
THE TRAJECTORY ATTRACTOR FOR ANONLINEAR ELLIPTIC SYSTEM IN A CYLINDRICALDOMAIN WITH PIECEWISE SMOOTH BOUNDARY
IntrodutionIn the half{ylinder 
+ = R+ � !, where ! is a bounded polyhedral domain inRn , we onsider the following ellipti system(0.1) � a(�2t u+�u) + �tu� f(u) = g(t)�nuj�! = 0 ; ujt=0 = u0Here (t; x) 2 
+, � - is Laplaian with respet to the variable x = (x1; � � � ; xn),u = u(t; x) = (u1; � � � ; uk) { is unknown vetor funtion, f = (f1; � � � ; fk) andg = (g1; �; gk) are given funtions, a { is a given positive selfadjoint matrix (a 2L(Rk ;Rk )) a = a� > 0and  is an arbitrary onstant matrix.Reall that ! is plyhedral if any of its boundary points b is either regular or thereare a polyhedron H � Rn , a non regular boundary point b1 of H, open subsets U ,V of RN with b 2 U , b1 2 V , and a di�eomorphizm � : U ! V suh that �(b) = b1and �(! \ U) = H \ V .We suppose that the nonlinear term f(u) satis�es the following onditions(0.2) 8><>: 1: f 2 C(Rk ;Rk )2: f(u):u � �C1 + C2jujp ; 2 + 4n�3 > p > 23: jf(u)j � C(1 + jujp�1)Here and below we denote by u:v the usual salar produt of vetors u and v in thespae Rk .The right-hand side g is supposed to belong to the spae [L2(
T )℄k for all T � 0where 
T = (T; T + 1)� ! and to have a �nite norm(0.3) jgjb = supT�0 jjg;
T jj0;2 <1We suppose also that the initial data u0 belongs to the spae V0 of restritions withrespet to ft = 0g of funtions from the spae F+0 = [HQ;b(
+)℄k (see Appendix 1)and the right-hand side g is translation ompat in L2 (see x3).The funtion u(t; x) is said to be a solution of the problem (0.1) if u belongs tothe spae [HQ;b(
+)℄k and satis�es the equation (0.1) in a sense of distributions.1991 Mathematis Subjet Classi�ation. Primary ; Seondary.Key words and phrases. . Typeset by AMS-TEX1



2 x1 A priori estimatesIn this Setion we obtain some a priori estimates for the solutions of our problem(0.1). We will use these estimates in the next Setions in order to prove the solutionsexistense and onstrut the trajetory attrator of the problem (0.1).Theorem 1.1. Let u { be a solution of the problem (0.1). Then the followingestimate is valid(1.1) ku;
Tk21;2 � C(ku0kpV0�(1� T ) + 1 + kg;
T�1;T+2k20;2)Here 
T�1;T+2 = [maxf0; T � 1g; T + 2℄� !, �(z) is Heviside funtion (�(z) = 0for z < 0 and �(z) = 1 for z � 0) and C does not depend on u.Remark 1.2. Due to the results of Appendix 1 the nonlinear term f(u) belongsto the spae �L2lo(
+)�k and so the equation (0.1) an be onsidered as equality inthis spae.Proof. By the de�nition of the spae V0 there exists a funtion v 2 HQ;b(
+) suhthat supp v � 
0, v��t=0 = u0 and(1.2) kv;
0kQ � Cku0kV0where the onstant C does not depend on u0.Let us rewrite our problem with respet to a new unknown funtion w = u� v(1.3) � a(�tw +�xw)� �tw � f(w + v) = g(t) + a(�tv +�xv)� �tv � h(t)w��t=0 = 0It follows from the hoie of v that(1.4) kh;
Tk0;2 � C(kg;
Tk0;2 + �(1� T )ku0kV0)Let �(t) = �T (t) be the following ut{of funtion�(t) = � (jt� T + 1=2j � 1) 2pp�2 ; for t 2 [T � 1=2; T + 3=2℄0 ; for t =2 [T � 1=2; T + 3=2℄It is very easy to alulate that �0 2 L1(R) and the following estimate is valid(1.5) j�0(t)j � C�(t) 12+ 1p ; t 2 RLet us multiply the equation (1.3) in Rk by the funtion �w and integrate over 
+(1.6) 
a�2tw; �w�+ ha�xw; �wi � h�tw; �wi � hf(v + w); �wi = hh; �wiIt follows from the positivness of a and from the estimate (1.5) that(1.7) � 
a�2tw; �w� � C1 
�j�twj2; 1�� hj�0jj�twj; jwji �� C1 
�j�twj2; 1�� C12 
�j�twj2; 1�� C D�2=pjwj2; 1E �� C2 
�j�twj2; 1�� C D�2=pjwj2; 1E



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 3Applying Holder inequality to the seond term of (1.6) we obtain(1.8) j h�tw; �wi j � � 
�j�twj2; 1�+ C� 
�jwj2; 1� �� � 
�j�twj2; 1�+ C� D�2=pjwj2; 1EThis estimate is valid for any positive �.Due to the onditions to our nonlinear funtion f(u)(1.9) hf(w + v); �wi = hf(w + v):(w + v); �i � hf(w + v); v�i �� �C + C1 h�jw + vjp; 1i � C 
1 + jw + vjp�1; �v� �� �C2(1+ h�jvjp; 1i)+C3 h�jwjp; 1i � �C4(1+�(1� T )ku0kpV0)+C3 h�jwjp; 1iHere we've used the embedding (A.11) and the estimate (1.2).Using the positiveness of a we obtain after integrating by part(1.10) �ha�xw; �wi � C 
�jrwj2; 1�And due to the estimate (1.4) and Holder inequality(1.11) j hh; �wi j � 
�jhj2; 1�+ 
�jwj2; 1� �� C(
�jgj2; 1�+ �(1� T )ku0k2V0) + C1 D�2=pjwj2; 1EReplaing all terms of equality (1.6) by their estimates (1.7){ (1.11) we get aftersimple alulations(1.12) 
�j�twj2; 1�+ 
�jrwj2; 1�+ h�jwjp; 1i � C D�2=pjwj2; 1E �� C1(1 + 
�jgj2; 1�+ �(1� T )ku0kV0)Let us estimate the last term at the left{hand side of (1.12) by Holder inequalityD�2=pjwj2; 1E = Dj�1=pwj2; 1E � C h�jwjp; 1i2=p � � h�jwjp; 1i+ C�for any positive �. Let us take � > 0 suÆiently small and apply this estimate tothe inequality (1.12)(1.13) 
�j�twj2; 1�+
�jrwj2; 1�+h�jwjp; 1i � C2(1+
�jgj2; 1�+�(1�T )ku0kV0)Reall that by de�nition �(t) > C0 > 0 for t 2 [T; T +1℄. Hene it follows from theestimate (1.13) that(1.14) kw;
Tk21;2 � C(1 + �(1� T )ku0kpV0 + kg;
T�1;T+1k20;2)Theorem 1.1 is proved.Remark 1.3. It follows also from the estimate (1.13) that(1.15) ku;
Tkp0;p � C(�(1� T )ku0kpV0 + kg;
T�1;T+2k20;2)



4Theorem 1.4. Let u be a solution of the equation (0.1) then for every T � 0 thefollowing estimate is valid(1.16) ku;
Tk2(p�1)0;2(p�1) �� C(1 + kg;
T�1;T+2k20;2 + ku;
T�1;T+2kp0;p + �(1� T )ku0k2(p�1)V0 )Here the exponent p were de�ned in (0.2).Proof.Let us �x some T � 0 and de�ne another ut{o� funtion '(t) 2 C10 (R), suhthat '(t) = 1 for t 2 [T; T + 1℄ and '(t) = 0 for t =2 [T � 1; T + 2℄, 0 � '(t) � 1.Multiplying the equation (1.3) by the funtion 'wjwjp�2a , where jwja � (aw:w)1=2and integrating over 
+ we obtain the following equality(1.17) 
a(�2tw +�xw); �wjwjp�2a � == 
'�tw;wjwjp�2a �+ 
'f(w + v):w; jwjp�2a �+ 
'h;wjwjp�2a �Reall that due to the the spae HQ de�nition �2tw + �xw 2 L2 and due to theembedding (A.11) funtions wjwjp�2a and f(w+v) are also from the spae L2 heneall of the integrals in (1.17) are orretly de�ned. Moreover due to Theorem A.7wjwjp�2a 2 H1;2(
T�1;T+2) hene we an integrate by part the left{hand side of(1.17).(1.18) 
a�2tw; �wjwjp�2a � = � 
a�tw; �t(�wjwjp�2a )� == �1p h�0; �t(jwjpa)i � 
�j�twj2a; jwjp�2a �� (p� 2) 
�(a�tw:w)2; jwjp�4a � == 1p h�00; jwjpai � 
�j�twj2a; jwjp�2a �� 4(p� 2)p2 D��t(jwjp=2a ); �t(jwjp=2a )E �� C1kw;
T�1;T+2kp0;p � C2 D��t(jwjp=2a ); �t(jwjp=2a )EAnalogously 
a�xw; �wjwjp�2a � � �C2 D�rx(jwjp=2a );rx(jwjp=2a )EHene(1.19) � 
a(�2tw +�xw); �wjwjp�2a � � C1kw;
T�1;T+2kp0;p++ C2 �D��t(jwjp=2a ); �t(jwjp=2a )E+ D�rx(jwjp=2a );rx(jwjp=2a )E�It follows from Holder inequality that(1.20) j 
�tw; �wjwjp�2a � j � �D��t(jwjp=2a ); �t(jwjp=2a )E+ C� h�jwjp; 1iand(1.21) j 
h; �wjwjp�2� j � �D�jwj2(p�1); 1E+ C� 
�jhj2; 1� �� �D�jwj2(p�1); 1E+ C�(kg;
T�1;T+2k20;2 + �(1� T )ku0k2V0)



