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 regularity of solutionsof singularly perturbed damped wave equationswith super
riti
al nonlinearities.Sergey ZelikUniversit�e de PoitiersLaboratoire d'Appli
ations des Math�ematiques - SP2MIBoulevard Marie et Pierre Curie - T�el�eport 286962 Chasseneuil Futuros
ope Cedex - Fran
e(Communi
ated by R. Temam)Abstra
t. We study the asymptoti
 behavior of weak energy solutions of the followingdamped hyperboli
 equation in a bounded domain 
 � R3:"�2t u+ 
�tu��xu+ f(u) = g; u���
 = 0;where 
 is a positive 
onstant and " > 0 is a small parameter. We do not make any growthrestri
tions on the nonlinearity f and, 
onsequently, we do not have the uniqueness of weaksolutions for this problem.We prove that the traje
tory dynami
al system a
ting on the spa
e of all properly de�nedweak energy solutions of this equation possesses a global attra
tor Atr" and verify that thisattra
tor 
onsists of global strong regular solutions, if " > 0 is small enough. Moreover,we also establish that, generi
ally, any weak energy solution 
onverges exponentially to theattra
tor Atr" .0. Introdu
tion. We 
onsider the following singularly perturbed damped waveequation in a bounded domain 
 � R3 with a smooth boundary �
:� "�2t u+ 
�tu��xu+ f(u) = g;u���
 = 0; u��t=0 = u0; �tu��t=0 = u00: (0.1)Here " > 0 and 
 > 0 are given positive numbers, u = u(t; x) is an unknownfun
tion, �x is the Lapla
ian with respe
t to the variable x = (x1; x2; x3) andg = g(x) are given external for
es whi
h satisfy the following assumption:g 2 L2(
): (0.2)We also assume that the nonlinear intera
tion fun
tion f(u) satis�es the following
onditions: 8><>: 1: f 2 C2(R;R); f(0) = 0;2: jf 00(v)j � C(1 + jvjp);3: f 0(v) � �K + Æjvjp+1; (0.3)where p > 0, C > 0, K > 0, and Æ > 0 are given 
onstants. Equation (0.1) is
onsidered in the standard energy phase spa
e:E = E(
) := �H10 (
) \ Lp+3(
)�� L2(
): (0.4)AMS 1991 Subje
t Classi�
ation: Primary 35B40, 35B45, 35L30.Key words and phrases: Singularly perturbed damped wave equation, super
riti
al nonlinearity,regular attra
tors. 1



2 SERGEY ZELIKConsequently, we assume that the solution �u(t) := (u(t); �tu(t)) belongs to E, forevery t � 0, and, parti
ularly, the initial data �u(0) := (u0; u00) also belongs to E:�u(0) 2 E: (0.5)In the sub
riti
al 
ase p � 1, the behavior of the solutions of (0.1) is now wellunderstood. Indeed, in this 
ase, equation (0.1) generates a di�erentiable semigroupS"t in the phase spa
e E:S"t : E ! E; S"t �u(0) := �u(t); where u(t) solves (0.1); (0.6)whi
h possesses the 
ompa
t global attra
tor Agl" in E, see e.g. [1℄, [3℄, [14{17℄, [23℄and the referen
es therein. These attra
tors are uniformly (with respe
t to "! 0)bounded in the spa
e E1 := [H2(
) \H10 (
)℄�H10 (
) (0.7)and (
onsequently) they 
onverge as " ! 0 to the limit attra
tor Agl0 asso
iatedwith the limit paraboli
 equation (at least in the sense of the upper semi
ontinuityin E1, see [3℄, [16℄ or [11℄ for the details).Moreover, sin
e equation (0.1) possesses a global Liapunov fun
tion (see [3℄ or[16℄) then, under the additional generi
 assumption that the set R of equilibria ofequation (0.1) is �nite:#R = N <1 and all the equilibria are hyperboli
; (0.8)the attra
tor Agl" 
onsists of a �nite 
olle
tion of �nite dimensional unstable C1-submanifolds in E: Agl" := [z02RM+" (z0) (0.9)and the rate of 
onvergen
e to it is exponential, i.e., for every bounded subsetB � E, the following estimate is valid:distE;"(StB;Agl" ) � Q(kBkE;")e��t; (0.10)where the monotoni
 fun
tion Q and the positive 
onstant � are independent of Band " � "0, k�uk2E;" := "k�tuk2L2 + kuk2H1 + kukp+3Lp+3 (0.11)and distE;" denotes the nonsymmetri
 Hausdor� distan
e between sets in "metri
"(0.11). It is also known that, in this 
ase, we also have the lower semi
ontinuity ofthe attra
tors Agl" as "! 0 and the following estimate on the rate of 
onvergen
e:distsymm;E1(Agl" ;Agl0 ) � C"�; (0.12)where C > 0 and � > 0 are independent of " (see [3℄, [11℄ or [16℄).Moreover, the nonautonomous equations of the form of (0.1) were studied in[4℄; exponential attra
tors for (0.1) were 
onsidered in [10℄ and [11℄; the Gevreyregularity of attra
tors A" was established in [6℄; and attra
tors for equations (0.1)in unbounded domains 
 were investigated in [12℄ and [28℄. We note howeverthat the proof of the E1-regularity of the attra
