one solution. []

Theorem 2.3. The problem (0.1) has at least one solution v € Hgp(S24)
Proof. Let’s consider a sequence ujps of solutions of auxiliary problems (2.1) with

M=1,2,... and ul‘t:M = 0. It follows from Theorem 2.1 that

||UM, QO,NHZ,Q S C(U’O, N, g)
uniform with respect to M > N (for every fixed N). So using Cantor diagonalization
process one can extract from ujs a subsequence (which will be denoted for simplicity

as ups again) with the following property

Um|gy v 7 oy in the space Hé(QoyN)
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for some u € Hpp(24). Let’s prove that w is a solution of (0.1). It is sufficient to
prove that for every ® € C§°(Q4) the following equality is valid

(2.10) — (adu, ;@) — (aVyu, Vi @) + (v0iu, @) — (f(u), @) = (g, ®)
It follows from the definition of uys that
(2.11) —(adyunr, 0:®) — (aViunr, Vi ®) + (yOpunr, @) — (f(unr), @) = (g, P)

for sufficiently large M. Taking a limit M — oo in the equation (2.11) we obtain
(2.10). Indeed the only nontrivial problem is to prove that

(2.12) (f (unr), @) = (f(u), ®)

Let’s suppose that supp ® C Qg n. It follows from the conditions (0.2) and Theorem
A.7 that embedding HZ C L2(P=1Y) is compact. Hence ups — u in L2P~1(Qq )
and f(upr) — f(u) in L?(Qo, ). Theorem 2.3 is proved.

§3 TRAJECTORY ATTRACTOR OF NONLINEAR ELLIPTIC SYSTEM.

In this Section we construct the trajectory attractor for the problem (0.1). Re-
call shortly the main concepts and definitions of the abstract theory of trajectory
attractors for dynamical systems (see [6], [7] for complete exposition ).

Definition 3.1. The right-hand side g of the problem (0.1) is said to be translation
compact in the space

=t = [L2.(Ry, La(w))]"
of it’s hull
HY(g) = [Tsg,5 > 0)z+ , (Tsg)(t) = g(t+s)

is a compact set in 2. Here [-]z+ means the closure in the space =1 .
The right—hand side g of the problem (0.1) is said to be weak translation compact
in the space =T if it’s weak hull

rHju_(g) = [ngas > O](5+)w

w

is a compact set in (ET)”. Here and below (E7)Y means the space = endowed by

a weak topology.

Remark 3.2. It is diffcult to prove (see [20]) that if the function g is translation—
compact (in a strong topology) then

(3.1) HF(9) = M (9)

Remark 3.3. It is evidant that t—periodic or quasi—periodic (or almost periodic
by Bochner in L*(w)) function g is translation compact in the space =% (in strong
topology). So the concept of a translation—compact function is a some generalization
for a concept of an almost—periodic function.
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Remark 3.4. It follows immediately from the hull’s definition that
(3.2) ToHT(g) C HT(9) and TsH (g) € HE(g9) fort >0

i.e the semigroup of shifts {Ts, s > 0} acts in the spaces H' (g) and H}(g).

Now we formulate the nessesary and sufficient conditions of translation compact-
ness and weak translation compactness in the space =7.

Theorem 3.5 [8].
1. A function g is weak translation compact in =% if and only if it is bounded
with respect to t — oo i.e |gly < co.
2. A function g is translation compact in =% if and only if the following condi-
tions is valid
a) For every fized t > 0 the set {fst+s g(z)dz, s € Ry} is precompact in the
2 k
space [L?(w)]".
b) There exists the function B(s), s > 0, B(s) — 0 when s — 40, such that

t+1
33 [ o) =9G4 Dl ds <A . ViR s LR,

Remark 3.6. Condition (3.3) is valid for example if
||nga [07 1] X w||5,2 <C,Vse R4

for some § > 0.

To construct the trajectory attractor for the problem (0.1) we consider (together
with the equation (0.1)) family of problems of view (0.1) obtained by all positive
shifts of the initial problem (0.1) and their limits in the appropriate topology

(3.4)

{ a(02u + Agzu) + v0u — f(u) = o(t)
<Y

here we take ¥ = HT(g) if g is translation—compact in a strong topology and else
we take ¥ = H1 (g).

Definition 3.7. For every function o from ¥ we define K} of as a set of all
solutions for the equation (3.4) with a fized o € ¥ and with an arbitrary ug € Vj.
We denote by K; the following set:

K;;— = UO‘EEK;_

It follows from (3.2) that a semigroup {75, s > 0} of all nonnegative shifts along
the t—axis ((Tsv)(t) = v(t + s)) acts in the space Ky i.e.

3.5 T. K& ¢ K& for s >0
( > ¥

We endowed the set K ; by the toplogy induced from the embedding K ; C ®0+ if
> = H*(g) (the strong topology case) and from the embedding K3t C (©F)* if
¥ = H}(g) (the weak topology case) (see Apendix 1 for OF definition).
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Definition 3.8. The (global) atrractor of the semigroup {Ts,s > 0} acting in
topological space K; is called the trajectory attractor of the family (3.4) i.e. a set
As, C K3 is the trajectory attractor of (3.4) if the following conditions are valid
(1) As —is a compact set in Ky
(2) As is strictly invariant with respect to the semigroup Ts action, i.e.

T, Ay, = As,

(3) As is an attracting set for the semigroup {Ts, s > 0}, i.e. for every
neighbourhood O(Ay) in K; topology there exist such number So that

(3.6) TKY; € O(K) for every s > So.

Remark 3.9. Usually one requare that the attracting property be wvalid only for
bounded (in some sence) subsets of K5 but due to the estimate (1.26) the set T1 K
is bounded (as in OF so in F;" ). Hence the attracting property (3.6) is automatically
valid for all subsets of Ky with the same constant So (see also [22]).

Theorem 3.10 [8]. Let the following conditions be valid:
1) There exists a compact attracting set P C Ky, for the semigroup {Ty,s > 0}.
2) The set K; 158 closed in the space @(}L (or sequentially closed in the space
()Y in the weak topology case).
Then the family (3.6) possesses a trajectory attractor A = As, in K;

Definition 3.11. The trajectory attractor A for the family (3.6) with ¥ = H}(g)
(weak topology case) is said to be a weak trajectory attractor of the initial problem
(0.1).

Analogously the trajectory attractor A = A® for the family (3.6) with ¥ = H™*(g)
(strong topology case) is said to be a (srong) trajectory attractor of the initial prob-
lem (0.1).

Theorem 3.12.

1. Let the condition (0.3) be valid. Then the problem (0.1) possesses a weak
trajectory attractor A" .

2. Let the right—hand side g be translation—compact in E% (with the strong topol-
ogy). Then the problem (0.1) possesses a strong trajectory attractor A = A®.

Proof. Let us verify the conditions of previous Theorem.
Lemma 3.13. The set Ky, is (sequentially) closed in the space (©7F)Y.

Proof. Let u, € K , up, — uin (©f)". Due to the compactness of ¥ in (E+)*
we may suppose without loss of generality that o, — o ZT. It is nessesary to
prove that u € K. By definition the functions u,(t) are bounded solutions of the
following problems

. { o0Fun + D)+ 1Bt = i) =00

_ ,,0 .
un|t:0 = Uy, ; Un € VO
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Taking a limit n — oo in (3.4) we obtain now (as in the proof of Theorem 2.3) that
we K. O

So the second condition of Theorem 3.10 is valid. Let us verify the first one. It

follows from the estimate (1.25) that the set
P=BgpnK{ ,s>0

where Bp is sufficiently large ball in the space F,~ is an attracting (and even
absorbing) set for the semigroup {7Ts, s > 0}. Let us consider firstly the weak
topology case. Then as known the set Bpr is a compact and metrizable subset of
(6F)™ Indeed the ball Bg is bounded in ©F and O is reflexive separable F-space
hence Bp is semicompact and metrizable in a weak topology and metrizable. Hence
due to the convexivity Bg is a metrizable compact in a weak topology. It follows
from Lemma 1 now that the set P also compact in a weak topology.