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 5Here � is an arbitrary positive number.Arguing as in redusing (1.9) we obtain(1.22) 
f(w + v); �wjwjp�2a � � �C1(1 + D�jvj2(p�1); 1E) + C2 D�jwj2(p�1); 1E �� �C3(1 + �(1� T )ku0k2(p�1)V0 ) + C2 D�jwj2(p�1); 1EReplaing all of the terms in equality (1.17) by their estimates (1.19){(1.22) andtaking suÆiently small � > 0 we obtain after simple alulations(1.23) D�jwj2(p�1); 1E �� C(1 + kw;
T�1;T+2kp0;p + kg;
T�1;T+2k20;2 + �(1� T )ku0k2(p�1)V0 )Theorem 1.4 is proved.Remark 1.5. It follows immediately from the estimates (1.16) and (1.15) that(1.24) kf(u);
Tk0;2 � C �1 + kg;
T�1;T+2k0;2 + �(1� T )ku0kp�1V0 �Theorem 1.6 (The main estimate). Let u{be a solution of the problem (0.1).Then the following estimate is valid(1.25) ku;
TkQ � C(ku0kp�1V0 �(1� T ) + 1 + kg;
T�1;T+2k0;2)Proof. Let us rewrite the equation (1.3) in the following form(1.26) ( �2t ('w) + �('w) = hw(t)'w��maxfT�1;0g = 0 ; 'w��T+2 = 0 ; �n('w)���! = 0Here ' is the same as in Theorem 1.4 and(1.27) hw(t) = '00w + 2'0�tw � a�1('h(t) + 'f(u)� �tw)Due to the (1.24) and (1.1) we have the following estimate(1.28) jjhw;
T�1;T+2jj0;2 � C(ku0kp�1V0 �(2� T ) + 1 + kg;
T�2;T+3k0;2)Due to the L2{regularuty Theorem (see Appendix 1)(1.29) kw;
+ \ 
T kQ � C1k'w;
T�1;T+2kQ �� Ckhw;
T�1;T+2k0;2 � C2(ku0kV0�(2� T ) + 1 + kg;
T�2;T+3k0;2)Theorem 1.6 is proved.Remark 1.7. Let the ondition (0.3) be valid. Then any solution u of the problem(0.1) from the spae H lo2;Q(
+) is automatially bounded with respet to t!1 i.e.(1.30) kukb � supT�0 ku;
TkQ � C(1 + ku0kp�1V0 + jgjb) <1Indeed the estimate (1.31) follows immediately from the estimate (1.25)



6 x2 The solution existene.In this Setion we prove the solvability of the problem (0.1). For the �srt wesolve the following auxiliary problem in �nite ylinder(2.1) � a(�2t u+�xu) + �tu� f(u) = g(t)u��t=0 = u0 ; u��t=M = u1Here u0; u1 2 V0 and u 2 H2;Q(
0;M).We'll get solution u of the main problem (0.1) as a limit of solutions uM of theorresponding auxiliary problems (2.1) when M !1.Theorem 2.1. Let u { be the solution of the problem (2.1). Then the followingestimate is valid uniformly with respet to M !1(2.2) ku;
Tk2;Q �� C(1 + �(1� T )ku0kp�1V0 + �(T �M + 1)ku1kp�1V0 + kg;
T�1;T+2 \ 
0;Mk0;2)The proof of this estimate is the same as the proof of estimate (1.25) given inthe previuos Setion for the ase of semibounded ylinder.Theorem 2.2. The problem (2.1) has at least one solution for any u0; u1 2 V0.Proof. Let us introdue the spae(2.3) W = �w 2 H2;Q(
0;M ) : w��t=0 = w��t=M = 0	and rewrite the problem (2.1) as an equation in the spae W . For the �rst werewrite our problem with respet to new funtion w = u � v, where w 2 W ,v 2 H2;Q(
0;M ).(2.4) � �2tw +�xw = a�1(��tw + f(v + w) + g1(t))w��t=0 = w��t=M = 0Here g1 = �a(�2t v +�xv)� �tv + g.Let's denote by A the inverse operator for the Laplaian with respet to vari-ables (t; x) 2 
0;M and appropriate boundary onditions (w��t=0 = 0,w��t=M = 0,�nw��x2�! = 0). Then due to results of Appendix 1(2.5) A : L2(
0;M)!WAplying the operator A to both sides of equation (2.4) we obtain(2.6) w + F (w) = h � �A(�2t v +�xv)where F (w) = �Aa�1(��tw + f(v + w) + g � �tv)We'll use Leray{Shauder priniple in the following form (see [10℄)



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 7Leray{Shauder priniple. Let D be a bounded open set of B-spae W and letF : D ! W be a ompat ontinious operator. Let also the point h 2 D be suhthat(2.7) w + sF (w) 6= h forall w 2 �D and s 2 [0; 1℄Then the equation w + F (w) = hhas at least one solution in D.Let D { be a ball of suÆiently large radius in W and Let us suppose that(2.8) ws + sF (ws) = h for some s 2 [0; 1℄ and ws 2 �DEquation (2.8) an be written in the following form(2.9) � a(�2t us +�xus) + s�tus � sf(us) = sg(t)us��t=0 = u0 ; us��t=M = u1Here us = ws + v.Equation (2.9) has the view (2.1). It is not diÆult to see that the estimate (2.2)is uniform with respet to s 2 [0; 1℄. HenejjwsjjW � Kfor all solutions of (2.9) uniform with respet to s 2 [0; 1℄. So ondition (2.7) isvalid if the radius of D is greater then K.Let's prove the ompatness of operator F . It is suÆient to prove the om-patness only for the nonlinear part Aa�1f(w + v) of this operator. To do thislet's deompose previous nonlinear operator in the omposition of three ontiniousoperators A Æ F2 Æ F1, and one of them is ompat (F1 : W ! L2(p�1) { em-bedding operator, wih is ompat beause 2(p � 1) < q (see Theorem A.7) andF2w = a�1f(v + w)). As known, operator F2 is ontinious from L2(p�1) to L2(due to onditions (0.2) and Krasnoselskiy theorem (see [11℄)). Hene operator Fis ompat and aording to Leray{Shauder priniple the problem (2.1) has at leastone solution. �Theorem 2.3. The problem (0.1) has at least one solution u 2 HQ;b(
+)Proof. Let's onsider a sequene uM of solutions of auxiliary problems (2.1) withM = 1; 2; : : : and u1��t=M = 0. It follows from Theorem 2.1 thatkuM ;
0;Nk2;Q � C(u0; N; g)uniform with respet toM � N (for every �xed N). So using Cantor diagonalizationproess one an extrat from uM a subsequene (whih will be denoted for simpliityas uM again) with the following propertyum��
0;N + u��
0;N in the spae H2Q(
0;N )



8for some u 2 HQ;b(
+). Let's prove that u is a solution of (0.1). It is suÆient toprove that for every � 2 C10 (
+) the following equality is valid(2.10) �ha�tu; �t�i � harxu;rx�i+ h�tu;�i � hf(u);�i = hg;�iIt follows from the de�nition of uM that(2.11) �ha�tuM ; �t�i � harxuM ;rx�i+ h�tuM ;�i � hf(uM );�i = hg;�ifor suÆiently large M . Taking a limit M ! 1 in the equation (2.11) we obtain(2.10). Indeed the only nontrivial problem is to prove that(2.12) hf(uM);�i ! hf(u);�iLet's suppose that supp� � 
0;N . It follows from the onditions (0.2) and TheoremA.7 that embedding H2Q � L2(p�1) is ompat. Hene uM ! u in L2(p�1)(
0;N )and f(uM)! f(u) in L2(
0;N ). Theorem 2.3 is proved.x3 Trajetory attrator of nonlinear ellipti system.In this Setion we onstrut the trajetory attrator for the problem (0.1). Re-all shortly the main onepts and de�nitions of the abstrat theory of trajetoryattrators for dynamial systems (see [6℄, [7℄ for omplete exposition ).De�nition 3.1. The right{hand side g of the problem (0.1) is said to be translationompat in the spae �+ = �L2lo(R+ ; L2(!))�kif it's hull H+(g) = [Tsg; s � 0℄�+ ; (Tsg)(t) = g(t+ s)is a ompat set in �+. Here [�℄�+ means the losure in the spae �+ .The right{hand side g of the problem (0.1) is said to be weak translation ompatin the spae �+ if it's weak hullH+w(g) = [Tsg; s � 0℄(�+)wis a ompat set in (�+)w. Here and below (�+)w means the spae �+ endowed bya weak topology.Remark 3.2. It is di�ult to prove (see [20℄) that if the funtion g is translation{ompat (in a strong topology) then(3.1) H+(g) = H+w(g)Remark 3.3. It is evidant that t{periodi or quasi{periodi (or almost periodiby Bohner in L2(!)) funtion g is translation ompat in the spae �+ (in strongtopology). So the onept of a translation{ompat funtion is a some generalizationfor a onept of an almost{periodi funtion.



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 9Remark 3.4. It follows immediately from the hull's de�nition that(3.2) TsH+(g) � H+(g) and TsH+w(g) � H+w(g) for t � 0i.e the semigroup of shifts fTs; s � 0g ats in the spaes H+(g) and H+w(g).Now we formulate the nessesary and suÆient onditions of translation ompat-ness and weak translation ompatness in the spae �+.Theorem 3.5 [8℄.1. A funtion g is weak translation ompat in �+ if and only if it is boundedwith respet to t!1 i.e jgjb <1.2. A funtion g is translation ompat in �+ if and only if the following ondi-tions is valida) For every �xed t > 0 the set fR t+ss g(z) dz ; s 2 R+g is preompat in thespae �L2(!)�k.b) There exists the funtion �(s), s � 0, �(s)! 0 when s! +0, suh that(3.3) Z t+1t kg(z)� g(z + l)kL2(!) dz � �(jlj) ; 8t 2 R+ ; t+ l 2 R+Remark 3.6. Condition (3.3) is valid for example ifkTsg; [0; 1℄� !kÆ;2 � C ; 8s 2 R+for some Æ > 0.To onstrut the trajetory attrator for the problem (0.1) we onsider (togetherwith the equation (0.1)) family of problems of view (0.1) obtained by all positiveshifts of the initial problem (0.1) and their limits in the appropriate topology(3.4) � a(�2t u+�xu) + �tu� f(u) = �(t)� 2 �here we take � = H+(g) if g is translation{ompat in a strong topology and elsewe take � = H+w(g).De�nition 3.7. For every funtion � from � we de�ne K+� of as a set of allsolutions for the equation (3.4) with a �xed � 2 � and with an arbitrary u0 2 V0.We denote by K+� the following set:K+� = [�2�K+�It follows from (3.2) that a semigroup fTs; s � 0g of all nonnegative shifts alongthe t{axis ((Tsv)(t) � v(t+ s)) ats in the spae K+� i.e.(3.5) TsK+� � K+� for s � 0We endowed the set K+� by the toplogy indued from the embedding K+� � �+0 if� = H+(g) (the strong topology ase) and from the embedding K+� � (�+0 )w if� = H+w(g) (the weak topology ase) (see Apendix 1 for �+0 de�nition).