tor Agl" in the 
riti
al 
ase p = 1essentially uses the �niteness of a suitable dissipation integral (see [3℄) so, to thebest of our knowledge, the higher (e.g., E1) regularity of attra
tors is still an open



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 3problem in the 
ase of more general (than (0.1)) semilinear hyperboli
 equations andsystems (e.g., nonautonomous ones) with 
riti
al growth rate on the nonlinearity.In 
ontrast to this, very few is known about the solutions of (0.1) in the super-
riti
al 
ase p > 1. Indeed, although the global existen
e of weak energy solutions�u 2 C(R+ ; Ew) (0.13)(where, as usual, the symbol 'w' denotes the weak topology in E) 
an be derived ina standard way from the energy estimate (see e.g. [18℄), the regularity (0.13) is notenough in order to prove the uniqueness of su
h solutions and, to the best of ourknowledge, only the lo
al existen
e of more regular solutions is known for p > 1.Thus, semigroup (0.6) asso
iated with equation (0.1) 
an be rigorously de�nedonly as a semigroup of multivalued maps. A (generalized) global attra
tor for thissemigroup has been 
onstru
ted in [2℄.A similar result was reproved in [5℄, using the 
on
ept of traje
tory dynami
alsystem and the asso
iated traje
tory attra
tor. We re
all that, under this approa
h,the set K+" of all properly de�ned weak energy solutions of (0.1) (for all initial data�u(0) belonging to E, see De�nition 1.1) endowed with the appropriate topologyis 
onsidered as a (traje
tory) phase spa
e for the semigroup of positive temporalshifts Th : K+" ! K+" ; (Thu)(t) := u(t+ h); t; h 2 R+ : (0.14)This semigroup (a
ting on the traje
tory phase spa
e K+" ) is 
alled a traje
torydynami
al system asso
iated with problem (0.1) and its global attra
tor (if it exists)is 
alled a traje
tory attra
tor Atr" of problem (0.1). It is worth to note that, inthe 
ase where uniqueness holds, the traje
tory attra
tor Atr" is usually equivalent(Lips
hitz homeomorphi
) to the global one (see Remark 1.1 below).The traje
tory attra
tors Atr" for problem (0.1) were 
onstru
ted in [5℄ and theirweak upper semi
ontinuity as " ! 0 was established in [6℄, see also [5℄, [13℄ and[22℄ for appli
ations of the traje
tory approa
h des
ribed above to other 
lasses ofill-posed evolution equations and [19℄, [25℄ and [26℄ for its appli
ations to ellipti
boundary value problems in unbounded domains.In the present paper, we give a systemati
 study of the attra
tors asso
iated withproblem (0.1) in 
ase " > 0 is small enough.In Se
tion 1, we re
all the 
onstru
tion of a weak energy solution �u(t) of problem(0.1) using Galerkin approximations. Using this expli
it 
onstru
tion, we thende�ne the traje
tory phase spa
e K+" as a spa
e of all weak energy solutions of (0.1)whi
h 
an be obtained as a weak limit of the 
orresponding Galerkin approximationsand establish that the traje
tory dynami
al system (0.14) possesses the 
ompa
tglobal attra
tor Atr" in the following weak-� topology:�+ := [L1lo
(R+ ; E)℄w� (0.15)(see x1 for the details). Thus, we restri
t ourselves to the weak solutions �u(t) ofproblem (0.1) that 
an be obtained as a �+-limit of the 
orresponding Galerkinapproximations only (we do not know whether or not every weak solution of (0.1)satisfying (0.13) 
an be obtained in su
h way).As usual (see [2℄, [5℄, [6℄), the attra
tor Atr" possesses the following des
ription:Atr" = �+K"; (0.16)where K" � L1(R; E) is the set of all weak solutions of (0.1) that are de�nedfor every t 2 R and 
an be obtained as a weak limit of the appropriate Galerkin



4 SERGEY ZELIKapproximations (see Theorem 1.1 below) and �+�u := �u��t�0 is the restri
tion ofthe fun
tion �u 2 K" to the semiaxis R+ .In Se
tion 2, we study the regularity properties of the weak solutions �u 2 K".Parti
ularly, we prove that every su
h solution is regular if t 2 R is small enough.To be more pre
ise, for every �u 2 K", there exists T = Tu 2 R su
h that�u(t) 2 E1 if t � T: (0.17)Moreover, we obtain some uniqueness result for su
h solutions. We note that theseresults are proved without the assumption that " > 0 is small, but they are essen-tially based on the �niteness of the dissipation integralZ +1�1 k�tu(t)k2L2 dt <1; 8�u 2 K": (0.18)The main result of Se
tion 3 is the existen