Let us suppose now that the right—hand side g of the problem (0.1) is translation—
compact in strong topology.

Lemma 3.14. Let the previous condition be valid. Then for every s > 0 the set
T, P is compact in the space OF.

Proof. Without loss of generality we can suppose that s = 1. Let u, € BpN K, ;fn
be an arbitrary sequence. Due to the compactness of the set P in a weak topology
we can extract from {u,} a subsequence (for simplisity we denote it also by {u,})
weakly convergent to some v € K} and due to the compactness of the hull ¥ in
E* (in a strong topology) we can suppose that o, — o in E¥.

To prove Lemma it is sufficient to prove that w, — u in [HQ,Q(QT)]IC for an
arbitrary 7' > 1.

By definition the functions u,, satisfy the equations (3.7) Let’s multiply (3.7) by
the cut—off function ¢ € C§°(R), such that ¢ = 1if t € [T,T + 1] and ¢ = 0 if
t¢ [T —1,T +2]. We obtain

8152(¢Un) + A(d)un) = a’_l(d)an + d)f(un) - ’Yd)atun)'i_
(3.8) + 20; 04, + (02 )ty = hy(t)
¢Un|t:T—1 =0 ; ¢Un|t:T+2 =0 ; 8n(¢un)|m68w =0
Arguing as in the proof of Theorem 2.3 we prove that f(u,) — f(u) and Oyu,, — Ou
in E*. So h, — h in the space [Lz(QT_l,T+2)]k and by definition (see Appendix
1)
¢u, — ¢u in G hence, u,, — u in [HQ’Q(QT)]IC
U
So all assumptions of Theorem 3.10 is valid. Theorem 3.12 is proved.

Corollary 3.15. Let the right-hand side g be strongly translation compact in .
Then

disto,o(ILy, ¢, Ts Ky , Iy, 4, A) — 0 when s — 400

where

disto o(M, N) = sup lngv |z =y, %, 1, ]]2,0

reMY
Here by I1;, 4, we denote the restriction operator to the segment t € [t1,t2].

Indeed, the assertions of this Corollary follows immediately from the attrctor’s
definition.
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Corollary 3.16. Let the right-hand side g be weakly translation compact in ZF.
Then

distH3/2+5,2(Qt1,t2) (HtlhTsKg, HtlhA) — 0 when s — +00
and

diStLq(Qtl,tQ) (Htl,tQTsKgy Htl,tzA) — 0 when s = 400

Where € > 0 s a sufficiently small positive number and q < 22—2.

Indeed, the assertions of this Corollary follows from the compactness of embed-
dings Hj C H3/2+€:2 and Hg, C L9 which have been proved in Appendix 1.

Now we investigate the structure of trajectory attractor A constructed in the
previous Theorem.

Definition 3.17. Let w(X) be the w-limit set (attractor) of the semigroup {Ts, s >
0} acting in the compact space 3. As known (see [2]) it is not empty and could be
represented in the following form

w(E) = mtz() [UsZtE]E

Here [-]s. means the closure in the space 3.

Definition 3.18. A function &(t), t € R is said to be a complete symbol of (3.4)
in the space w(X) if
ML6,() € w(®) , Vs € R

Here &(t) = &(t + s), and Il is the restriction operator to the semiaxis t > 0.
The set of all complete symbols of (3.4) we denote by Z(X).

Lemma 3.19 [8]. For every o € w(X) there exists a complete symbol & € Z(X)
such that 11,.£ =o.

Definition 3.20. Let £ € Z(X) be a complete symbol of (3.4). Let us denote by
K¢ — the set of all (bounded) solutions of the equation (3.4) in the whole axist € R,
in which we replace o(t) by £(t).

Theorem 3.21 [8|. The attractor A has the following structure:

(39) A=T11, Ueez(z) Kg

Corollary 3.22 [20]. Let the right-hand side g of the equation (0.1) be strongly
translation—compact in E%. Then the weak trajectory attractor of the problem (0.1)
concides with it’s strong attractor

A® = AV
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64 STABILIZATION OF SOLUTIONS WHEN { — 00

In this Section we ivestigate the long-time solutions behaviour in the case when
right-hand side g(t) of (0.1) can be represnted in the following form

(4.1) 9(t, x) = g4 (z) + g1(t, z)
when g, € L?(w) doesn’t depend on ¢ and g; satisfies the following condition
(4.2) Tsg1 — 0 , when s — 400

in the space Z1 or in the space or (ET)¥. It is not difficult to check that in the
first case the function g is strong translation compact in =+ and in the second case
it is weak translation compact.

Theorem 4.1. Let the condition (4.2) be valid. Then the equation (0.1) with the
right-hand side (4.1) possesses a strong (weak) trejectory attractor A = A, which
consides with the attractor of the limit autonomous equation

(4.3) a(0Fu + Agu) — yOuu — f(u) = g4
i.e
(4.4) Ay =A,,

Proof. The attractor existance follows immediatly from Theorem 3.12. Let us check
the equality (4.4).
It is easy to reduce from the condition (4.2) that

Z(9)=2(X) =w(X) =g+

Here ¥ is the strong (weak) hull of the right-hand side g in the space =% (see
Section 3). Hence formula (4.4) is valid due to Theorem 3.21. Theorem 4.1 is
proved.

Let us suppose now that the nonlinear term f(u) in the left-hand side of the
equation (0.1) is gradient-like

(4.5) f(u) = —VF(u), Fc C(RF R)

For every u € Hg(£24) we introduce the function F,(¢) by the following formula
1 1

(4.6) Fu(t) = 5 (@dpu(?), dpu(t)) — 5 (aVau(t), Vou(?)) + (F(u(t)), 1) — (g4, u(?))

where (+,-) denotes the scalar product in the cross-section space L2(w).
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Theorem 4.2.
1. The function F, is well-defined for every u € Hgp(21) and belonges to the

space Hé’l(]&,).
2. Let us suppose that u is a solution of the problem (0.1). Then

dF.(t)

(4.7) -

= —(yOpu(t), Owu(t)) + (91(t), Oru(t))

Proof. Let us suppose that v € Hgp(€24+). Then due to the embedding (A.20) the
first, the second and the fourth term in the right-hand side of (4.6) are well-posed.
It remains to check the third term. It follows from (A.16) and (4.5) that

(4.8) |F(u)] < C(1+ [uf?)
Then due to the embedding (A.16) and Krasnoselskij Theorem

(F(u(t), 1) € Cp(Ry)

Hence the definition of F,(t) is correct.
Let us calculate it’s derivative. It is not difficult to obtain using the ordinary
methods of distributions theory that F, € H,'(Ry) and

d

(4.9) 7

Fult) = (Opu, a(0fu + Agu) — f(u) — g4)

Hence the first part of Theorem 4.2 is proved.
Let us suppose now that u is a solution of the problem (0.1). Then (4.5) follows
immediately from the formula (4.9). Theorem 4.2 is proved.