10De�nition 3.8. The (global) atrrator of the semigroup fTs; s � 0g ating intopologial spae K+� is alled the trajetory attrator of the family (3.4) i.e. a setA� � K+� is the trajetory attrator of (3.4) if the following onditions are valid(1) A� { is a ompat set in K+�(2) A� is stritly invariant with respet to the semigroup Ts ation, i.e.TsA� = A�(3) A� is an attrating set for the semigroup fTs; s � 0g, i.e. for everyneighbourhood O(A�) in K+� topology there exist suh number SO that(3.6) TsK+� � O(K) for every s � SO.Remark 3.9. Usually one requare that the attrating property be valid only forbounded (in some sene) subsets of K+� but due to the estimate (1.26) the set T1K+�is bounded (as in �+0 so in F+0 ). Hene the attrating property (3.6) is automatiallyvalid for all subsets of K+� with the same onstant SO (see also [22℄).Theorem 3.10 [8℄. Let the following onditions be valid:1) There exists a ompat attrating set P � K+� for the semigroup fTs; s � 0g.2) The set K+� is losed in the spae �+0 (or sequentially losed in the spae(�+0 )w in the weak topology ase).Then the family (3.6) possesses a trajetory attrator A = A� in K+� .De�nition 3.11. The trajetory attrator A w for the family (3.6) with � = H+w(g)(weak topology ase) is said to be a weak trajetory attrator of the initial problem(0.1).Analogously the trajetory attrator A = A s for the family (3.6) with � = H+(g)(strong topology ase) is said to be a (srong) trajetory attrator of the initial prob-lem (0.1).Theorem 3.12.1. Let the ondition (0.3) be valid. Then the problem (0.1) possesses a weaktrajetory attrator A w .2. Let the right{hand side g be translation{ompat in �+ (with the strong topol-ogy). Then the problem (0.1) possesses a strong trajetory attrator A = A s .Proof. Let us verify the onditions of previous Theorem.Lemma 3.13. The set K+� is (sequentially) losed in the spae (�+0 )w.Proof. Let un 2 K+�n , un ! u in (�+0 )w. Due to the ompatness of � in (�+)wwe may suppose without loss of generality that �n + � �+. It is nessesary toprove that u 2 K+� . By de�nition the funtions un(t) are bounded solutions of thefollowing problems(3.7) � a(�2t un +�xun) + �tun � f(un) = �n(t)unjt=0 = u0n ; un 2 V0



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 11Taking a limit n!1 in (3.4) we obtain now (as in the proof of Theorem 2.3) thatu 2 K+� . �So the seond ondition of Theorem 3.10 is valid. Let us verify the �rst one. Itfollows from the estimate (1.25) that the setP = BR \K+� ; s > 0where BR is suÆiently large ball in the spae F+0 is an attrating (and evenabsorbing) set for the semigroup fTs; s � 0g. Let us onsider �rstly the weaktopology ase. Then as known the set BR is a ompat and metrizable subset of(�+0 )w Indeed the ball BR is bounded in �+0 and �0 is reexive separable F{spaehene BR is semiompat and metrizable in a weak topology and metrizable. Henedue to the onvexivity BR is a metrizable ompat in a weak topology. It followsfrom Lemma 1 now that the set P also ompat in a weak topology.Let us suppose now that the right{hand side g of the problem (0.1) is translation{ompat in strong topology.Lemma 3.14. Let the previous ondition be valid. Then for every s � 0 the setTsP is ompat in the spae �+.Proof. Without loss of generality we an suppose that s = 1. Let un 2 BR \K+�nbe an arbitrary sequene. Due to the ompatness of the set P in a weak topologywe an extrat from fung a subsequene (for simplisity we denote it also by fung)weakly onvergent to some u 2 K+� and due to the ompatness of the hull � in�+ (in a strong topology) we an suppose that �n ! � in �+.To prove Lemma it is suÆient to prove that un ! u in [H2;Q(
T )℄k for anarbitrary T � 1.By de�nition the funtions un satisfy the equations (3.7) Let's multiply (3.7) bythe ut{o� funtion � 2 C10 (R), suh that � � 1 if t 2 [T; T + 1℄ and � � 0 ift =2 [T � 1; T + 2℄. We obtain(3.8) 8><>: �2t (�un) + �(�un) = a�1(��n + �f(un)� ��tun)++ 2�t��tun + (�2t �)un = hn(t)�unjt=T�1 = 0 ; �unjt=T+2 = 0 ; �n(�un)jx2�! = 0Arguing as in the proof of Theorem 2.3 we prove that f(un)! f(u) and �tun ! �tuin �+. So hn ! h in the spae [L2(
T�1;T+2)℄k and by de�nition (see Appendix1) �un ! �u in G hene, un ! u in [H2;Q(
T )℄k�So all assumptions of Theorem 3.10 is valid. Theorem 3.12 is proved.Corollary 3.15. Let the right{hand side g be strongly translation ompat in �+.Then dist2;Q(�t1;t2TsK+� ; �t1;t2A ) ! 0 when s! +1wheredist2;Q(M;N) = supx2M infy2N kx� y;
t1;t2k2;QHere by �t1;t2 we denote the restrition operator to the segment t 2 [t1; t2℄.Indeed, the assertions of this Corollary follows immediately from the attrtor'sde�nition.



12Corollary 3.16. Let the right{hand side g be weakly translation ompat in �+.Then distH3=2+";2(
t1;t2 ) ��t1;t2TsK+� ; �t1;t2A � ! 0 when s! +1anddistLq(
t1;t2) ��t1;t2TsK+� ; �t1;t2A � ! 0 when s! +1Where " > 0 is a suÆiently small positive number and q < 2n+1n�3 .Indeed, the assertions of this Corollary follows from the ompatness of embed-dings H2Q � H3=2+";2 and H2Q � Lq whih have been proved in Appendix 1.Now we investigate the struture of trajetory attrator A onstruted in theprevious Theorem.De�nition 3.17. Let !(�) be the !{limit set (attrator) of the semigroup fTs; s �0g ating in the ompat spae �. As known (see [2℄) it is not empty and ould berepresented in the following form!(�) = \t�0 [[s�t�℄�Here [�℄� means the losure in the spae �.De�nition 3.18. A funtion �(t), t 2 R is said to be a omplete symbol of (3.4)in the spae !(�) if �+�s(�) 2 !(�) ; 8s 2 RHere �s(t) = �(t+ s), and �+ is the restrition operator to the semiaxis t � 0.The set of all omplete symbols of (3.4) we denote by Z(�).Lemma 3.19 [8℄. For every � 2 !(�) there exists a omplete symbol � 2 Z(�)suh that �+� = �.De�nition 3.20. Let � 2 Z(�) be a omplete symbol of (3.4). Let us denote byK� { the set of all (bounded) solutions of the equation (3.4) in the whole axis t 2 R,in whih we replae �(t) by �(t).Theorem 3.21 [8℄. The attrator A has the following struture:(3.9) A = �+ [�2Z(�) K�Corollary 3.22 [20℄. Let the right{hand side g of the equation (0.1) be stronglytranslation{ompat in �+. Then the weak trajetory attrator of the problem (0.1)onides with it's strong attrator A s = A w



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 13x4 Stabilization of solutions when t ! 1In this Setion we ivestigate the long-time solutions behaviour in the ase whenright-hand side g(t) of (0.1) an be represnted in the following form(4.1) g(t; x) = g+(x) + g1(t; x)when g+ 2 L2(!) doesn't depend on t and g1 satis�es the following ondition(4.2) Tsg1 ! 0 , when s! +1in the spae �+ or in the spae or (�+)w. It is not diÆult to hek that in the�rst ase the funtion g is strong translation ompat in �+ and in the seond aseit is weak translation ompat.Theorem 4.1. Let the ondition (4.2) be valid. Then the equation (0.1) with theright{hand side (4.1) possesses a strong (weak) trejetory attrator A = A g whihonsides with the attrator of the limit autonomous equation(4.3) a(�2t u+�xu)� �tu� f(u) = g+i.e(4.4) A g = A g+Proof. The attrator existane follows immediatly from Theorem 3.12. Let us hekthe equality (4.4).It is easy to redue from the ondition (4.2) thatZ(g) � Z(�) = w(�) = g+Here � is the strong (weak) hull of the right{hand side g in the spae �+ (seeSetion 3). Hene formula (4.4) is valid due to Theorem 3.21. Theorem 4.1 isproved.Let us suppose now that the nonlinear term f(u) in the left{hand side of theequation (0.1) is gradient-like(4.5) f(u) = �rF (u); F 2 C(Rk ;R)For every u 2 HQ;b(
+) we introdue the funtion Fu(t) by the following formula(4.6) Fu(t) = 12(a�tu(t); �tu(t))� 12(arxu(t);rxu(t)) + (F (u(t)); 1)� (g+; u(t))where (�; �) denotes the salar produt in the ross-setion spae L2(!).