e of global strong solutions of (0.1), ifthe E1-energy of the initial data is not very large and " > 0 is small enough. To bemore pre
ise, we prove that there exist "0 � 1 and a nonin
reasing fun
tionR : (0; "0℄! R+ ; lim"!0R(") = +1;su
h that, for every " � "0 and every initial data satisfyingk�u(0)kE1;" � R(");where k�uk2E1;" := "k�tuk2H1 + kuk2H2 ; (0.19)there exists a unique global strong solution �u 2 Cb(R; E1 ) and this solution satis�esthe estimate k�u(t)kE1;" � Q(k�u(0)kE1;")e��t +Q(kgkL2); (0.20)where the positive 
onstant � and the monotoni
 fun
tion Q are independent of" � "0.In 
ontrast to Se
tion 2, this result is based on the 
omparison of the strongsolution of (0.1) with an appropriate strong solution of the limit (" = 0) paraboli
problem and does not require the dissipation integral (0.18) to be �nite.Combining this result with regularity (0.17) obtained in Se
tion 2, we �nallyobtain that, for all " � "0 � 1, the traje
tory attra
tor Atr" 
onsists of the globalstrong solutions: Atr" � Cb(R+ ; E1): (0.21)Sin
e a strong solution �u 2 Cb(R+ ; E1) is unique, we may de�ne a global attra
torAgl" for equation (0.1) by the standard expression:Agl" := �0Atr" (0.22)where �0�u := �u(0), and de�ne a 
lassi
al semigroup asso
iated with (0.1) on thisattra
tor via S"t �u(0) := �u(t); S"t : Agl" ! Agl" ; (0.23)where �u(t) is a unique strong solution of (0.1).



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 5We note that, sin
e H2(
) � C(
), then estimate (0.20) gives a uniform (withrespe
t to ") estimate of the C-norm of the traje
tories belonging to attra
torAgl" . Therefore, the growth rate of the nonlinearity f with respe
t to u be
omesnonessential for further investigations of global attra
tors Agl" and we may studythem exa
tly as in the sub
riti
al 
ase p � 1 (see [3℄ or [11℄).In parti
ular, we indi
ate in Se
tion 4 that, under the additional assumption(0.8), des
ription (0.9) and estimate (0.10) remain valid for the super
riti
al 
aseas well.Moreover, we prove that, not only strong solutions �u 2 Cb(R+ ; E1) 
onvergeexponentially to the global attra
tor Agl" (whi
h 
an be proved exa
tly as in thesub
riti
al 
ase), but also that the same is valid for every weak solution �u 2 K+" .To be more pre
ise, for every " � "0 and every bounded subset of weak energysolutions B � K+" , the following estimate is valid:sup�u2B distE;"(�u(t);Agl" ) � CBe��t; (0.24)where CB and � > 0 are independent of " (see Theorem 4.4).To 
on
lude, we note that our method seems to be appli
able for the study ofproblem (0.1) in 
 �� Rn with an arbitrary n � 1, but we restri
t ourselves to the
ase n = 3 only in order to avoid the additional te
hni
alities. Moreover, it is alsoappli
able to other 
lasses of perturbed hyperboli
 equations, e.g., to the followingproblem in a bounded domain 
 � R3 :�2t u+ 
�tu��xu+ "ujujp + u3 � �u = g; p > 2; � 2 R; "� 1: (0.26)We will study these questions in a forth
oming paper.A
knowledgements. This resear
h was partially supported by the INTAS proje
tno. 00-899 and CRDF grant RM1-2343-MO-02. The author is also grateful toM.I.Vishik and A.Liapin for many stimulating dis
ussions.1. The traje
tory dynami
al system and its attra
tor. In this se
tion,we prove that problem (0.1) possesses at least one weak solution �u(t), for every�u(0) 2 E. Using the expli
it 
onstru
tion of su
h solutions, we then de�ne atraje
tory dynami
al system asso
iated with problem (0.1) and verify that thisdynami
al system possesses the global attra
tor.We start with 
onstru
ting the Galerkin approximations for problem (0.1). Letfeig1i=1 be the orthonormal system of eigenve
tors of the Lapla
ian �x with Diri
h-let boundary 
onditions and let f�ig1i=1 be the 
orresponding eigenve
tors:��xei = �iei; ei���
 = 0; �i+1 � �i: (1.1)We denote by PN : v ! PNv the orthoproje
tor in L2(
) to the �rst N eigenve
torsof system feig1i=1 and 
onsider, for every N 2 N, the following auxiliary problem inthe phase spa
e EN := PNE (e.g., (uN ; �tuN ) 2 EN ):� "�2t uN + 
�tuN ��xuN + PNf(uN) = gN := PNg;uN(t) :=PNi=1 uiN(t)ei; �uN (0) = �0N 2 EN : (1.2)We note that (1.2) is a se
ond order system of ODE with respe
t to the fun
tionsfuiN(t)gNi=1 and with the smooth (C2-smooth) nonlinearity. The following standardlemma gives a uniform with respe
t to N estimate for the solutions of (1.2) in theenergy phase spa
e E.