Theorem 4.3. Let the conditions of previous Theorem be valid. Let us suppose
also that the matrixz v in the left-hand side of (0.1) is sign-defined
Y+ *>0o0ry+9"<0

and function g1(t) = g1(t,x) from (4.1) satisfies at least one of the following con-
ditions

L2 I ®lload < o0
(4.10) 2. Oug1 € LRy, La(w)) and 7 |8:g1(t)]0,2 dt < oo

3. Yn—ollG1. QN

lo,2 < oo for some Gy such that 0,G1 = g1

Then every solution u of the problem (0.1) possesses the finite dissipative integral
(4.11) /|@mw@ﬁ<m

0
Proof. Let us integrate (4.6) over ¢t € [0,T]

/T(’yatuv 8tu)dt = fu(o) - fu(T) + /T(gl, 8,5’11,) dt
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It follows now from the sign-definess of matrix v that

(4.12) /0 ||8tu(t)||(2,72dt§C|.7-'U(T)—]-"u(0)|+0‘/0 (g1, Oyu) dt|

Theorem 4.2 implies that function F,(T') is bounded with respect to T — oo hence
it sufficient to obtain the boundness of the integral in the right-hand side of (4.12).
Let the first condition of (4.10) be valid. Then

T
(413) | / (91, 00u) dt| < / 191D llo2llBvt(t) 0.2 dt <

< SUPyeo, 1] [Oru(t)

T 00
| / g1 ®)llo.2 dt < [lulls / g1 (0)llo.2 dt
0 0

So | fOT(gl, dyu) dt| is bounded with respect to T — oo.
Let the second condition of (4.10) be valid. Then applying the partial integration
formula we obtain

414) | [ Gon, 00 1] < [ (D, uD) 4 120000+ | [ @ua(0,0)

The integral in the right-hand side of (4.14) estimates in the same way as in (4.13).
To estimate the first to terms in the previous formula it is sufficient to prove that
under above assumptions g1 € Cp(Ry, L?(w)). Let us consider an arbitrary segment
[N,N + 1] C Ry and let [T,¢] be in this segment. Then

(4.15)  |lg1(T) Ollo.2 + l91(T) = g1(B)llo,2 <

T
< lgr(®)lo,2 +/ 10eg1 () l|o,2dt < [|g1(t)]]o,2 +/ 10:91(t)]]0,2 dt
t 0

Let us integrate the inequality (4.15) over ¢ € [N, N + 1]

lg1(T)llo,2 < Cllg1, 2w llo,2 +/ 1091 () llo,2dF < |g1lo + 1091 /|2, =1 L2 w))
0
But the constant N was choosen arbitraryly hence g; € Cy(R,, L?(w)).

Let the third condition of (4.10) be valid. Then applying the partial integration
formula again we obtain

‘/0 (91, 0pw) dt| < |(G1(T), 0pu(T))| + [(G1(0), Bpu(0))] + \/0 (G1(t), 07 u(t)) dt|

The first two terms in the right-hand side can be estimated as in the previous case.
Let us estimate the integral

< Z |G1,QN||02||a2u oz < Cllulls Y 1G1, 2 lloz

; u(t)|o,2dt <

Theorem 4.3 is proved.
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Theorem 4.4. Let the all asumptions of previous Theorem be valid. Let us suppose
also that the limit problem in the cross section w

{ algvy — vy (2)) = g4(2)

8””"’ ‘meaw =0

(4.16)

has the finite number of solutions

(4.17) vy € Vi = {vi (@), vl (2)}

Then for every solution u of the problem (0.1) there exists an equlibria Uf(x) eV,
such that

(4.18) (Tyu)(t,x) — v¥ (x) in the space ©F | when s — +oc
Here by ©% we denote the space @3r if g is strong translation compact in = and

Ot = (0f)" if g is weak translation compact.

Remark. As known (see for instance [2]) there exists an open dence set in L?(w)
such that the set V. is finite for every g, from this set.

Proof. Let u be a solution of the problem (0.1). Let us consider the w-limit set
w(u) of the point u € OF under the {Ts,s > 0} semigroup action. Recall that
u4 € w(u) if and only if there exists the sequence {s;,j € N}, s; — oo such that

4.19 Ts.u — uy in the space OF
j +

Theorem 4.1 implies that {Ty,s > 0} possesses an atractor A in K3 C ©% hence
(see [2]) w(u) is nonempty connected compact set in ©F. Let uy be in w(u). It
means that there exists a sequence s; € Ry such that for every T' € R,

Ts,u — uy in the space H3(Qr), when s; — 0o

Particulary
||T8j8tu - 8tu+,QT||0,2 —0 , when §j — 00

But it follows from the dissipative integral (4.11) existance that

||Tsj 8t’l,t, QT

lo,2 = ||0su, Ts,Qrll0,2 — 0, when s; — o0
Hence ||0yu4, Qrllo,2 = 0 and uy (¢, z) = uy(x).
It follows now from the condition (4.2) and from Lemma 3.3 that uy(x) is a
solution of the limit problem (4.16). So
(4.20) w(u) C Vi
But the set w(u) must be connected and the set V, is descrete hence

(4.21) w(u) = {v}} for some N € {1,---,1}

The attracting property for {Ts, s > 0} (see §3) implies immediately now that (4.18)
is valid. Theorem 4.4 proved
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Corollary 4.5. Arguing as in the prove of Corollary 3.16 we obtain as in the case
of strong translation compactness of g as in the weak one condition (4.20) implies
that

limy 4 oo ||u(t, ) — o2 (- — 0, when t — o0
o) f limr s ) o Ol

limy 4 oo ||Ocuu(t, +)]|e,2 — 0

where the exponent pg is given in Corollary A.1.

Corollary 4.6. Let the function g4 satisfied the conditions of Theorem 4.4. Then
any solution u(t), t € R of the equation (4.4) in the whole cylinder Q@ =R X w is a

heteroclinic orbit i.e. there exist two dif ferent equilibria w;” and w; from the set
V1 such that

(4.23) Tsu — wl when s — +o00 and Tsu — w,] when s — —o0

Indeed due to the estimate (1.25) (see Remark 1.7) any solution of the problem
(4.4) is bounded as with respect to ¢ — 0o so with respect to ¢ — —oo. So the
convergence (4.23) follows now from Theorem 4.4. Hence it remains to prove that
w; # w;, . Integrating the formula (4.7) with g; = 0 over R we obtain that

(4.24) Fu(400) — Fu(—00) = Fptr — Fop- = /(Watu, Oru) dt # 0
R

Thus wt # w™.
Let us give now some examples of the pertrubation term g1 (¢, z) satisfying the
conditions of previous Theorem.

Ezxample 4.7. Let

(4.25) 91(t, ) = ¢(t)go()
where go € L?(w) and

(4.26) p(r) = P

Then it is not difficult to check that this function satisfies the first condition of
(4.10) and condition (4.2) is valid for the strong topology choice.

Ezample 4.8. Let the function g; have the form (4.25) with the following function
()

t

(4.27) o(t) = T3

Then it is not difficult to check that this function satisfies the second condition of
(4.10) and condition (4.2) is valid for the strong topology choice.

Ezample 4.9. Let the function g; have the form (4.25) with the following function
()

(4.28) o(t) = sin(3)
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Then as known Ty — 0 when s — oo in a weak topology of the space L2([T, T +1])
for every T' € R, hence g; satisfies condition (4.2) with the weak topology choice.
Let us check that this function satisfies the third condition of (4.10). Let G be the
following function

G (t ) = () go(x) , where B(t) = — /t "~ sin(s?) ds

We must check that

(4.29) > v 12 N, N +1][lo2 < o0

In order to do it we represent ® in the following equivalent form

1 gv,_9 2 [ cosv
@(t): gCOS(t )t —§/t3 md’l)

It follows immediately from this representation that
®(t) = O(t™?) , when t — oo

Hence 5
12, [N, N + ][], = O(N™2)

and so (4.29) is valid.

Part 2. Asymptotics in the three-dimensional case

In the second part, we describe the asymptotics of solutions to the linear system
(0.77) in case the half-cylinder Q@ = Ry X w is three-dimensional and conclude
from this depiction the existence of the trajectory attractor for the singular part of
the solutions to the nonlinear elliptic system (0.1).