14Theorem 4.2.1. The funtion Fu is well-de�ned for every u 2 HQ;b(
+) and belonges to thespae H1;1b (R+ ).2. Let us suppose that u is a solution of the problem (0.1). Then(4.7) dFu(t)dt = �(�tu(t); �tu(t)) + (g1(t); �tu(t))Proof. Let us suppose that u 2 HQ;b(
+). Then due to the embedding (A.20) the�rst, the seond and the fourth term in the right-hand side of (4.6) are well{posed.It remains to hek the third term. It follows from (A.16) and (4.5) that(4.8) jF (u)j � C(1 + jujp)Then due to the embedding (A.16) and Krasnoselskij Theorem(F (u(t)); 1) 2 Cb(R+ )Hene the de�nition of Fu(t) is orret.Let us alulate it's derivative. It is not diÆult to obtain using the ordinarymethods of distributions theory that Fu 2 H1;1b (R+) and(4.9) ddtFu(t) = (�tu; a(�2t u+�xu)� f(u)� g+)Hene the �rst part of Theorem 4.2 is proved.Let us suppose now that u is a solution of the problem (0.1). Then (4.5) followsimmediately from the formula (4.9). Theorem 4.2 is proved.Theorem 4.3. Let the onditions of previous Theorem be valid. Let us supposealso that the matrix  in the left-hand side of (0.1) is sign-de�ned + � > 0 or  + � < 0and funtion g1(t) = g1(t; x) from (4.1) satis�es at least one of the following on-ditions(4.10) 8><>: 1: R10 kg1(t)k0;2 dt <12: �tg1 2 Llo1 (R+ ; L2(!)) and R10 k�tg1(t)k0;2 dt <13: P1N=0 kG1;
Nk0;2 <1 for some G1 suh that �tG1 = g1Then every solution u of the problem (0.1) possesses the �nite dissipative integral(4.11) Z 10 k�tu(t)k20;2 dt <1Proof. Let us integrate (4.6) over t 2 [0; T ℄Z T0 (�tu; �tu)dt = Fu(0)�Fu(T ) + Z T0 (g1; �tu) dt



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 15It follows now from the sign-de�ness of matrix  that(4.12) Z T0 k�tu(t)k20;2 dt � CjFu(T )�Fu(0)j+ C�� Z T0 (g1; �tu) dt��Theorem 4.2 implies that funtion Fu(T ) is bounded with respet to T !1 heneit suÆient to obtain the boundness of the integral in the right-hand side of (4.12).Let the �rst ondition of (4.10) be valid. Then(4.13) �� Z T0 (g1; �tu) dt�� � Z T0 kg1(t)k0;2k�tu(t)k0;2 dt �� supt2[0;T ℄ k�tu(t)k0;2 Z T0 kg1(t)k0;2 dt � kukb Z 10 kg1(t)k0;2 dtSo j R T0 (g1; �tu) dtj is bounded with respet to T !1.Let the seond ondition of (4.10) be valid. Then applying the partial integrationformula we obtain(4.14) �� Z T0 (g1; �tu) dt�� � j(g1(T ); u(T ))j+ j(g1(0); u(0))j+ �� Z T0 (�tg1(t); u(t)) dt��The integral in the right-hand side of (4.14) estimates in the same way as in (4.13).To estimate the �rst to terms in the previous formula it is suÆient to prove thatunder above assumptions g1 2 Cb(R+ ; L2(!)). Let us onsider an arbitrary segment[N;N + 1℄ � R+ and let [T; t℄ be in this segment. Then(4.15) kg1(T )k0;2 � kg1(t)k0;2 + kg1(T )� g1(t)k0;2 �� kg1(t)k0;2 + Z Tt k�tg1(t)k0;2dt � kg1(t)k0;2 + Z 10 k�tg1(t)k0;2 dtLet us integrate the inequality (4.15) over t 2 [N;N + 1℄kg1(T )k0;2 � Ckg1;
Nk0;2 + Z 10 k�tg1(t)k0;2dt � jg1jb + k�tg1kL1(R+;L2(!))But the onstant N was hoosen arbitraryly hene g1 2 Cb(R+ ; L2(!)).Let the third ondition of (4.10) be valid. Then applying the partial integrationformula again we obtain�� Z T0 (g1; �tu) dt�� � j(G1(T ); �tu(T ))j+ j(G1(0); �tu(0))j+ �� Z T0 (G1(t); �2t u(t)) dt��The �rst two terms in the right-hand side an be estimated as in the previous ase.Let us estimate the integral�� Z T0 (G1(t); �2t u(t)) dt�� � Z T0 kG1(t)k0;2k�2t u(t)k0;2dt ��X[T ℄N=0 kG1;
Nk0;2k�2t u;
Nk0;2 � CkukbX1N=0 kG1;
Nk0;2Theorem 4.3 is proved.



16Theorem 4.4. Let the all asumptions of previous Theorem be valid. Let us supposealso that the limit problem in the ross setion !(4.16) � a�xv+ � f(v+(x)) = g+(x)�nv+��x2�! = 0has the �nite number of solutions(4.17) v+ 2 V+ = fv1+(x); � � � ; vl+(x)gThen for every solution u of the problem (0.1) there exists an equlibria vN+ (x) 2 V+suh that(4.18) (Tsu)(t; x)! vN+ (x) in the spae �+ , when s! +1Here by �+ we denote the spae �+0 if g is strong translation ompat in � and�+ = (�+0 )w if g is weak translation ompat.Remark. As known (see for instane [2℄) there exists an open dene set in L2(!)suh that the set V+ is �nite for every g+ from this set.Proof. Let u be a solution of the problem (0.1). Let us onsider the !-limit set!(u) of the point u 2 �+ under the fTs; s � 0g semigroup ation. Reall thatu+ 2 !(u) if and only if there exists the sequene fsj; j 2 Ng, sj !1 suh that(4.19) Tsju! u+ in the spae �+Theorem 4.1 implies that fTs; s � 0g possesses an atrator A in K+� � �+ hene(see [2℄) w(u) is nonempty onneted ompat set in �+. Let u+ be in !(u). Itmeans that there exists a sequene sj 2 R+ suh that for every T 2 R+Tsju + u+ in the spae H2Q(
T ), when sj !1Partiulary kTsj�tu� �tu+;
Tk0;2 ! 0 , when sj !1But it follows from the dissipative integral (4.11) existane thatkTsj�tu;
Tk0;2 = k�tu; Tsj
Tk0;2 ! 0 , when sj !1Hene k�tu+;
Tk0;2 = 0 and u+(t; x) � u+(x).It follows now from the ondition (4.2) and from Lemma 3.3 that u+(x) is asolution of the limit problem (4.16). So(4.20) w(u) � V+But the set w(u) must be onneted and the set V+ is desrete hene(4.21) w(u) = fvN+ g for some N 2 f1; � � � ; lgThe attrating property for fTs; s � 0g (see x3) implies immediately now that (4.18)is valid. Theorem 4.4 proved



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 17Corollary 4.5. Arguing as in the prove of Corollary 3.16 we obtain as in the aseof strong translation ompatness of g as in the weak one ondition (4.20) impliesthat(4.22) � limt!+1 ku(t; �)� vN+ (�)k0;p0 ! 0 , when t!1limt!+1 k�tu(t; �)k";2 ! 0where the exponent p0 is given in Corollary A.1.Corollary 4.6. Let the funtion g+ satis�ed the onditions of Theorem 4.4. Thenany solution u(t), t 2 R of the equation (4.4) in the whole ylinder 
 = R � ! is aheterolini orbit i.e. there exist two different equilibria w+u and w�u from the setV+ suh that(4.23) Tsu! w+u when s! +1 and Tsu! w�u when s! �1Indeed due to the estimate (1.25) (see Remark 1.7) any solution of the problem(4.4) is bounded as with respet to t ! 1 so with respet to t ! �1. So theonvergene (4.23) follows now from Theorem 4.4. Hene it remains to prove thatw+u 6= w�u . Integrating the formula (4.7) with g1 � 0 over R we obtain that(4.24) Fu(+1)�Fu(�1) = Fw+ � Fw� = ZR(�tu; �tu) dt 6= 0Thus w+ 6= w�.Let us give now some examples of the pertrubation term g1(t; x) satisfying theonditions of previous Theorem.Example 4.7. Let(4.25) g1(t; x) = '(t)g0(x)where g0 2 L2(!) and(4.26) '(t) = j sin(t2)j1 + t2Then it is not diÆult to hek that this funtion satis�es the �rst ondition of(4.10) and ondition (4.2) is valid for the strong topology hoie.Example 4.8. Let the funtion g1 have the form (4.25) with the following funtion'(t)(4.27) '(t) = t1 + t2Then it is not diÆult to hek that this funtion satis�es the seond ondition of(4.10) and ondition (4.2) is valid for the strong topology hoie.Example 4.9. Let the funtion g1 have the form (4.25) with the following funtion'(t)(4.28) '(t) = sin(t3)



18Then as known Ts'! 0 when s!1 in a weak topology of the spae L2([T; T+1℄)for every T 2 R+ hene g1 satis�es ondition (4.2) with the weak topology hoie.Let us hek that this funtion satis�es the third ondition of (4.10). Let G1 be thefollowing funtionG1(t; x) = �(t)g0(x) , where �(t) = � Z 1t sin(s3) dsWe must hek that(4.29) X1N=0 k�; [N;N + 1℄k0;2 <1In order to do it we represent � in the following equivalent form�(t) = 13 os(t3)t�2 � 29 Z 1t3 os vv5=3 dvIt follows immediately from this representation that�(t) = O(t�2) , when t!1Hene k�; [N;N + 1℄k0;2 = O(N� 32 )and so (4.29) is valid.Part 2. Asymptotis in the three-dimensional aseIn the seond part, we desribe the asymptotis of solutions to the linear system(0.??) in ase the half-ylinder 
+ = R+ � ! is three-dimensional and onludefrom this depition the existene of the trajetory attrator for the singular part ofthe solutions to the nonlinear ellipti system (0.1).5. Ellipti regularity for the Neumannproblem for the Laplae operatorBefore disussing ellipti regularity for the Neumann problem for the Laplaeoperator on the half-ylinder 
+ = R+ � !, we disuss ellipti regularity for theNeumann problem for the Laplae operator on the in�nite one � � R2 and thein�nite wedge R � � � R3 . Sine in this setion we shall make use of the Fouriertransformation, in ontrast to the rest of the paper funtions appearing are omplex-valued. Sine all di�erential operators onsidered have real-valued oeÆients, theonlusions are easily spei�ed to the real-valued ase. When speaking about asolution to the Neumann problem, we always mean a variational solution that isin partiular in H1. Further, subsripts b, lo in the notation of Sobolev spaeson a ylinder or half-ylinder have the same meaning as before, while subsript Nindiates the subspae of funtions satisfying the homogeneous Neumann boundaryondition, where it makes sense, i.e., on ��, R � ��, �!, R � �!, and R+ � �!,respetively. We shall also employ notation with subsript Q to designate the spaeof all variational solutions to the orresponding Neumann problem with right-handside in L2. We always have H2Q � H2N . If � or at least one of the onial points of! has an obtuse angle, then H2Q 6= H2N , otherwise H2Q = H2N .