6 SERGEY ZELIKLemma 1.1. Let assumptions (0.2) and (0.3) hold. Then, there exists a uniquesolution �uN (t) of problem (1.2) and the following estimate holds:k�uN (t)k2E;" + Z 1t k�tuN(s)k2L2 ds � Ck�uN (s)k2E;"e��(t�s) + C(1 + kgk2L2); (1.3)where t � s � 0,k�u(t)k2E;" := "k�tu(t)k2L2 + krxu(t)k2L2 + ku(t)kp+3Lp+3 ; (1.4)and 
onstants � > 0 and C > 0 are independent of N and " 2 [0; "0℄.Proof. Multiplying equation (1.2) by �tuN (t) and integrating over x 2 
, we haveddt ["k�tuN(t)k2L2 + krxuN (t)k2L2 + 2(F (uN (t)); 1)� 2(g; uN(t))℄ == �2
k�tuN(t)k2L2 ; (1.5)where F (v) := R v0 f(w) dw. We now re
all (see e.g. [27℄) that assumption (0.3)(3)implies that f(v):v � jvj2��K + Æp+ 2 jvjp+1� ;F (v) � jvj2 ��K2 + Æ(p+ 2)(p+ 3) jvjp+1� ;F (v) � f(v):v � jvj2��K2 + Æp+ 3 jvjp+1� : (1.6)Moreover, assumption (0.3)(2) obviously implies thatjf(v)j � Cjvj �1 + jvjp+1� ; F (v) � Cjvj2 �1 + jvjp+1� : (1.7)Integrating identity (1.5) over t 2 (t; T ) and using estimates (1.6) and (1.7), wehave k�uN (T )k2E;" + Z Tt k�tuN (s)k2L2 ds � ~C �k�uN (t)k2E;" + 1 + kgk2L2� ; (1.8)where the 
onstant ~C is independent of N , t, T and ". In parti
ular, (1.8) givesthe uniform (with respe
t to T ) a priori estimate for the solution �uN (t) of problem(1.2) and, 
onsequently (sin
e (1.2) is an ODE with a smooth nonlinearity), theglobal solution �uN (t), t 2 R+ , of problem (1.2) exists, for every �0N 2 EN , and isunique. Moreover, passing to the limit T ! +1 in estimate (1.8), we obtainZ 1t k�tuN(s)k2L2 ds � ~C �k�uN (t)k2E;" + 1+ kgk2L2� : (1.9)So, there remains to prove the dissipative estimate for the quantity k�uN (t)kE;". Tothis end, as usual, we multiply equation (1.2) by �uN (t), where � > 0 is a smallpositive parameter whi
h will be �xed below and integrate over x 2 
. Then, wehaveddt [2�"(�tuN (t); uN (t)) + 
�kuN(t)k2L2 ℄� 2�"k�tuN (t)k2L2++ 2�krxuN (t)k2L2 + 2�(f(uN (t)); uN (t)) = 2�(g; uN(t)): (1.10)



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 7Summing identity (1.5) with identity (1.10) and settingE"(t) := "k�tuN(t)k2L2 + krxuN (t)k2L2 + 2(F (uN (t)); 1)++ 2�"(�tuN(t); uN (t)) + �
kuN(t)k2L2 � 2(g; uN(t)); (1.11)we obtain the following equation:ddtE"(t) + �E"(t) = h(t) :== �(2
 � 3�")k�tuN(t)k2L2 � �krxuN(t)k2L2++ 2� (F (uN(t)) � f(uN(t)):uN (t); 1) + �2
kuN(t)k2L2 + 2�2"(�tuN(t); uN (t)):(1.12)It is not diÆ
ult to verify, using estimates (1.6) and S
hwartz inequality, that it ispossible to �x � > 0 (whi
h is independent of " 2 [0; "0℄ and N) su
h thath(t) � C; (1.13)and, 
onsequently, using Gronwall's inequality, we derive from (1.12) thatE"(t) � E"(s)e��(t�s) + C1; t � s � 0; (1.14)where the 
onstant C1 is independent of " and N . There only remains to note that,due to (1.6) and (1.7), we have the estimatesC�12 k�uN (t)k2E;" � C3(1 + kgk2L2) � E"(t) � C2 �k�uN (t)k2E;" + 1 + kgk2L2� ; (1.15)where the 
onstants Ci > 0 are independent of t, " and N . Indeed, estimate (1.3)is an immediate 
orollary of (1.14), (1.15) and (1.9). Lemma 1.1 is proven.We now assume that the initial data �0N for the Galerkin system (1.2) 
onvergeweakly in E to some �0 2 E: �0N * �0 as N !1: (1.16)Then, obviously, the sequen
e �0N is uniformly bounded in E with respe
t to N , and
onsequently, due to estimate (1.3), the sequen
e of 
orresponding solutions �uN (t)is uniformly (with respe
t to N) bounded in the spa
e L1(R+ ; E):k�uN kL1(R+;E) � C: (1.17)We re
all that bounded subsets in the Fre
het spa
e L1lo
(R+ ; E) are pre
ompa
tin the w�-topology (see e.g. [20℄) and, 
onsequently, we may extra
t from thesequen
e of solutions �uN (t) a subsequen
e �uNk (t) whi
h w�-
onverges to somefun