5. ELLIPTIC REGULARITY FOR THE NEUMANN
PROBLEM FOR THE LAPLACE OPERATOR

Before discussing elliptic regularity for the Neumann problem for the Laplace
operator on the half-cylinder 2, = R, X w, we discuss elliptic regularity for the
Neumann problem for the Laplace operator on the infinite cone I' C R? and the
infinite wedge R x I' C R3. Since in this section we shall make use of the Fourier
transformation, in contrast to the rest of the paper functions appearing are complex-
valued. Since all differential operators considered have real-valued coefficients, the
conclusions are easily specified to the real-valued case. When speaking about a
solution to the Neumann problem, we always mean a variational solution that is
in particular in H'. Further, subscripts b, loc in the notation of Sobolev spaces
on a cylinder or half-cylinder have the same meaning as before, while subscript N
indicates the subspace of functions satisfying the homogeneous Neumann boundary
condition, where it makes sense, i.e., on 9I', R x 0I', 0w, R X 0w, and Ry x Ow,
respectively. We shall also employ notation with subscript ) to designate the space
of all variational solutions to the corresponding Neumann problem with right-hand
side in L2. We always have Hé D HZ. If T or at least one of the conical points of

w has an obtuse angle, then Hg # Hy;, otherwise H = Hy.
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Henceforth let I' C R? be an open cone with opening . Since it turns out
that for o < m we have H?-regularity, we shall suppose that o > 7. Further let
y = (y1,y2) be euclidian coordinates in R?, while (r,6) denote polar coordinates.
We assume that I' = {(r,0);0 < § < a}. We fix a cut-off function ¢ € C5°(T),
depending only on the radial coordinate r, such that ¢(r) = 1 in a neighbourhood
of 0 and 1 is supported sufficiently close to 0. The model cone I' arises through
flatting out the boundary of w near a conical point of dw, i.e, through introducing
suitable local coordinates. To deal with such a situation, on I' we shall consider the
operator 1 — Ay — M(y, 0y), where M(y,0y) = 3|, <2 by(y)9] is a second-order
partial differential operator with coefficients from C°°(T') subject to the following
conditions:

(@) [[bylloe(ry < 0 for v € N2, |y] < 2

(b) b4(0) =0 for vy € N?, |y[ = 2;

(c) ||87"b7||L°°(supp¢) <dforvye sz Iy =2
for a certain § > 0 sufficiently small.

The proof of the following lemma shows that HZ(T') defined as the space of
solutions v to

(5.1) (1—-Ay—M(y,0y))v=g inT, Ov|or =0

with right-hand side g € L*(T) is actually independent of the operator M (y, d,)
satisfying (a)—(c) provided that § > 0 is small enough. For the case M(y,d,) =0
it is known that

(5.2) H (1) = HY(I) @ span{S}, S(y) = 9 (r)r™* cos(xf/a),

see [9], [13]. Notice that S € H'*™/@=¢(T") for any £ > 0, but S ¢ H'*/(T).
Lemma 5.1. For ¢ > 0 sufficiently small, the differential operator

(5.3) 1— A, — M(y,d,): Hy(T') — L*(T)

realizes an isomorphism, where H3(T) is the space given in (5.2). Moreover, if
v € H3(T) and (1 = A — M(y,9,))v = g, then v is the unique solution to the
problem (5.1).

Proof. Tt is known that 1 — A is an isomorphism from Hg(R x T') onto L*(R x T").
Furthermore, it is readily seen that M (y,d,) maps Hg(T) into L*(T), where

Hl—A—M(y, < C(9)

83/)HHC?9—>L2
with some constant C(4) > 0, and C'(d) — 0 as § — 0. Now choose ¢ > 0 so small
that

(LU <|la-

8y)HH%(F)—)L2(F) A)_IHLQ(F)—>H5(F)’

where (1 —A)~! stands for the inverse to 1 — A: H3(I') — L*(T'). This shows that

the differential expression 1 — A — M (y, 0,) in (5.3) realizes an isomorphism.
From Theorem A.3 (and its corresponding version for model cones) we infer that

solutions to the problem (5.1) belong to H3/2+¢(T") for a certain ¢ > 0. Thus in
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defining the space of variational solutions to (5.1) we may replace the quadratic
form by the differential expression yielding the coincidence of the spaces H, % (T") for
different M(y,0,). O

Remark. (a) The same proof yields that Hg (') = H3,(I') when o < 7. In subse-
quent, discussions we again assume that a > 7.

(b) From (5.2) it follows that each v € Hj(T) can uniquely be written in the
form

(5.4) v =wp + dS,

where vy € H?*('), d € C. Hence an equivalent norm on HR(T) is given by
{||Uo||i12(r) + |d|2}1/2. Moreover, for v being a solution to (5.1) we get the es-

timate

1/2

(5.5) {lvollz 0y + 1} < Cllgllzecry,

where the constant C' > 0 is independent of the operator M (y, d,) as long as the
requirements (a)—(c) with the same 4, 6 > 0 as small as in Lemma 5.1, are fulfilled.

(c) Notice further that the coefficient d in (5.4) is independent of the particular
choice of the cut-off function 1, i.e., in choosing another cut-off function possessing
the same properties as ¢ we obtain the same d as before.

Now we want to discuss the space Hé (R x T') of solutions v to the problem
(5.6) (1-07 — Ay, —M(y,0,))v=g in RxT, 9,v|rxor =0
with right-hand side g € L?(Rx I'), where M (y, d,) is a second-order partial differ-
ential operator as above. Again it turns out that the space H, é (RxT) is independent

of the operator M (y,d,) provided that § > 0 is small enough.
We need the following result in the cases s = 2, s = 0. For a proof, see [9], [17].

Lemma 5.2. Let ' C R? be an open cone, s € R. Then an equivalent norm on
H*(R x T) is given by

1/2
(5.7) ]| s mx1) = {/R<7>28‘|”(T)_1a(7)Hirs(r) dT} )

where (1) = Fy_7u(T), K(T) = K7y, (1) = (1 + 172)1/2, and
Iﬂ',)\’U/(y) = )\U()\y), A> 07 y e Fv

foruw e H*(T).

Notice that {kx}r>0 is a strongly continuous group on H?*(I'). It consists of
isometries when s = 0.
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Lemma 5.3. Let I' C R? be an open cone as above. Then we have

(5.8)
HR(RXT) = HE(RxD)@{ F23,{ () (r(r))(r(1)) ™/ cos(n0/a)d(r)}; d € H*(R)}.

Proof. Let v be solution to (5.6) with right-hand side g € L2(RxT'). Upon applying
the Fourier transformation F;_,, and afterwards the group action /<;(7')_1 we obtain
the equation

(5.9)

(1 — A - M. (y, 83,))/1;(7')_15(7') = <T>_2H(T)_1§(T) inl', 0, (/ﬁ(T)_li)\(T)) lor =0

with parameter 7 € R, where M, (y,dy) = (1) 2M (1)~ 'y, (1)0,). Now it is easily
seen that the operator M, (y,dy) = >, <2(T)” 2411y, ()~ 'y)0y satisfies the set

of requirements (a)—(c) with the same § > 0 as M (y, dy).
Hence we conclude from Eq. (5.9) together with (5.1), (5.4) that

(5.10)  K(7)T'B(7) = k(1) Bo(7) + d(T)S(y), S(y) = (y)r™/cos(xb/a).

Moreover, from (5.5) we derive the estimate

15 (T) ™ B0 (P32 () + [(D)I* < C* (1) 6(1) T ) F2ry

i.e.,
)00 ey + [ () ar <
<@ [ Inr) G ey dm = ol

showing that vg € H?(R x I'), d € H?(R) by Lemma 5.2. From (5.10) we finally
get

(5.11) v=wvy + F,{d(r)(x(1)S)(y)}

yielding the decomposition (5.8) by further noting that the sum on the right-hand
side of (5.8) is direct and is obviously contained in Hj(R x I'). O

Remark. The proof of Lemma 5.3 shows that

1/2
4 —1~ 2
||U||}132(R><r) = {/R<T> H"@(T) U(T)HH%(F) dT}

is an equivalent norm on H3(R x T). Since H(T) is a cone Sobolev space of
functions possessing asymptotics of a certain discrete asymptotic type near y = 0,
H3 (R x T') is in fact a wedge Sobolev space in the sense of B.-W. Schulze, see
[15]-[17].