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 19Heneforth let � � R2 be an open one with opening �. Sine it turns outthat for � < � we have H2-regularity, we shall suppose that � > �. Further lety = (y1; y2) be eulidian oordinates in R2 , while (r; �) denote polar oordinates.We assume that � = f(r; �); 0 < � < �g. We �x a ut-o� funtion  2 C10 (�),depending only on the radial oordinate r, suh that  (r) = 1 in a neighbourhoodof 0 and  is supported suÆiently lose to 0. The model one � arises throughatting out the boundary of ! near a onial point of �!, i.e, through introduingsuitable loal oordinates. To deal with suh a situation, on � we shall onsider theoperator 1 � �y �M(y; �y), where M(y; �y) = Pjj�2 b(y)�y is a seond-orderpartial di�erential operator with oeÆients from C1(�) subjet to the followingonditions:(a) kbkL1(�) � Æ for  2 N2 , jj � 2;(b) b(0) = 0 for  2 N2 , jj = 2;() k�rbkL1(supp ) � Æ for  2 N2 , jj = 2for a ertain Æ > 0 suÆiently small.The proof of the following lemma shows that H2Q(�) de�ned as the spae ofsolutions v to(5.1) (1��y �M(y; �y))v = g in �, �nvj �� = 0with right-hand side g 2 L2(�) is atually independent of the operator M(y; �y)satisfying (a){() provided that Æ > 0 is small enough. For the ase M(y; �y) � 0it is known that(5.2) H2Q(�) = H2N (�)� spanfSg; S(y) =  (r)r�=� os(��=�);see [9℄, [13℄. Notie that S 2 H1+�=��"(�) for any " > 0, but S =2 H1+�=�(�).Lemma 5.1. For Æ > 0 suÆiently small, the di�erential operator(5.3) 1��y �M(y; �y):H2Q(�)! L2(�)realizes an isomorphism, where H2Q(�) is the spae given in (5.2). Moreover, ifv 2 H2Q(�) and (1 � � � M(y; �y))v = g, then v is the unique solution to theproblem (5.1).Proof. It is known that 1�� is an isomorphism from H2Q(R � �) onto L2(R � �).Furthermore, it is readily seen that M(y; �y) maps H2Q(�) into L2(�), where1���M(y; �y)H2Q!L2 � C(Æ)with some onstant C(Æ) > 0, and C(Æ)! 0 as Æ ! 0. Now hoose Æ > 0 so smallthat M(y; �y)H2Q(�)!L2(�) < (1��)�1L2(�)!H2Q(�);where (1��)�1 stands for the inverse to 1��:H2Q(�)! L2(�). This shows thatthe di�erential expression 1���M(y; �y) in (5.3) realizes an isomorphism.From Theorem A.3 (and its orresponding version for model ones) we infer thatsolutions to the problem (5.1) belong to H3=2+"(�) for a ertain " > 0. Thus in



20de�ning the spae of variational solutions to (5.1) we may replae the quadratiform by the di�erential expression yielding the oinidene of the spaes H2Q(�) fordi�erent M(y; �y). �Remark. (a) The same proof yields that H2Q(�) = H2N (�) when � < �. In subse-quent disussions we again assume that � > �.(b) From (5.2) it follows that eah v 2 H2Q(�) an uniquely be written in theform(5.4) v = v0 + dS;where v0 2 H2(�), d 2 C . Hene an equivalent norm on H2Q(�) is given by�kv0k2H2(�) + jdj2	1=2. Moreover, for v being a solution to (5.1) we get the es-timate(5.5) �kv0k2H2(�) + jdj2	1=2 � C kgkL2(�);where the onstant C > 0 is independent of the operator M(y; �y) as long as therequirements (a){() with the same Æ, Æ > 0 as small as in Lemma 5.1, are ful�lled.() Notie further that the oeÆient d in (5.4) is independent of the partiularhoie of the ut-o� funtion  , i.e., in hoosing another ut-o� funtion possessingthe same properties as  we obtain the same d as before.Now we want to disuss the spae H2Q(R � �) of solutions v to the problem(5.6) (1� �2t ��y �M(y; �y))v = g in R � �, �nvjR��� = 0with right-hand side g 2 L2(R��), where M(y; �y) is a seond-order partial di�er-ential operator as above. Again it turns out that the spaeH2Q(R��) is independentof the operator M(y; �y) provided that Æ > 0 is small enough.We need the following result in the ases s = 2, s = 0. For a proof, see [9℄, [17℄.Lemma 5.2. Let � � R2 be an open one, s 2 R. Then an equivalent norm onHs(R � �) is given by(5.7) kukHs(R��) = (ZRh�i2s�(�)�1bu(�)2Hs(�) d�)1=2;where bu(�) = Ft!�u(�), �(�) = �h�i, h�i = (1 + j� j2)1=2, and��u(y) = �u(�y); � > 0; y 2 �;for u 2 Hs(�).Notie that f��g�>0 is a strongly ontinuous group on Hs(�). It onsists ofisometries when s = 0.



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 21Lemma 5.3. Let � � R2 be an open one as above. Then we have(5.8)H2Q(R��) = H2N (R��)�nF�1�!t�h�i (rh�i)(rh�i)�=� os(��=�)bd(�)	; d 2 H2(R)o:Proof. Let v be solution to (5.6) with right-hand side g 2 L2(R��). Upon applyingthe Fourier transformation Ft!� and afterwards the group ation �(�)�1 we obtainthe equation(5.9)�1���M� (y; �y)��(�)�1bv(�) = h�i�2�(�)�1bg(�) in �; �n��(�)�1bv(�)�j �� = 0with parameter � 2 R, where M� (y; �y) = h�i�2M(h�i�1y; h�i�y). Now it is easilyseen that the operator M� (y; �y) = Pjj�2h�i�2+jjb(h�i�1y)�y satis�es the setof requirements (a){() with the same Æ > 0 as M(y; �y).Hene we onlude from Eq. (5.9) together with (5.1), (5.4) that(5.10) �(�)�1bv(�) = �(�)�1bv0(�) + bd(�)S(y); S(y) =  (y)r�=� os(��=�):Moreover, from (5.5) we derive the estimatek�(�)�1bv0(�)k2H2(�) + jbd(�)j2 � C2 h�i�4k�(�)�1bg(�)k2L2(�);i.e.,ZRh�i4k�(�)�1bv(�)k2H2(�) d� + ZRh�i4jbd(�)j2 d� �� C2 ZR k�(�)�1bg(�)k2L2(�) d� = kgk2L2(R��)showing that v0 2 H2(R � �), d 2 H2(R) by Lemma 5.2. From (5.10) we �nallyget(5.11) v = v0 + F�1�!t�bd(�)(�(�)S)(y)	yielding the deomposition (5.8) by further noting that the sum on the right-handside of (5.8) is diret and is obviously ontained in H2Q(R � �). �Remark. The proof of Lemma 5.3 shows thatkuk0H2Q(R��) = �ZRh�i4�(�)�1bu(�)2H2Q(�) d��1=2is an equivalent norm on H2Q(R � �). Sine H2Q(�) is a one Sobolev spae offuntions possessing asymptotis of a ertain disrete asymptoti type near y = 0,H2Q(R � �) is in fat a wedge Sobolev spae in the sense of B.-W. Shulze, see[15℄{[17℄.Next we turn our attention to the ase of the ylinder R � ! and of the half-ylinder 
+ = R+ � !, respetively. In the following, let ! be a bounded andpolyhedral domain in R2 . The boundary �! is in partiular smooth exept for



22a �nite number of onial points. For H2-regularity holds up to onial pointswith an aute angle, see (a) in the remark following the proof of Lemma 5.1, onlyonial points of �! obeying an obtuse angle have to be regarded spei�ally. Letfb1; : : : ; b�g denote the set of these onial points. Let �j be the size of the angleat bj, �j > �. For every j, 1 � j � �, we hoose an open one �j � R2 , opensubsets Uj , Vj in R2 with Uj 3 bj , Vj 3 0, and a di�eomorphism �j :Uj ! Vjsuh that �j(bj) = 0 and �j(! \ Uj) = �j \ Vj . Reall that y = (y1; y2) areeulidian oordinates in R2 , while (r; �) denote polar oordinates. We assume that�j = f(r; �); 0 < � < �jg. Furthermore, we suppose that the di�eomorphisms�j are hosen to preserve the standard eulidian struture entered at bj up toubi terms. Note that this assumption implies that (�j)�� = � + Mj(y; �y)lose to y = 0, where Mj(y; �y) is a seond-order di�erential operator with smoothoeÆients and Mj(0; �y) = 0. Moreover, up to translation and rotation, the faesof �j an be viewed as being tangential to ! at bj . By shrinking Uj , if neessary, wemay suppose that Mj(y; �y) is a di�erential operator on �j with oeÆients fromC1(�j) satisfying, for � = �j and Æ > 0 suÆiently small, the assumptions (a){()previous to Lemma 5.1.Further let U0 � R2 be an open set not meeting fb1; : : : ; b�g suh that fU0g [fUjg�j=1 forms an open overing of !. Let f�0g [ f�g�j=1 be a partition of unitysubordinated to this overing, �0 +P�j=1 �j = 1 on !, �j = 1 in a neighbourhoodof bj for all j, 1 � j � �. Eventually we assume that, for 1 � j � �,  j = (�j)��jonly depends on the radial variable r, i.e.,  j =  j(r).Remark. For ompleteness we notie that an intrinsi interpretation of (5.4) an begiven asserting that there is a short exat split sequene(5.12) 0 ����! H2N (!) ����! H2Q(!) ����! Q�j=1 C ����! 0with the surjetion assigning to eah funtion u 2 H2Q(!) its sequene (d1; : : : ; d�)of singular oeÆients. Thereby, dj is explained as the oeÆient appearing in (5.4)in front of S, for v = (�j)�(�ju) and � = �j . To see that (5.12) is orretly de�nedone has to observe that the oeÆient dj is not only independent of the hoie ofthe ut-o� funtion  j , see () in the remark following the proof of Lemma 5.1,but also independent of the hoie of the di�eomorphism �j meeting all of theassumptions above. A splitting of (5.12) is obtained via (5.2) after having �xed thedi�eomorphisms �j and the ut-o� funtions  j . More preisely, we may writeu = u0 + �Xj=1 dj (�j)�� j(r)r�=�j os(��=�j)�for u 2 H2Q(!), where u0 2 H2N (!), dj 2 C are uniquely determined. Notie furtherthat the oeÆients dj an be alulated using the formula(5.13) dj = limr!0+ ��2j � r��=�j�(�j)�(�ju)(r; �)� u(bj)�; os(��=�j)��L2(0;�j);where � �; � �L2(0;�j) denotes the salar produt in L2(0; �j), u(bj) is the value of uat bj, and �j = nR �j0 ��os(��=�j)��2 d�o1=2. Notie that u(bj) = (�j)�(�ju)(0) iswell-de�ned by Theorem A.3.