tion �u(t) 2 L1(R+ ; E):�u = �+ � limk!1 �uNk ; where �+ := �L1lo
(R+ ; E)�w� : (1.18)We also re
all (see [20℄) that (1.18) is equivalent to the following: for every T 2 R+�uNk ! �u weakly-� in L1((T; T + 1); E):



8 SERGEY ZELIKMoreover, sin
e uN (t) solves (1.2) then, expressing the se
ond derivative �2t uN(t)from equation (1.2) and using estimate (1.17), we havek�2t uNkL1(R+;H�1(
)+Lq(
)) � C1; (1.19)where the exponent q is 
onjugated to p+3 (i.e. 1q + 1p+3 = 1) and the 
onstant C1is independent of N .We now note (see e.g. [8℄ or [18℄) that, for every 0 < � � 1, the followingembedding is 
ompa
t:f(v; �tv) 2 L1lo
(R+ ; E)g \ f�2t v 2 L1lo
(R+ ; H�1(
) + Lq(
))g ���� f(v; �tv) 2 Clo
(R+ ; [H1��(
) \ Lp+3��(
)℄�H��(
))g: (1.20)Thus, weak-� 
onvergen
e (1.18) implies the strong 
onvergen
e�uNk ! �u strongly in Clo
(R+ ; [H1��(
) \ Lp+3��(
)℄ �H��(
)): (1.21)Consequently (see [18℄) �u 2 C(R+ ; Ew) (1.22)and, for every t � 0, we have the weak 
onvergen
e�uNk (t)* �u(t) in E: (1.23)Moreover, the strong 
onvergen
e (1.21) allows to pass in a standard way to thelimit Nk !1 in equations (1.2) (in the sense of distributions) and verify that thefun
tion �u(t) := (u(t); �tu(t)) 
onstru
ted above solves equation (0.1) with�u(0) = Ew � limk!1 �0Nk : (1.24)Thus, we have proved the following result.Lemma 1.2. Let the assumptions of Lemma 1.1 hold. Then, for every �0 2 E,there exists at least one weak global solution �u(t), t 2 R+ , of problem (0.1) with�u(0) = �0; (1.25)whi
h 
an be obtained as a weak limit (1.18) of the 
orresponding solutions �uNk (t)of the Galerkin approximations (1.2).Indeed, let �0 2 E. Then, we 
an �nd a sequen
e �0N 2 EN su
h that �0N ! �0in E (sin
e the orthonormal system feig1i=1 of the Lapla
e eigenfun
tions is densein E, see [24℄). Thus, the limit pro
ess (1.18) gives the desired solution of equation(0.1).We are now ready to 
onstru
t the traje
tory dynami
al system asso
iated withequation (0.1).De�nition 1.1. We de�ne the traje
tory phase spa
e K+" of problem (0.1) as theset of all solutions of this problem whi
h 
an be obtained as a weak-� limit (1.18)of solutions of the Galerkin approximations (1.2):K+" := ��u 2 L1(R+ ; E); 9�uNk (t) whi
h solve (1.2)su
h that �u(0) = Ew � limk!1 �uNk (0) and �u = �+ � limk!1 �uNk�: (1.26)



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 9Obviously, K+" is a subset of L1(R+ ; E). We endow the traje
tory phase spa
e K+"with the topology indu
ed by the embeddingK+" � �+ (1.27)(i.e. by the weak-� topology of the spa
e L1lo
(R+ ; E)).We now 
onsider the following semigroup of positive temporal translations:Th : �+ ! �+; h � 0; (Thu)(t) := u(t+ h): (1.28)Then, due to (1.23) and the fa
t that (0.1) is autonomous, semigroup (1.28) a
tson the traje
tory phase spa
e K+" :Th : K+" ! K+" : (1.29)Semigroup (1.29) (a
ting on the topologi
al spa
e K+" ) is 
alled the traje
torydynami
al system asso
iated with equation (0.1).Remark 1.1. It is well known (see e.g. [3℄) that, in the sub
riti
al 
ase p � 1, thesolution u(t) of equation (0.1) is unique and, 
onsequently, this equation generatesa semigroup in the 
lassi
al phase spa
e E in a standard way:S"t : E ! E; t � 0; S"t �u(0) := �u(t): (1.30)Moreover, in this 
ase, the map�0 : K+" ! E; �0�u = �u(0) (1.31)is one to one and realizes a (sequential) homeomorphism between K+" and Ew.Thus, S"t = �0 Æ Tt Æ (�0)�1; (1.32)and, therefore (in the sub
riti
al 
ase), the traje
tory dynami
al system (1.29) is
onjugated to the 
lassi
al dynami
al system (1.30) de�ned on the phase spa
e Eendowed with the weak topology.We note however that, in the super
riti
al 
ase p > 1, the uniqueness problem for(0.1) is not solved yet and 