Next we turn our attention to the case of the cylinder R x w and of the half-
cylinder 2, = Ry X w, respectively. In the following, let w be a bounded and
polyhedral domain in R?. The boundary Ow is in particular smooth except for
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a finite number of conical points. For H?2-regularity holds up to conical points
with an acute angle, see (a) in the remark following the proof of Lemma 5.1, only
conical points of dw obeying an obtuse angle have to be regarded specifically. Let
{b1,...,b.} denote the set of these conical points. Let a; be the size of the angle
at b;j, a; > m. For every j, 1 < j < K, we choose an open cone I'; C R?, open
subsets Uj, V; in R? with U; 2 b;, V; 2 0, and a diffeomorphism x;:U; — V;
such that x;(b;) = 0 and x;(@NU;) = T; NV;. Recall that y = (y1,y2) are
euclidian coordinates in R?, while (r, §) denote polar coordinates. We assume that
I'; = {(r,0);0 < 6 < a;}. Furthermore, we suppose that the diffeomorphisms
X; are chosen to preserve the standard euclidian structure centered at b; up to
cubic terms. Note that this assumption implies that (x;).A = A + M;(y,0y)
close to y = 0, where M;(y, 0,) is a second-order differential operator with smooth
coefficients and M, (0, d,) = 0. Moreover, up to translation and rotation, the faces
of I'; can be viewed as being tangential to w at b;. By shrinking Uj, if necessary, we
may suppose that M;(y,d,) is a differential operator on I'; with coefficients from
C>=(T;) satisfying, for I' = T'; and & > 0 sufficiently small, the assumptions (a)—(c)
previous to Lemma 5.1.

Further let Uy C R? be an open set not meeting {b1,...,b,} such that {Up} U
{U;}%5-, forms an open covering of w. Let {¢o} U {¢}7_, be a partition of unity
subordinated to this covering, ¢¢ + Z;’Zl ¢; =1 onw, ¢; =1 in a neighbourhood
of b; for all j, 1 < j < k. Eventually we assume that, for 1 < j <&, 9; = (x;)«0;
only depends on the radial variable r, i.e., ¥; = 1;(r).

Remark. For completeness we notice that an intrinsic interpretation of (5.4) can be
given asserting that there is a short exact split sequence

(5.12) 0 —— Hy(w) —— Hj(w) —— [[j_,C —— 0

with the surjection assigning to each function u € Hg(w) its sequence (dy, ..., dy)
of singular coefficients. Thereby, d; is explained as the coefficient appearing in (5.4)
in front of S, for v = (x;)«(¢;u) and I' =T';. To see that (5.12) is correctly defined
one has to observe that the coefficient d; is not only independent of the choice of
the cut-off function 1);, see (c) in the remark following the proof of Lemma 5.1,
but also independent of the choice of the diffeomorphism x; meeting all of the
assumptions above. A splitting of (5.12) is obtained via (5.2) after having fixed the
diffeomorphisms x; and the cut-off functions 1;. More precisely, we may write

w= o+ Y dj ()" (43 (r)r™/® cos(nb/ay))

i=1

for u € H3(w), where ug € H3(w), d; € C are uniquely determined. Notice further
that the coefficients d; can be calculated using the formula

(5.13) d; = lim BJQ(T_W/QJ'((XJ)*(%‘U)(T, 0) —U(bj))vCOS(W/aj)))

r—0+ L2(0,aj),

where (-,-) denotes the scalar product in L2(0, «;), u(b;) is the value of u

L2(0,c5)

| 1/2
at bj, and B; = { Oa"cos(WH/aj)‘de} . Notice that u(b;) = (x;)«(¢;u)(0) is
well-defined by Theorem A.3.
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For further reference notice that an equivalent norm on Hg (R x w) is given by

1/2

2 = 2
(614)  lull g2 gy = § [0l 12y + ; 106)+ (@5 [z o)

This follows from the fact that u € Hé (R x w) if and only if ¢ju € Hé (R x w) for

all 1, 0 <1 < &, and obviously ¢ou € H3(R x w) if and only if pou € H*(R x w),

while, for 1 < j <k, ¢ju € Hé(]R X w) if and only if (Xj)*(¢ju) € Hé(R xT';).
From Lemma 5.3 and (5.14) we conclude that

(5.15) H(R x w) = Hy (R x w)

EB{Z(XJ')*(F;lt{<T>¢j(T<T>)(T<T>)”/“J' cos(n0/a;)d;(7)}); dj € H*(R), 1 < j < ﬁ}

J=1

On the analogy of (5.12) we have the following lemma.

Lemma 5.4. For w C R? being a bounded, polyhedral domain as above, there is a
short exact split sequence
(5.16)

0 —— HZ(R xw) —— HE(R x w) 20 TT0 gi=w/os(R) —— 0,

where the operators 7; are given by
(5.17)

ru(t) = lim B;Z(T—ﬂ/af((Xj)*(quu)(t,r, 8) — ult, bj)),cos(WQ/aj)>

r—0+t L2 (O,aj)-

Moreover, a splitting of (5.16) is given by the mapping

(5.18)  (du1s- .-, dpa) = Z(Xj)* (P ey (r(r))dja (1)} 7/ cos(m0 /).

Proof. According to (5.10) and the short exact sequence (5.12), the functions d; €
H?(R) appearing in the representation of u € Hj (R x w) as

w=o+ Y 06)" (Fre {{rh (r(m) (r{m)™/™ cos(m0/aj)d; (1) }).
= o+ 3 06)" (B2 {9 (r (1) dja (1)} cos(mb /)

where ug € H% (R x w), are uniquely determined, independently of the choice of the
diffeomorphisms x; and the cut-off functions ¢;. Likewise, the same is then true for
the functions dj; = (D)!*7/*d; € H'=™/%(R). Therefore, the surjection in (5.16)
is well-defined. Moreover, it becomes clear that (5.16) is exact and a splitting of it
is provided by (5.18).
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Thus it remains to deal with (5.17). From (5.13), applied to I' = I';, v =
(Xj)«(¢ju), and Eq. (5.10), in which d = d;, we conclude that
cjj(r) = rl_l>%l+ By ( —m /e (7)Y (r, r(m) ™, 0) — (1) "5 (r, 0)),005(%9/04]-))L2(07aj)
= Jim_ 377 ((r(r) 770 (7) 7 (0,7, 0) = (7, 0)),cos(mdfa) L

the latter line upon replacing r with r(7), i.e.,

&)

(1) = (T)HW/‘XJ'C/Z\]-( )= lim ,6’ ( —m/aj (o(r,r,0) — (T, 0))’COS(W9/QJ'))L2(0,O¢J-)’

r—0t

din () = lim 372 (1% ()« ($5u) (1, 7,0) — u(t.by), cos(w0/a)

L2(0,0;)

This proves Lemma 5.4 completely. [

Remark. (a) For the interpretation of the functions dj; € H*™/ (R), 1 < j < &,
as coefficients in the asymptotic expansion of u € Hé (R x w) close to the edge
R x {b;}, observe that F._%,{¢;(r7) 31( )} = dj1(t) when r = 0.

(b) From (5.17) we obtain in particular that taking traces on an edge is a local
operation. More precisely, we have supp(rju) C supp(u) N (R X {bj}) for u €
HZ (R x w).

(¢) It can be shown that

B2 (175 ((x5) (B5u) (£, 7, 0) — ult, bj)), co8(m0/5)) 12 0. ) € H'(R)

for u € H3(R x w), and convergence in (5.17) takes place in H'=™/% (R).

The final goal in this section is to conclude the form of asymptotics when going
over from H3(R x w) to its factor space HE(Ry x w). This is achieved by con-
structing a suitable splitting of (5.16) in terms of a continuous projection Il in
H3 (R x w) by means of a reformulation of the asymptotic information.

Theorem 5.5. Let w C R? be a bounded, polyhedral domain as above. Then there
exists a continuous projection Iy in Hé (R x w) obeying the following properties:
) kerTly = HZ (R x w);

) Tslly = LT for all s € R; B

) suppu C R_ implies supp Ilou C R_;

) Ig s (Hé,b(R X w), Hé (R X w))-continuous;

) I

2 18 (HZ

O.loc(R X w), H% 1oc (R X w))-continuous.