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 23For further referene notie that an equivalent norm on H2Q(R � !) is given by(5.14) uH2Q(R�!) = 8<:�0u2H2(R�!) + �Xj=1 (�j)���ju�2H2Q(R��j)9=;1=2 :This follows from the fat that u 2 H2Q(R � !) if and only if �lu 2 H2Q(R � !) forall l, 0 � l � �, and obviously �0u 2 H2Q(R � !) if and only if �0u 2 H2(R � !),while, for 1 � j � �, �ju 2 H2Q(R � !) if and only if (�j)���ju� 2 H2Q(R � �j).From Lemma 5.3 and (5.14) we onlude that(5.15) H2Q(R � !) = H2N (R � !)�� �Xj=1(�j)��F�1�!t�h�i j(rh�i)(rh�i)�=�j os(��=�j)bdj(�)	�; dj 2 H2(R); 1 � j � ��On the analogy of (5.12) we have the following lemma.Lemma 5.4. For ! � R2 being a bounded, polyhedral domain as above, there is ashort exat split sequene(5.16)0 ����! H2N (R � !) ����! H2Q(R � !) (�1;:::;��)������! Q�j=1H1��=�j (R) ����! 0;where the operators �j are given by(5.17)�ju(t) = limr!0+ ��2j � r��=�j�(�j)�(�ju)(t; r; �)� u(t; bj)�; os(��=�j)�L2(0;�j):Moreover, a splitting of (5.16) is given by the mapping(5.18) (d11; : : : ; d�1) 7! �Xj=1(�j)��F�1�!tf j(rh�i)bdj1(�)g r�=�j os(��=�j)�:Proof. Aording to (5.10) and the short exat sequene (5.12), the funtions dj 2H2(R) appearing in the representation of u 2 H2Q(R � !) asu = u0 + �Xj=1(�j)��F�1�!t�h�i j(rh�i)(rh�i)�=�j os(��=�j)bdj(�)	�;= u0 + �Xj=1(�j)��F�1�!t� j(rh�i)bdj1(�)	r�=�j os(��=�j)�where u0 2 H2N (R�!), are uniquely determined, independently of the hoie of thedi�eomorphisms �j and the ut-o� funtions  j . Likewise, the same is then true forthe funtions dj1 = hDi1+�=�jdj 2 H1��=�j(R). Therefore, the surjetion in (5.16)is well-de�ned. Moreover, it beomes lear that (5.16) is exat and a splitting of itis provided by (5.18).



24 Thus it remains to deal with (5.17). From (5.13), applied to � = �j , v =(�j)�(�ju), and Eq. (5.10), in whih d = dj , we onlude thatbdj(�) = limr!0+ ��2j � r��=�j�h�i�1bv(�; rh�i�1; �)� h�i�1bv(�; 0)�; os(��=�j)�L2(0;�j)= limr!0+ ��2j � (rh�i)��=�jh�i�1�bv(�; r; �)� bv(�; 0)�; os(��=�j)�L2(0;�j);the latter line upon replaing r with rh�i, i.e.,bdj1(�) = h�i1+�=�j bdj(�) = limr!0+ ��2j � r��=�j (bv(�; r; �)� bv(�; 0)); os(��=�j)�L2(0;�j);dj1(t) = limr!0+ ��2j � r��=�j�(�j)�(�ju)(t; r; �)� u(t; bj)�; os(��=�j)�L2(0;�j):This proves Lemma 5.4 ompletely. �Remark. (a) For the interpretation of the funtions dj1 2 H1+�=�j (R), 1 � j � �,as oeÆients in the asymptoti expansion of u 2 H2Q(R � !) lose to the edgeR � fbjg, observe that F�1�!tf j(r�)bdj1(�)g = dj1(t) when r = 0.(b) From (5.17) we obtain in partiular that taking traes on an edge is a loaloperation. More preisely, we have supp(�ju) � supp(u) \ �R � fbjg� for u 2H2Q(R � !).() It an be shown that��2j � r��=�j ((�j)�(�ju)(t; r; �)� u(t; bj)); os(��=�j)�L2(0;�j) 2 H1(R)for u 2 H2Q(R � !), and onvergene in (5.17) takes plae in H1��=�j (R).The �nal goal in this setion is to onlude the form of asymptotis when goingover from H2Q(R � !) to its fator spae H2Q(R+ � !). This is ahieved by on-struting a suitable splitting of (5.16) in terms of a ontinuous projetion �2 inH2Q(R � !) by means of a reformulation of the asymptoti information.Theorem 5.5. Let ! � R2 be a bounded, polyhedral domain as above. Then thereexists a ontinuous projetion �2 in H2Q(R � !) obeying the following properties:(a) ker�2 = H2N (R � !);(b) Ts�2 = �2Ts for all s 2 R;() supp u � R� implies supp�2u � R�;(d) �2 is (H2Q;b(R � !); H2Q;b(R � !))-ontinuous;(e) �2 is (H2Q;lo(R � !); H2Q;lo(R � !))-ontinuous.In the proof of Theorem 5.5 we shall make use of the following result.Lemma 5.6. Let � � R2 be an open one. Further let  2 S(R),  1 2 S(R+),d1 2 H1��=�(R). Then(5.19)  1(r)F�1�!t�� (rh�i)�  (r�)� bd1(�)	 r�=� os(��=�) 2 H2N (R � �):



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 25Proof. Let u(t; r) =  1(r)F�1�!t�( (rh�i)� (r�)) bd1(�)	 r�=� os(��=�). Then wehave(5.20) uH2N (R��) =�Z 1�1h�i2 �(�)�1� 1(r)� (rh�i)�  (r�)�bd1(�) r�=� os(��=�)�2H2N (�) d��1=2= �Z 1�1h�i2 jbd(�)j2  1(rh�i�1)� (r)�  �r�=h�i�� r�=� os(��=�)2H2N (�) d��1=2� C �Z 1�1h�i2 jbd(�)j2 d��1=2 ;where d = hDi�1��=�d1 2 H2(R). Thereby, 1(rh�i�1)� (r)�  �r�=h�i�� r�=� os(��=�)kH2N(�) � Cfor a ertain onstant C > 0 independent of � is seen from the fat that  2(r) 7! 2(r) r�=� os(��=�) onstitutes a bounded map from f 2 2 S(R+); 2(0) = 0g intoH2N (�), while f 1(rh�i�1)� (r)�  (r�=h�i)�; � 2 Rg for  2 S(R),  1 2 S(R+) isbounded in f 2 2 S(R+); 2(0) = 0g. Hene the right-hand side in (5.20) is �niteproving that u 2 H2N (R � �). �Proof of Theorem 5.5. By Lemma 5.6, we are allowed to replaeF�1�!tfh�i j(rh�i)(rh�i)�=�j os(��=�j) ; bdj(�)gin (5.15) by  j1(r)F�1�!tf j(r�)bdj1(�)gr�=� os(��=�j) i.e., we haveH2Q(R � !) = H2N (R � !)� � �Xj=1(�j)�� j1(r)F�1�!tf j(r�)bdj1(�)gr�=�j os(��=�j)�;dj1 2 H1��=�j (R); 1 � j � ��;where, for eah j, 1 � j � �,  j 2 S(R),  j1 2 C10 (R+),  j(0) =  j1(0) = 1, and j1 is supported in Vj when onsidered as a funtion on �j . If espeially the  j arehosen in a way suh that suppF�1 j � R� holds for all j, then(5.21)�2u = �Xj=1(�j)�� j1(r)F�1�!tf j(r�)(�ju)b(�)g r�=�j os(��=�j)�; u 2 H2Q(R � !)is a projetion in H2Q(R � !) meeting all the requirements (a){(e). That �2 is aprojetion follows from the fat that �j�2u = �ju holds for u 2 H2Q(R � !), (a),() are immediate, (b) is the loality of the trae operator �j, see (5.17), and thetranslation invariane of the pseudo-di�erential operator d1 7! F�1�!t( j(r�)bd1(�)),