lassi
al semigroup (1.30) 
an be de�ned as a semigroup ofmultivalued maps only (see [2℄ for the details). The use of the traje
tory dynami
alsystem (1.29) allows to avoid the multivalued maps and to apply the standardattra
tors theory in order to study the long time behavior of solutions of (0.1) inthe super
riti
al 
ase.In order to 
onstru
t the global attra
tor for dynami
al system (1.29), we needthe following generalization of energy fun
tional (1.4).De�nition 1.2. Let �u 2 K+" . We de�ne the fun
tional Mu(t), t � 0, by thefollowing expression:M"u(t) := inf � liminfk!1 k�uNk (t)kE;" :�u = �+ � limk!1 �uNk ; �u(0) = Ew � limk!1 �uNk (0)�; (1.33)where the external in�mum in the right-hand side of (1.33) is taken over all se-quen
es of the Galerkin approximations f�uNk (t)g1k=1 whi
h weakly-� 
onverge tothe given solution �u.The following 
orollary gives the simplest properties of the M -energy fun
tionalintrodu
ed.



10 SERGEY ZELIKCorollary 1.1. Let the assumptions of Lemma 1.1 hold and let �u 2 K+" . Then,the following estimates hold:M"u(t) <1; k�u(t)kE;" �M"u(t); M"Thu(t) �M"u(t+ h) (1.34)and M"u(t)2 + Z 1t k�tu(t)k2L2 dt � CM"u(s)2e��(t�s) + C(1 + kgk2L2); (1.35)where t � s � 0 and 
onstants � > 0 and C > 0 are the same as in (1.3).Indeed, estimates (1.34) are immediate 
orollaries of the de�nition of K+" andM"u(t) and estimates (1.35) follow from estimate (1.3) in whi
h we pass to the limitNk !1.Remark 1.2. It is known (see [3℄) that, in the sub
riti
al 
ase p � 1, we havek�u(t)kE;" =M"u(t): (1.36)So, in this 
ase, theM -energy 
oin
ides with the 
lassi
al one. But to the best of ourknowledge, neither identity (1.36) nor the fa
t that any solution �u 2 L1(R+ ; E)of (0.1) 
an be obtained as a limit of the Galerkin approximations (1.2) are knownin the super
riti
al 
ase p > 1. Nevertheless, if the solution �u(t) of problem (0.1)is suÆ
iently regular:�u 2 L1(R+ ; E1); E1 := [H2(
) \H10 (
)℄�H10 (
); (1.37)then it is unique (in 
lass (1.37)) and, 
onsequently, �u 2 K+" and satis�es (1.36).In the sequel, we 
onsider only the solutions of (0.1) whi
h 
an be approximated bythe Galerkin solutions and use the modi�ed energy M"u(t) instead of the 
lassi
alone.Remark 1.3. In 
ontrast to (1.4), the fun
tional M"u(t) is not a priori lo
al withrespe
t to t, i.e. M"u(T ) depends not only on �u(T ), but also on the whole traje
tory�u 2 K+" .As usual (see e.g. [2℄, [3℄, [21℄), in order to de�ne the global attra
tor of semigroup(1.29), we should de�ne the 
lass of bounded sets whi
h will be attra
ted by thisattra
tor.De�nition 1.3. A set B � K+" is 
alled M -bounded if the following quantity is�nite: kBkM := sup�u2BM"u(0) <1: (1.38)In other words, the set B � K+" is M -bounded if the modi�ed energy of all thesolutions belonging to B is uniformly bounded.We are now ready to re
all the de�nition of the global attra
tor of the traje
torydynami
al system (1.29) (=traje
tory attra
tor of equation (0.1)).De�nition 1.4. A set Atr" is a global attra
tor of the traje
tory dynami
al system(1.29) (= the traje
tory attra
tor of equation (0.1)) if the following 
onditions hold:1. The set Atr" is a 
ompa
t M -bounded set in K+" .2. This set is stri
tly invariant, i.e. ThAtr" = Atr" , for h � 0.3. This set is an attra
ting set for semigroup (1.29), i.e. for every M -boundedsubset B � K+" and every neighborhood O(Atr" ) of Atr" in K+" , there exists T =T (B;O) su
h that ThB � O(Atr" ); for h � T: (1.39)The main result of this se
tion is the following theorem whi
h establishes theexisten
e of the attra
tor Atr" for the traje
tory dynami
al system asso
iated withproblem (0.1).