In the proof of Theorem 5.5 we shall make use of the following result.

Lemma 5.6. Let I' C R? be an open cone. Further let 9 € S(R), 1 € S(Ry),
dy € H*=™/*(R). Then

(5.19) 1 (r) FT__l)t{ (¢(T<T>) — ¢(TT)) &\1(7')} P/ cos(mf/a) € Hy(R x T).
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lr}:roof. Let u(t,r) = 11 (r) F 5, { (v (r(r)) — ¢ (rT)) C/l\l(’i')} 7™/ cos(mf /). Then we

(5.20) H“HH?V(RxF) -

0o R ) 1/2
] 027 () 0001) = )0 7/ costmt ) [ o

— 00

- {/_Z(T)Z ()2 |r (r(m) ™1 (@ (r) = ¢ (rr/(r))) r™/® COS(WQ/Oz)HiI?V(F) dT}1/2
<c{["wramnpa)”

where d = (D)~'~"/*d; € H?(R). Thereby,

[ (r(T) ™) () = (r7 /(7)) £/ cos(nf/ @) | g2, ry < C

for a certain constant C' > 0 independent of 7 is seen from the fact that ¢ (r) —
Yo (r) 1™/ cos(mf /a) constitutes a bounded map from {15 € S(R,.);¥2(0) = 0} into
HE (), while {1 (r(r)™1) (4(r) = 9(r7/(7))); 7 € R} for 9 € S(R), ¢1 € S(Ry) is
bounded in {¢» € S(Ry);42(0) = 0}. Hence the right-hand side in (5.20) is finite
proving that u € H(R xT"). O

Proof of Theorem 5.5. By Lemma 5.6, we are allowed to replace
F () (r(7)) ()™ cos(wb/ ) , dj(7)}
in (5.15) by 01 (r)FL, {0, (rm)d;j1 (1) }r™/* cos(m0/ ;) i.e., we have
H3(R x w) = Hy (R x w)
o {3000 0 P2 T ()7 cos(r0/)
im

€ HITI(®), 12 5 < ),

where, for each j, 1 < j < &, ¥; € S(R), ;1 € C(Ry), 1;(0) = 1;1(0) = 1, and
;1 is supported in V; when considered as a function on I';. If especially the v; are

chosen in a way such that supp F_1¢j C R_ holds for all j, then
(5.21)

K

hu = Z(Xj)*(wjl(r) 5 b (r7) (rju) () } ™/ cos(n0/aj)), u € HEH(R x w)

i=1

is a projection in HE (R X w) meeting all the requirements (a)-(e). That Il is a
projection follows from the fact that 7;IIou = 7ju holds for u € H3(R x w), (a),
(c) are immediate, (b) is the locality of the trace operator 7;, see (5.17), and the
translation invariance of the pseudo-differential operator dy +— F;f}t(@/}j(rv')cil (1)),
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where r > 0 is regarded as a parameter, and (e), (f) come from the observation
that

Vi (r) P (i (rr) (mju) (7)) 77/ cos(n0/ ;)
belongs to Hp, ,(RxT;) and H, 1, (RXT'; ), respectively, for u belonging to HJ ,(Rx
I';) and Hé,loc (R x I';), as an easy calculation reveals. [

The following consequences of Theorem 5.5 supply the projection H; in H é,b(RjL X
w) onto its closed subspace comprising the asymptotic information as well as the
short exact sequences used in Section 6.

Theorem 5.7. Let w C R? be a bounded, polyhedral domain as above. Then there
exists a continuous projection 11 in Hgyb(RjL X w) obeying the following properties:

(a) kerIIj = HY, ,(Ry x w);
(b) T,y =TS T, for all s > 0.
Moreover, T13 is (HCZQ,IOC(R‘F X w),Hggyloc(RJr X w))-continuous.

Proof. Tt follows from Theorem 5.5 (a)—(e) by continuous extension of the projection
Il to HY (R x w) and its subsequent factorization to Hp ,(Ry x w). O

Notice that a projection II5 satisfying the requirements of Theorem 5.7 is
(5.22)

K

Mu =Y ()" (2 (r) FrS {8 () ((m)ext ) (1)} 77/ cos(nf/aj)), u € HG Ry xw),

i=1

where 1, 11 are as in (5.21). Here (7ju)ext means an arbitrary extension of 7ju €
Hbl_ﬂ/aj (Ry) to a function in H;_W/aj (R).

Corollary 5.8. The short exact sequence (5.6) extends by continuity and factors
subsequently to short split exact sequences

0 —— HZ,(Rixw) — HZ,(Ryxw) -~ (R A T p—r)

(7—17"'7TI€) K 1—m o
0 —— HE o (Ryxw) —— HE | (Ryxw) ——0% T8 He ™™ (Ry) —— 0,

loc

where (T1,...,7Tx) 1S the vector of trace operators as before. A splitting of both is
obtained from (5.22) by replacing Tju with dy; € Hbl_w/aj (Ry) and Hlt?r/aj (Ry),
respectively.

6. REGULAR AND SINGULAR PART OF THE TRAJECTORY ATTRACTOR

In this final section we show that the trajectory attractor A of the problem (0.1)
decomposes into a regular A,., and a singular A,;,, parts.

Let us suppose for simplicity that the right-hand side G of the problem (0.1) is
strong translation compact in Z7. The case of weak translation compactness could
be treated analogously.

Let K* = K be the union of all solutions for the family (3.4) see Definition
3.7. and let IIs be the same as in Theorem 5.7. Then one could define regular and
singular parts of the union K+ by formulas
(6.1) Kt =LK', K}

reg sing

:H2K+, where H1 = [d—Hz
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Notice that by definition

(6.2) K, C H%(Qy)

reg

and the topology at Kjég induced by embedding K,?Leg C @(}L concides with the

topology induced by embedding (6.2).
It follows from Theorem 5.7 that the semigroup of positive shifts {Ts,s > 0}

acts as in the space K;"eg so in the space K;’;ng, i.e.
(6.3) T.K}Y, C KL, and T,KS,  C K, fors>0

Definition 6.1. The attractor A,., of the semigroup {Ts,s > 0} acting in topo-
logical space K;"eg is called a regular trajectory attractor for the problem (0.1), see
Definition 3.7.

Analogously the attractor Aging of the semigroup {Ts,s > 0} acting in topological

space K- is called a singular trajectory attractor for the problem (0.1).

sing
Theorem 6.2. Let the previous assumptions be valid. Then the problem (0.1)
possesses reqular Aoy, and singular Ay g trajectory attractors. Moreover

(64) Areg = HlA and Asing = HQA
where A is a trajectory attractor for the problem (0.1). So

(65) A= Areg D Asing

Proof. Let us check that Ag;,, = IIoA. The assertion A,., = II;A cuold be checked
analogously.

For the first let us verify the attracting property. Let O(II3A) be an arbitrary
neighbourhood of IIxA in K;ng then due to Theorem 5.7 II;'O(II,A) is some
(open) neighbourhood of A in K+. Hence from the attracting propery for A we
obtain that there exists Sp € Ry such that

(6.6) T, K+ C II;'O(I1,A) for s > So

Applying IIs to both sides of (6.6) and using the assertion (b) of Theorem 5.7 we
obtain
T.KJ,, C Il ' (IT2A) = O(I1A) for s > So
Thus the attracting property for II;A is valid.
For the second by the definition of A TsA = A for s > 0. Applying I, to both

sides of this equality and using the assertion (b) of Theorem 5.7 again we obtain
TSHQA = HQA for s 2 0

Thus II5A is strictly invariant under {75, s > 0} action.

And finally the compactness for TIoA in K ;';n ;4 1s an immediate corollary of the
attracor A compactness and from the continuity of Il,.

Thus by definition II5A is a singular trajectory attractor for the problem (0.1).