26where r > 0 is regarded as a parameter, and (e), (f) ome from the observationthat  j1(r)F�1�!tf j(r�)(�ju)b(�)g r�=�j os(��=�j)belongs toH2Q;b(R��j ) andH2Q;lo(R��j ), respetively, for u belonging toH2Q;b(R��j) and H2Q;lo(R � �j), as an easy alulation reveals. �The following onsequenes of Theorem 5.5 supply the projetion �+2 inH2Q;b(R+�!) onto its losed subspae omprising the asymptoti information as well as theshort exat sequenes used in Setion 6.Theorem 5.7. Let ! � R2 be a bounded, polyhedral domain as above. Then thereexists a ontinuous projetion �+2 in H2Q;b(R+�!) obeying the following properties:(a) ker�+2 = H2N;b(R+ � !);(b) Ts�+2 = �+2 Ts for all s � 0.Moreover, �+2 is (H2Q;lo(R+ � !); H2Q;lo(R+ � !))-ontinuous.Proof. It follows from Theorem 5.5 (a){(e) by ontinuous extension of the projetion�2 to H2Q;b(R � !) and its subsequent fatorization to H2Q;b(R+ � !). �Notie that a projetion �+2 satisfying the requirements of Theorem 5.7 is(5.22)�+2 u = �Xj=1(�j)�� j1(r)F�1�!tf j(�r)((�ju)ext)b(�)g r�=�j os(��=�j)�; u 2 H2Q;b(R+�!);where  ,  j1 are as in (5.21). Here (�ju)ext means an arbitrary extension of �ju 2H1��=�jb (R+ ) to a funtion in H1��=�jb (R).Corollary 5.8. The short exat sequene (5.6) extends by ontinuity and fatorssubsequently to short split exat sequenes0 ����! H2N;b(R+�!) ����! H2Q;b(R+�!) (�1;:::;��)������! Q�j=1H1��=�jb (R+) ����! 0;0 ����!H2N;lo(R+�!) ����!H2Q;lo(R+�!) (�1;:::;��)������! Q�j=1H1��=�jlo (R+) ����! 0;where (�1; : : : ; ��) is the vetor of trae operators as before. A splitting of both isobtained from (5.22) by replaing �ju with d1j 2 H1��=�jb (R+) and H1��=�jlo (R+),respetively.6. Regular and singular part of the trajetory attratorIn this �nal setion we show that the trajetory attrator A of the problem (0.1)deomposes into a regular A reg and a singular A sing parts.Let us suppose for simpliity that the right{hand side G of the problem (0.1) isstrong translation ompat in �+. The ase of weak translation ompatness ouldbe treated analogously.Let K+ = K+� be the union of all solutions for the family (3.4) see De�nition3.7. and let �2 be the same as in Theorem 5.7. Then one ould de�ne regular andsingular parts of the union K+ by formulas(6.1) K+reg = �1K+ ; K+sing = �2K+ , where �1 = Id� �2



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 27Notie that by de�nition(6.2) K+reg � H2N (
+)and the topology at K+reg indued by embedding K+reg � �+0 onides with thetopology indued by embedding (6.2).It follows from Theorem 5.7 that the semigroup of positive shifts fTs; s � 0gats as in the spae K+reg so in the spae K+sing, i.e.(6.3) TsK+reg � K+reg and TsK+sing � K+sing for s � 0De�nition 6.1. The attrator A reg of the semigroup fTs; s � 0g ating in topo-logial spae K+reg is alled a regular trajetory attrator for the problem (0.1), seeDe�nition 3.7.Analogously the attrator A sing of the semigroup fTs; s � 0g ating in topologialspae K+sing is alled a singular trajetory attrator for the problem (0.1).Theorem 6.2. Let the previous assumptions be valid. Then the problem (0.1)possesses regular A reg and singular A sing trajetory attrators. Moreover(6.4) A reg = �1A and A sing = �2Awhere A is a trajetory attrator for the problem (0.1). So(6.5) A = A reg � A singProof. Let us hek that A sing = �2A . The assertion A reg = �1A uold be hekedanalogously.For the �rst let us verify the attrating property. Let O(�2A ) be an arbitraryneighbourhood of �2A in K+sing then due to Theorem 5.7 ��12 O(�2A ) is some(open) neighbourhood of A in K+. Hene from the attrating propery for A weobtain that there exists SO 2 R+ suh that(6.6) TsK+ � ��12 O(�2A ) for s � SOApplying �2 to both sides of (6.6) and using the assertion (b) of Theorem 5.7 weobtain TsK+sing � �2��12 (�2A ) = O(�2A ) for s � SOThus the attrating property for �2A is valid.For the seond by the de�nition of A TsA = A for s � 0. Applying �2 to bothsides of this equality and using the assertion (b) of Theorem 5.7 again we obtainTs�2A = �2A for s � 0Thus �2A is stritly invariant under fTs; s � 0g ation.And �nally the ompatness for �2A in K+sing is an immediate orollary of theattraor A ompatness and from the ontinuity of �2.Thus by de�nition �2A is a singular trajetory attrator for the problem (0.1).Theorem 6.2 is proved.



28Corollary 6.3. Let �j, 1 � j � �, be the trae operators as given in Corollary 5.8.Then the semigroup fTs; s � 0g of positive shifts along the t{axis at in the spaes�jK+ � H1��=�jlo (R+) and possess the attrators A j = �jA in them. Moreover thesingular attrator A sing possesses the futher deomposition(6.7) A sing ' ��j=1A jThe assertion of this Corollary follows immediately from the topologial isomor-phizm (�1; � � � ; ��) : �+2 H2Q;b(R+ � !)! �Mj=1H1��=�jb (R+)obtained in Setion 5.Note that �+2 A depends on the hoie of the projetion �+2 , while �jA has aninvariant meaning.Finally we are onerned with the question of stabilization of asymptotis in thease when stabilization of solutions takes plae, see Setion 4. For that we make allassumptions of Setion 4, in partiular f(u) = �rF (u) is a gradient like, see (4.5)and the limit equation(6.8) a�xv+ � f(v+) = g+; �nv+���! = 0has only a �nite number of solutions v+ = vN+ , N = 1; � � � ; L in H2Q(!).Let fdNj g�j=1 be the sequene of singular oeÆients to vN+ (see Setion 5), i.e.(6.9) vN+ = vN0 + �Xj=1 dNj (�j)�(r�=�j j(r) os(��=�j))where vN0 = �1vN+ 2 H2N (!) and dNj 2 C k .Theorem 6.4. Let the assumptioms of Theorem 4.4 be full�led. Then for everysolution u(t) of the problem (0.1) there exists an equilibria vN+ suh that(6.10) Tsu! vN+ as s!1 in resp. �+0 or (�+0 )win dependene whether the onvergene in (4.2) is strong or weak. Moreover(6.11) Ts�1u! �1vN+ = vN0 and Ts�2u! �2vN+and(6.12) Ts�ju! dNj as s!1 in resp. H1��=�jlo (R+) or H1��=�jlo (R+))wProof. The assertion (6.10) follows from Theorem4.4. The rest assertions are imme-diate orollaries of it and of the ontinuity of operators �1, �2 and �j in appropriatespaes.



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 29Appendix 1. Ellipti regularity.In this Setion we formulate and prove some auxilary results about the regularityof solution for a linear ellipti equation of vieu (0.1) in polyhedral domains.De�nition A.1. Let's de�ne G as the spae of all funtions u 2 H1;2(
T1�1;T2+1)suh that u is a variational solution of the following equation(A.1) h�tu; �t�i+ hrxu;rx�i+ hu;�i = hg;�i ; 8� 2 H1;2(
T1�1;T2+1)with the right-hand side g 2 L2(
T1�1;T2+1). The norm in the spae G is(A.2) kuk2G � ku;
T1�1;T2+1k21;2 + kg;
T1�1;T2+1k20;2 � Ckg;
T1�1;T2+1k20;2(The last inequality in (A.2) follows immediately from the unique solvability ofvariational problem (A.1)).We de�ne H2Q(
T1;T2) as the spae of restritions of funtions from G to 
T1;T2with the following norm(A.3) kv;
T1;T2k2;Q � inffku;
T1�1;T2+1kG : u 2 G ; u��
T1;T2 = vgLet us denote by V0 the spae of restritions on t = 0 of funtions from the spaeH2Q(
0) with the normku0kV0 = inffku;
0k2;Q : u��t=0 = u0gDe�nition A.2. We denote by �+0 = hH2Q;lo(
+)ik the subspae of distributionspae D0(
+) with the following system of seminorms(A.30) P[T1;T2℄(u) = ku��
T1;T2 ; 
T1;T2k2;Q <1 ; [T1; T2℄ � [0;1)It is evidant that seminorms (A.30) generate in �+ the topology of metrizable F-spae (the topology of loal ompat onvergene).We denote by F+0 = [HQ;b(
T1�1;T2+1)℄k B-spae of funtions from �+0 whihhave the following norm �nitekukb = supT�0P[T;T+1℄(u)Corollary A.3 (Ellipti regularity). Let u be a (variational) solution of thefollowing problem 8>>>><>>>>: �2t u+�xu = gu��t=T1 = u1u��t=T2 = u2�nu��x2�! = 0where u1; u2 2 V0 and g 2 L2(
T1;T2).



30 Then u 2 H2Q(
T1;T2) and the following estimate is validku;
T1;T2k2;Q � C(kg;
T1;T2k0;2 + ku1kV0 + ku2kV0)Proof. By de�nition of V0 there exists a funtion v 2 H2Q(
T1;T2) whih satis�esthe following onditionsu��t=T1 = v��t=T1 and u��t=T2 = v��t=T2Moreover kv;
T1;T2k2;Q � C(ku1kV0 + ku2kV0)Let's prove that the funtion w = u� v 2 H2;Q(
T1;T2). This funtion satis�es theequation ( �2tw +�xw = g1 � g � (�2t v +�xv) 2 L2(
T1;T2)w��t=T1 = w��t=T2 = �nw��x2�! = 0Let's onsider the ut-o� funtion �(t) 2 C10 (R) suh that �(t) = 0 for t 2 [T1; T2℄and �(t) = 1 for t =2 [T1 � "; T2 + "℄ where " < T2 � T1. It is easy to hek that thefuntion W (t) = �(t) bw(t) � �(t)8<:�w(2T1 � t) for t 2 (�1; T1)w(t) for t 2 [T1; T2℄�w(2T2 � t) for t 2 (T2;1)belongs to the spae G. Indeed�2tW +�xW = �(t)bg1(t) + 2�0(t)�t bw(t) + �00(t) bw(t) 2 L2(
)and W satis�es the appropriate boundary onditions.Hene aording to De�nition A.1 w 2 H2;Q(
T1;T2). �Theorem A.4. For all �1 � T1 < T2 < 1 the spae H2Q(
T1;T2) \ L1(
T1;T2)is dense in the spae H2Q(
T1;T2)Proof. It is suÆient to prove that G \ L1(
T1�1;T2+1) is dense in G. Let usonsider a funtion u 2 G and a funtion g 2 L2(
T1�1;T2+1) whih satisfy (A.1).Let gn 2 L1(
T1�1;T2+1) be a sequene of funtion with the following property(A.4) limn!1 gn = g in L2(
T1�1;T2+1)Let un 2 G be variational solutions of (A.1) withb right-hand sides gn. Then,aording to (A.2)(A.5) un ! u in GHene, Theorem A.4 will be proved if we prove that un 2 L1(
T1�1;T2+1).To do this we shall use the Maximum priniple in the following form
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T1�1;T2+1 � Rn+1 { be a bounded polyhedral domain and letui 2 H1;2(
T1�1;T2+1) , i = 1; 2 be variational solutions of problem (A.1) withright-hand sides gi 2 H1;2(
T1�1;T2+1)�. Let the following inequallity be valid(A.6) hg1;�i � hg2;�i ; 8� 2 H1;2(
T1�1;T2+1)Then(A.7) u1(t; x) � u2(t; x) for almost all (t; x) 2 
T1�1;T2+1Proof. Let us onsider the funtion u = u1 � u2. Then(A.8) h�tu; �t�i+ hrxu;rx�i+ hu;�i � 0 ; 8� 2 H1;2(
T1�1;T2+1)Let us introdue the funtions u+(t; x) = maxfu; 0g and u�(t; x) = maxf�u; 0g .Then u = u+ � u�. It is known (see [21℄) that u+ 2 H1;2(
T1�1;T2+1) and(A.9) hu+; u�i = 0 ; hru+;ru�i = 0Let us replae an arbitrary funtion � in (A.4) by the funtion u� and use (A.5).We obtain(A.10) �h�tu�; �tu�i � hrxu�;rxu�i � hu�; u�i � 0Formula (A.10) implies that hu�; u�i = 0 or u+(t; x) = 0 for almost all (t; x) 2
T1�1;T2+1. Lemma A.5 is provedLemma A.6. Let 
 be the same as in previous Lemma and let u 2 H1;2 be thevariational solution of (A.1). Let us suppose also that g 2 L1(
T1�1;T2+1) . Thenu 2 L1(
T1�1;T2+1)Proof. Let �M � g(t; x) � M for almost all (t; x) 2 
T1�1;T2+1 . Let us onsiderthe following two funtions u�(t; x) = �M and u+(t; x) = M Then Lemma A.5implies that u�(t; x) � u(t; x) � u+(t; x) for almost all (t; x) 2 
. Lemma A.6 isproved. Theorem A.4 is proved.Theorem A.7. The following embedding is valid(A.11) H2Q(
T1;T2) � Lq0(
T1;T2)Here(A.12) q0 � q = 2n+ 1n� 3and if q < q0 then this embedding is ompat.Moreover if u 2 H2Q(
T1;T2) then ujuj q�22 2 H1;2(
T1;T2) and the following esti-mate is valid kujuj(q�2)=2;
T1;T2k1;2 � Cku;
T1;T2kq=22;Q