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 11Theorem 1.1. Let the assumptions of Lemma 1.1 hold. Then, semigroup (1.29)possesses the global attra
tor Atr" in the sense of De�nition 1.4 whi
h 
an be de-s
ribed in the following way: Atr" = �+K": (1.40)Here K" � L1(R; E) is the set of all the 
omplete solutions of problem (0.1) whi
hare de�ned for all t 2 R and 
an be obtained as a Galerkin limit, i.e. �u 2 K" ifand only if there exist a sequen
e of times tk ! �1 and a sequen
e of solutions�uNk (t) of the problems:� "�2t uNk + 
�tuNk ��xuNk + PNkf(uNk) = gNk ;�uNk (tk) = �0k 2 ENk ; t � tk; (1.41)su
h that k�0kkE;" � C; and �u = �� limk!1 �uNk ; (1.42)where C is independent of k and� := �L1lo
(R; E)�w� : (1.43)Proof. As usual (see e.g. [3℄, [23℄), in order to prove the attra
tor's existen
e, it issuÆ
ient to �nd aM -bounded and 
ompa
t absorbing set in the phase spa
e of thesemigroup under 
onsideration. We 
laim that the following setB" := f�u 2 K+" ; supt�0M"u(t)2 � 2C(1 + kgk2L2)g; (1.44)where the 
onstant C is the same as in (1.35), is the desired 
ompa
t absorbing setof the traje
tory dynami
al system (1.29).Indeed, the fa
t that B" absorbs all M -bounded subsets of K+" is an immediate
orollary of estimates (1.34) and (1.35). Moreover, it follows from (1.34) thatThB" � B";and that B" is bounded in L1(R+ ; E) and, 
onsequently, it is pre
ompa
t in �+.So, there only remains to verify that the set B" is 
losed. In order to verify this, we�rst note thatB" � B0 := f�u 2 L1(R+ ; E); supt�0 k�u(t)k2E;" � 4C(1 + kgk2L2)g; (1.45)and that B0 is a 
ompa
t and metrizable subspa
e of the topologi
al spa
e �+ (see[20℄). So, there only remains to verify the sequential 
losedness of B".Let f�ulg1l=1 2 B" and set �u = �+ � liml!1 �ul : (1.46)We need to prove that the limit fun
tion �u(t) belongs to B". Indeed, due to the
ompa
tness of embedding (1.20), we derive from (1.46) the strong 
onvergen
e of�ul in spa
e (1.21) and, 
onsequently, the limit fun
tion �u(t) solves equation (0.1).Let us prove that �u 2 K+" , i.e. that it 
an be represented as a Galerkin limit



12 SERGEY ZELIK(1.18). A

ording to the de�nition of K+" and the assumption �ul 2 K+" , there existsequen
es f�ulNk (t)g1k=1 of Galerkin solutions su
h that�ul = �+ � limk!1 �ulNk : (1.47)Moreover, sin
e �ul 2 B" then the M"ul(t) are uniformly bounded with respe
t to land, 
onsequently, without loss of generality, we may assume that�ulNk 2 B0; k; l 2 N: (1.48)We now re
all that the topology of �+ restri
ted to B0 is metrizable. Let d�+(�; �)be one of su
h metri
s. Then, due to (1.47), for every l, we may found Nk(l) 2 Nsu
h that d�+(�ul ; �ulNk(l) ) � l�1: (1.49)Convergen
e (1.46), together with (1.49) and with the triangle inequality, implythat d�+(�u; �uNlk(l) )! 0 and, 
onsequently, �u = �+ � liml!1 �ulNk(l) :Thus, �u 2 K+" . Moreover, arguing analogously, we 
an verify thatM"u(t) � liminf l!1M"ul(t); 8t � 0; (1.50)and, 
onsequently, �u 2 B". Thus, B" is indeed a 
ompa
t semiinvariant absorbingset for the traje
tory dynami
al system (1.29). The desired attra
tor 
an now befound in a standard way as the !-limit set of B":Atr" = !(B") := \h�0ThB" (1.51)(see e.g. [3℄, [23℄). Des
ription (1.40) is also a standard 
orollary of the expli
itformula (1.51) for the attra