Theorem 6.2 is proved.
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Corollary 6.3. Let 7, 1 < j < K, be the trace operators as given in Corollary 5.8.
Then the semigroup {Ts;s > 0} of positive shifts along the t—azis act in the spaces

Kt C Hﬁ;ﬂ/a" (R4) and possess the attractors A; = ;A in them. Moreover the

singular attractor Agng possesses the futher decomposition

The assertion of this Corollary follows immediately from the topological isomor-
phizm

- 1—m aj
(11 v ) : T HB (Ry x w) — @D H ™/ (Ry)
7=1

obtained in Section 5.

Note that TIj A depends on the choice of the projection I3, while 7;A has an
invariant meaning.

Finally we are concerned with the question of stabilization of asymptotics in the
case when stabilization of solutions takes place, see Section 4. For that we make all
assumptions of Section 4, in particular f(u) = —VF(u) is a gradient like, see (4.5)
and the limit equation

(6.8) alAgvy — f(vy) = g4, 3nv+‘aw =0

has only a finite number of solutions vy = v}, N =1,---, L in Hj(w).
Let {dY¥}%5_, be the sequence of singular coefficients to v (see Section 5), i.e.

(6.9) oY =g 4+ Y d () (1794 (r) cos(nf ;)

i=1

where v)’ = II;0Y € HY (w) and dY e C.

Theorem 6.4. Let the assumptioms of Theorem 4.4 be fullfiled. Then for every
solution u(t) of the problem (0.1) there exists an equilibria v} such that

(6.10) Tsu — vY as s — oo in resp. OF or (OF)"

in dependence whether the convergence in (4.2) is strong or weak. Moreover

(6.11) T, u — Hlvf = vév and T,IIsu — szf
and
(6.12) Tstju — d;-v as s — 00 in resp. Hltzﬂ/aj (Ry) or Hltzﬂ/aj (Ry))Y

Proof. The assertion (6.10) follows from Theorem4.4. The rest assertions are imme-
diate corollaries of it and of the continuity of operators I1;, II; and 7; in appropriate
spaces.
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APPENDIX 1. ELLIPTIC REGULARITY.

In this Section we formulate and prove some auxilary results about the regularity
of solution for a linear elliptic equation of vieu (0.1) in polyhedral domains.

Definition A.1. Let’s define G as the space of all functions u € HY?(Qr,_1,1,41)
such that u is a variational solution of the following equation

(A1) (Oyu, 0 @) + (Vyu, V@) + (u, @) = (9, @) , V® € H"*(Qr,—1,1,41)

with the right-hand side g € L*(Qr, —1,15+1). The norm in the space G is

(AQ) ||U||é = ||u79T1—1,T2+1||%,2 + ||gv Q1’11—171’12-%1”(2),2 < C“g? QT1—1,TQ-+-1 |(%,2
(The last inequality in (A.2) follows immediately from the unique solvability of
variational problem (A.1)).

We define Hé(QTl,B) as the space of restrictions of functions from G to Qp, 1,
with the following norm

(A3) ||U7 QT1,T2

2,0 = inf{|ju, Qr 117 41lg : veEG; U‘QTI,TQ =}

Let us denote by Vy the space of restrictions on t = 0 of functions from the space
HZ () with the norm

[uollvy = inf{[lu, Qoll2,0 : ul,_, = uo}

k
Definition A.2. We denote by Of = [Hé)loc((h)] the subspace of distribution

space D'(Q4) with the following system of seminorms
(A.?)/) P[T1,T2](u) = ||U‘QT1,T2 ) QT17T2||2;Q <0 [T17T2] - [07 OO)

It is evidant that seminorms (A.3") generate in ©%F the topology of metrizable F-
space (the topology of local compact convergence).

We denote by Fyf = [HQ,b(QT1—1,T2+1)]k B-space of functions from ©F which
have the following norm finite

|ulle = sup Pz r41)(w)
T>0

Corollary A.3 (Elliptic regularity). Let u be a (variational) solution of the
following problem
O2u+ Azu=g

u‘t:Tl =1

u‘t:Tg = U2

8nu‘ 0

€W
where uy,uy € Vo and g € L*(Q7, 1,)-
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Then u € H3(Qr, 1) and the following estimate is valid

lus @7y 1, [[2,0 < Cllgs Q713 llo,2 + [luallve + lJuallvy)

Proof. By definition of Vj there exists a function v € H3(Qr, 1,) which satisfies
the following conditions

and u‘t:TQ

u‘t:Tl - v‘t:Tl - U‘t:n

Moreover
10, 1y 1, [|2,0 < C(lJunllve + lluzllvs)
Let’s prove that the function w = v —v € Hy o(Qr, 1,). This function satisfies the
equation
{ Fw+ Ayw = g1 = g — (0fv + Ayv) € LP(Qp, 1)

zﬁnw‘ =0

Let’s consider the cut-off function ¢(t) € C§°(R) such that ¢(t) = 0 for t € [Ty, T>]
and ¢(t) = 1 for t ¢ [Ty —e, T2 + €] where ¢ < Ty — Ty. It is easy to check that the
function

—w(2Ty —t) for te€ (—o0,T1)
W (t) = gp(t)w(t) = ¢(t) w(t) for te [T, T
—w(2Ty —t) for té€ (Ty,0)

belongs to the space G. Indeed
W + AW = ¢(1)g1(t) + 29 (1)30(t) + ¢ () @(t) € L2(Q)
and W satisfies the appropriate boundary conditions.

Hence according to Definition A.1 w € Hy o(Qr, 1,). O

Theorem A.4. For all —oo < Ty < Ty < oo the space H(Qr, 1) N L®°(Qr, 1)
is dense in the space Hé(QTl,TQ)

Proof. 1t is sufficient to prove that G N L>(Qr,_1,1,41) is dense in G. Let us
consider a function v € G and a function g € L?(Qr, _1 1,41) which satisfy (A.1).
Let g, € L*™(Qr,_1,1,+1) be a sequence of function with the following property

(A.4) lim g, =g in L*(Q7, _1.1,41)

n—o0

Let u, € G be variational solutions of (A.1) withb right-hand sides g,. Then,
according to (A.2)

(A.5) Up = uin G

Hence, Theorem A.4 will be proved if we prove that u, € L™ (Qr, _1,75+1)-

To do this we shall use the Maximum principle in the following form
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Lemma A.5. Let Qr _11,41 C R**t1 — be a bounded polyhedral domain and let
u; € HY2(Qp —11,41) , @ = 1,2 be variational solutions of problem (A.1) with
right-hand sides g; € H>*(Qr,—1.1,+1)*. Let the following inequallity be valid

(A.6) (91, @) > (g2,®) ; VP € H*(Qr _1,1,41)
Then
(A.7) u1(t, z) < ua(t,x) for almost all (t, ) € Qr,—1,15+1

Proof. Let us consider the function v = u; — us. Then
(AS) <atu’7 8tq)> + <V£EU’7 V$@> + <U’7 q)> Z 0 ; Vo € H1’2(QT1—1,T2+1)

Let us introduce the functions uy (¢, ) = max{u,0} and u_(¢,z) = max{—u,0}.
Then u = uy — u_. It is known (see [21]) that uy € HY?(Qr, _1,7,+1) and

(A.9) (up,u_) =0 ; (Vuy,Vu_)=0

Let us replace an arbitrary function ® in (A.4) by the function u_ and use (A.5).
We obtain

(A.10) —(Opu—, Opu_) — (Vyu_,Vyu_) — (u_,u_) >0

Formula (A.10) implies that (u_,u_) = 0 or uy(t,x) = 0 for almost all (¢, z) €
Q7,1 1,41.- Lemma A.5 is proved

Lemma A.6. Let Q be the same as in previous Lemma and let w € HY2 be the
variational solution of (A.1). Let us suppose also that g € L*°(Qr,_1 1,41) - Then
u e L™ (QTl—l,Tz-i-l)

Proof. Let —M < g(t,z) < M for almost all (¢,z) € Qp,_1.1,+1 . Let us consider
the following two functions u_(t,z) = —M and uy(t,z) = M Then Lemma A.5
implies that u_(t,z) < u(t,z) < uy(t,z) for almost all (¢,z) € Q. Lemma A.6 is
proved. Theorem A.4 is proved.