32Proof. Let u 2 H2Q(
T1;T2). Due to the de�nition A.1 it means that there existsthe funtion bu 2 H1;2(
T1�1;T2+1), bu��
T1;T2 = u, suh that(A.13) h�tbu; �t�i+ hrxbu;rx�i+ hbu;�i = hbg;�i ; 8� 2 H1;2(
T1�1;T2+1)with the right-hand side bg 2 L2(
T1�1;T2+1) andku;
T1;T2k2;Q � Ckbg;
T1�1;T2+1k0;2Let's approximate bg 2 L2(
T1�1;T2+1) by a sequene bgm ! bg in L2(
T1�1;T2+1),gm 2 L1(
T1�1;T2+1). Let bum { be a solution of variational problem (A.13)with the right-hand side bg replaed by bgm. Then due to Lemma A.6 bum 2L1(
T1�1;T2+1). Hene the funtion � = bumjbumjl�2 is in the spaeH1;2(
T1�1;T2+1)where l � 2 = 4n�3 = (q � 2)=2. Replaing in (A.13) bu by bum and � by bumjbumjl�2and arguing as in reduing the estimate (1.19) we obtain the following inequality(A.14) kbumjbumj(l�2)=2;
T1�1;T2+1k21;2 � C(1 + j 
bgm; bumjbumjl�2� j)It follows from Sobolev embedding theorem (H1;2 � Lr for r = 2nn�2 ) thatkbum;
T1�1;T2+1kl0;q = kbumjbumj(l�2)=2;
T1�1;T2+1k20;r �� Ckbumjbumj(l�2)=2;
T1�1;T2+1k21;2Applying Holder inequality to the last term into the right{hand side of (A.14) weobtainj 
bgm; bumjbumjl�2� j � kg;
T1�1;T2+1k0;2kbum;
T1�1;T2+1kl�10;q �� �kbum;
T1�1;T2+1kl0;q + C�kgm;
T1�1;T2+1kl0;2for an arbitrary positive �.Applying these estimates to inequality (A.14) and taking suÆiently small � > 0we get(A.15) kbum;
T1�1;T2+1kl0;q + kbumjbumj(l�2)=2;
T1�1;T2+1k21;2 �� Ckgm;
T1�1;T2+1kl0;2We know that bgm ! bg in L2(
T1�1;T2+1), hene the sequene bum is bounded inthe spae Lq(
T1�1;T2+1). Without loss of generality we an think that bum + bu inthe spae Lq(
T1�1;T2+1). So bu 2 Lq(
T1�1;T2+1) andku;
T1;T2k0;q � kbu;
T1�1;T2+1k0;q � Ckbg;
T1�1;T2+1k0;2 � C1ku;
T1;T2k2;QThe embedding ujujl�2 2 H1;2(
T1;T2) ould be proved analogously.Let us prove the ompatness of embedding (A.11) for q0 < q. Indeed due to theinterpolation inequality between H1;2 and LqH2Q(
T1;T2) � H";q0(
T1;T2)for some positive ". It is well known that the embedding H";q0 � Lq0 is ompat.Theorem A.7 is proved.



TRAJECTORY ATTRACTOR FOR A NONLINEAR ELLIPTIC SYSTEM 33Corolary A.8. The following embedding is valid(A.16) H2Q(
T1;T2) � C([T1; T2℄; Lp0(!))Here p0 = 2l = 2 + 4n�3 { the maximum of p exponent in (0.2).Indeed it follows from the seond embedding of Theorem A.7 and Sobolev em-bedding theorem that ujuj(l�2)=2 2 C([T1; T2℄; L2(!)) if u2H2Q(
T1;T2). Moreoverwe know from the embedding H2Q � H1;2 that u 2 C([T1; T2℄; L2(!)) Arguing inthe following as in the proof of Krasnoselski Theorem (see [11℄) we obtain thatu 2 C([T1; T2℄; Lp0(!)).Theorem A.9. Let u 2 H2Q(
T1;T2). Then �2t u 2 L2(
T1;T2), �trxu 2 L2(
T1;T2)and the following estimate is valid:(A.17) k�2t u;
T1;T2k20;2+k�trxu;
T1;T2k20;2+k�xu;
T1;T2k20;2 � Cku;
T1;T2k22;QProof. By de�nition there exists a funtion bu 2 G suh that bu��
T1;T2 = u whihsatis�es the equation(A.18) 8><>: �2t bu+�xbu� bu = g(x)�nbu���! = 0bu��t=T1�1 = 0 ; bu��t=T2+1 = 0for some funtion g 2 L2(
T1�1;T2+1) and kg;
T1�1;T2+1k0;2 � Cku;
T1;T2k2;Q.We give below only formal reduing of the estimate (A.17). The rigorous proofould be obtained by using (for example) Galerkin approximations method.Let us multiply the equation (A.18) by �2t bu and integarte over 
T1�1;T2+1. Weobtain after integration by part(A.19) 
j�2t buj2; 1�+ 
j�trxbuj2; 1�+ 
j�tbuj2; 1� = 
g; �2t bu�Applying Holder inequality
g; �2t bu� � 12 
jgj2; 1�+ 12 
j�2t buj2; 1�to the right{hand side of the equation (A.19) we obtain the inequality (A.17).Theorem A.9 is proved.Corollary A.10. It follows from the previous Theorem thatu 2 H1;2([T1; T2℄; H1;2(!)) \H2;2([T1; T2℄; L2(!))if u 2 H2Q(
T1;T2) hene(A.20) H2Q(
T1;T2) � C([T1; T2℄; H1;2(!)) \ C1([T1; T2℄; L2(!))So the funtions k�tu(t)k0;2 and ku(t)k1;2 are orretly de�ned and ontinious forevery u 2 H2Q



34Corollary A.11. Let D(A) be the domain of de�nition for the Laplae operatorAu = ��xu + u in L2(!) with Newmann boundary onditions. Then it followsfrom Theorem A.9 that(A.21) H2Q(
T1;T2) = H2;2([T1; T2℄; L2(!) \ L2([T1; T2℄; D(A))Hene due to the interpolation theory and abstrat trae theorems (see [12℄ and [19℄)the spae V0 possesses the following desription(A.22) V0 = D(A 34 )Let us suppose that ! has a smooth boundary �! then as known (see [19℄ for ex-ample) the spae D(A 34 ) ould be desribed expliitly(A.23) V0 = D(A 34 ) = �u0 2 H 32 ;2(!) : Z! d�1(x)jBn(x)u0(x)j2 dx <1�Here d(x) = infy2�! jx� yj and Bn(x) =Pni=1 bi(x)�xi some ontinious extentionof the normal derivative operator from the boundary �! in ! (Bn(x)���! = �n).Remark A.12. In the ase when ! { is smooth domain all results of this Setionare trivial orrolaries of L2{regularity theorem for Laplae operator (see [19℄)(A.24) H2Q(
T1;T2) = fu 2 H2;2(
T1;T2) : �nu���! = 0gand Sobolev embedding theorems. But for polyhedral domains the equality (A.24) isnot valid in general (see Setion 5 for example).Theorem A.13. Let w be a polyhedral domain and let A be the same as in Corol-lary A.11. Then there exists some positive 0 < " = "(!) � 12 suh that(A.25) D(A) � H 32+";2(!)The proof of this Theorem is given in [9℄.Corollary A.14. Let w be polyhedral domain. Then the following embedding isvalid(A.26) H2Q(
T1;T2) � H 32+";2(
T1;T2)where " = "(!) depends only on !.Indeed (A.26) follows from (A.25) and (A.21).Corollary A.15. Let u be in H2Q(
T1;T2). Then it follows from (A.26) and Sobolevembedding theorem that �nu���! 2 H";2([T1; T2℄� �!)Using Green's formula (see [12℄) it is not diÆult to obtain now that �nu���! = 0for every u 2 H2Q(
T1;T2). Thus the solutions u of the problem (0.1) from the spae�+0 satisfy the homnogeneous Newmann boundary onditions in ordinary sense.
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