Theorem A.7. The following embedding is valid

(A.11) H3(Qr, 1) C LC(Q1, 1)
Here

n+1
A.12 <qg=2
( ) do >~ 4 n—3

and if ¢ < qo then this embedding is compact.
Moreover if u € H3(Qry, 1) then u|u|% € HY?(Qr, 1,) and the following esti-

mate 1s valid

q/2

||u|u|(q_2)/27QT1,T2 |1,2 < CHU, QTl,T2||2,Q
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Proof. Let u € H3(Qr, 1,). Due to the definition A.1 it means that there exists

the function @ € HY2(Qr,_1,1,41), Q‘QT ,. = u, such that
1,42

(Alg) <8t’/U/\, 8t(b> + (Vmﬂ, qu)> + (ﬂ, (b> = <§, (b> R Vo ¢ Hl’z(QTl_l,T2+1)

with the right-hand side g € L?(Qr,—1,7,+1) and

|u, Q1 1|20 < Cll7, Q1 —1, 14102

Let’s approximate § € La(Qr,—1.7,+1) by a sequence G, — g in L2(Qr —1.1541),
gm € L®(Qr,_11,41). Let 4, — be a solution of variational problem (A.13)
with the right-hand side g replaced by ¢,,. Then due to Lemma A.6 u,, €
L>®(Qr,—1.1,41). Hence the function ® = @y, |4, |'~2 is in the space HY2(Qr, _1,1,41)
where [ — 2 = -4 = (¢ — 2)/2. Replacing in (A.13) U by U, and ® by Uy, |Uy,| 2
and arguing as in reducing the estimate (1.19) we obtain the following inequality

A1) @@l 200 B e < OO+ | G ) )
It follows from Sobolev embedding theorem (H%? C L" for r = %) that

(1—-2)/2

) QT1—1,T2-+-1 H%,r <

< Ol |27, Q0 1 11|17

[T, 1y — 1,15 41110, = [T [T |

Applying Holder inequality to the last term into the right—hand side of (A.14) we
obtain

| (G T [ | 72) | < Mg, Q11,1541 0,21, Q1 —1 141 ll6, <

< ,UH’L/Zm, QT1—1,T2+1||6,q + Cu“gﬂw QTI_]-;T2+1||6,2

for an arbitrary positive pu.
Applying these estimates to inequality (A.14) and taking sufficiently small ;1 > 0
we get

(A15) [ty Q1 —1,15 4110, + [T [T 272, Q1 211y 1a[13 2 <
< C“gm, QT1—1,T2+1||£),2

We know that g, — ¢ in L?(Q7,-1,1,+1), hence the sequence @, is bounded in
the space LY(Qr, _1,1,+1). Without loss of generality we can think that %, — u in
the space LY(Qr,_1,1,41). So U € LY(Qr, _1,1,+1) and

lu, Q7 7 [l0,g < U Qry—1. 15410, < CllG, Q1 —1,1541ll0,2 < C1l|u, Qry 1|20

The embedding u|ul'=2 € HY2(Qr, 1,) could be proved analogously.
Let us prove the compactness of embedding (A.11) for ¢o < ¢. Indeed due to the
interpolation inequality between H12 and L4

Hé(QTlﬂE) C Ho% (QT1 ,T2)

for some positive €. It is well known that the embedding H*% C L% is compact.
Theorem A.7 is proved.
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Corolary A.8. The following embedding is valid
(A.16) H3 (1, 1,) C C([T1, To), L (w))

Here pg =21 =2 + % — the mazimum of p exponent in (0.2).

Indeed it follows from the second embedding of Theorem A.7 and Sobolev em-
bedding theorem that u|u|!=2)/2 € C([Ty, Ty], L*(w)) if u€ H3(Qr, 1,). Moreover
we know from the embedding Hj € H"? that u € C([T1,T], L*(w)) Arguing in
the following as in the proof of Krasnoselski Theorem (see [11]) we obtain that
u € C([Tl, Tz], LPo (w))

Theorem A.9. Letu € HZ(Qr, 1,). Then d7u € L*(Qr, 1), 8;Vou € L*(Qr, 1)
and the following estimate is valid:

(A'17) ||8tzu7 QleTQ ||(%,2 + ||8tv$u7 QleTQ ||(%,2 + ||A$u7 QleTQ ||(%,2 < C||u7 QTl,T2 ||%,Q

Proof. By definition there exists a function u € G such that ﬁ‘QT L= which
1.12

satisfies the equation

02U+ Ayu—u = g(z)
(A.18) Oni|,, =0
a‘t:Tl—l =0 ’ a‘t:Tg—i—l =0

for some function g € L*(Qr,—11+1) and ||, O —1111ll02 < Cllu, Q7 1 ||2.0-
We give below only formal reducing of the estimate (A.17). The rigorous proof
could be obtained by using (for example) Galerkin approximations method.

Let us multiply the equation (A.18) by d?u and integarte over Q7, _1 7,+1. We
obtain after integration by part

(A19) (07a2,1) + (v, 1) + (0ial, 1) = (g,07)

Applying Holder inequality
~ 1 1 ~
(0.977) <  (laf” 1)+ 1 (1070 1)

to the right-hand side of the equation (A.19) we obtain the inequality (A.17).
Theorem A.9 is proved.

Corollary A.10. It follows from the previous Theorem that

u € HY([Ty, Ty], H 2 (w)) N H*2([Ty, Ty, L (w))
if u € H(Qr, 1,) hence
(A.20) H3(Qr, 1) C C([Ty, To), HY*(w)) N CH([Ty, To], L (w))

So the functions ||0¢u(t)||o,2 and ||u(t)||1,2 are correctly defined and continious for
every u € Hé
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Corollary A.11. Let D(A) be the domain of definition for the Laplace operator
Au = —Azu + u in Ly(w) with Newmann boundary conditions. Then it follows
from Theorem A.9 that

(A.21) H3(Qr, 1) = H>*([T1, T2, L*(w) N L*([T1, T2), D(A))

Hence due to the interpolation theory and abstract trace theorems (see [12] and [19])
the space Vi possesses the following description

3

(A.22) Vo = D(A%)

Let us suppose that w has a smooth boundary Ow then as known (see [19] for ex-
ample) the space D(A%) could be described explicitly

)

(A.23)  Vp=D(AS) = {uo € H ?(w) : Ld_l(x)|Bn(x)u0(x)|2d$ < oo}

Here d(z) = infyco, |z — y| and By, (x) = > i, bj(x)0y, some continious extention
of the normal derivative operator from the boundary Ow in w (B"(x)‘aw = 0p).

Remark A.12. In the case when w — is smooth domain all results of this Section
are trivial corrolaries of Lo—regularity theorem for Laplace operator (see [19])

(A.24) HE(Qry 1) = {u € H**(Qp, 1) : Onul,, =0}

and Sobolev embedding theorems. But for polyhedral domains the equality (A.24) is
not valid in general (see Section 5 for example).

Theorem A.13. Let w be a polyhedral domain and let A be the same as in Corol-
lary A.11. Then there exists some positive 0 < € = g(w) < % such that

(A.25) D(A) C H>19%(w)

The proof of this Theorem is given in [9].

Corollary A.14. Let w be polyhedral domain. Then the following embedding is
valid

(A.26) H3(Qr, 1) € HE52(Qr, 1)

where € = e(w) depends only on w.
Indeed (A.26) follows from (A.25) and (A.21).
Corollary A.15. Letu be in H3(Qr, 1,). Then it follows from (A.26) and Sobolev
embedding theorem that
8nu‘aw € He’z([Tl,Tz] X 8(.4))

Using Green’s formula (see [12]) it is not difficult to obtain now that 8"“‘&; =0
for every u € H3(Qr, 1,). Thus the solutions u of the problem (0.1) from the space
OfF satisfy the homnogeneous Newmann boundary conditions in ordinary sense.
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