tor and of the diagonal pro
edure des
ribed above inthe proof of 
losedness of B". Theorem 1.1 is proven.To 
on
lude this se
tion, we formulate several useful 
orollaries of the Theorem1.1.Corollary 1.2. Let the assumptions of Theorem 1.1 hold and let B � K+" be anarbitrary M-bounded subset. Then, for every T 2 R+ and every 1 � � > 0, thefollowing 
onvergen
e holds:limh!1 distL�((h;T+h)) �B��(h;T+h);Atr" ��(h;T+h)� = 0; (1.52)whereL� (h; T + h) := C((h; T + h); [H1��(
) \ Lp+3��(
)℄ �H��(
)); (1.53)and distL(U; V ) denotes the nonsymmetri
 Hausdor� distan
e between sets in L:distL(U; V ) = supu2U infv2V ku� vkL: (1.54)Proof. Indeed, due to embedding (1.20) and the fa
t that every �u 2 K+" satis-�es equation (0.1) (from whi
h we 
an express and estimate the se
ond derivative�2t u(t)), we have the 
ompa
t embedding(K+" ;�+) �� Clo
(R+ ; [H1��(
) \ Lp+3��(
)℄�H��(
)); (1.55)in the sense that every M -bounded subset of K+" is a pre
ompa
t set in the spa
ein the right-hand side of (1.55). Convergen
e (1.52) is an immediate 
orollary of(1.55) and (1.39) and Corollary 1.2 is proven.



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 13Corollary 1.3. Let the assumptions of Theorem 1.1 hold and let �u 2 K". Then,Z +1�1 k�tu(s)k2L2 ds � C(1 + kgk2L2); (1.56)where the 
onstant C is the same as (1.35), and moreover, for every 1 � � > 0,�tu 2 Cb(R; H�� (
)) and limt!�1 k�tu(t)kH��(
) = 0: (1.57)Proof. Indeed, let �u 2 K" and let �uNk (t), t � tk, tk ! �1, be the sequen
eof Galerkin solutions of (1.41) whi
h approximates this traje
tory in the sense of(1.42). Then, applying estimate (1.3) to the solutions of (1.41), with t = tk=2 ands = tk, we obtainZ 1tk=2 k�tuNk(s)k2L2 ds � Ck�0kk2E;"e�tk=2 + C(1 + kgk2L2): (1.58)Passing now to the limit k ! 1 in (1.58) and taking into a

ount the fa
t that� > 0, tk ! �1 and that the �0k are uniformly bounded, we derive the dissipativeintegral (1.56). In order to obtain 
onvergen
e (1.57), we �rst note that, due to the
ompa
tness of embedding (1.20), we derive, analogously to (1.55), that, for every0 < � � 1,K" is bounded in Cb(R; [H1�� (
) \ Lp+3��(
)℄�H��(
)); (1.59)and, moreover, it is 
ompa
t in the lo
al topologyK" �� Clo
(R; [H1�� (
) \ Lp+3��(
)℄�H��(
)): (1.60)Convergen
e (1.57) is a standard 
orollary of dissipative integral (1.56) and of em-bedding (1.60) and Corollary 1.3 is proven.2. The ba
kward regularity of the solutions belonging to the attra
tor.In this se
tion, we show that every bounded weak solution �u 2 K" of equation (2.1)be
omes regular if t is less than the 
riti
al value t � Tu. We emphasize that wederive this result without the assumption that " is small.The main result of the se
tion is the following theorem.Theorem 2.1. Let the assumptions of Theorem 1.1 hold. Then, for every 
ompletesolution �u 2 K" of equation (0.1), there exists a time T = Tu su
h that�u 2 Cb((�1; T ℄; E1): (2.1)Proof. Let �u := (u; �tu) 2 K" be an arbitrary 
omplete solution of (0.1). Let usrewrite problem (0.1) as follows:"�2t u+ 
�tu��xu+ f(u) + L(��x)�1u = h(t) := g + L(��x)�1u(t); (2.2)where �x is the Lapla
ian with Diri
hlet boundary 
onditions and the (large) pa-rameter L will be spe
i�ed below. It follows from Theorem 1.1 and Lemma 1.1that kh(T )k2L2 + Z T+1T k�th(t)k2H2 dt � C 0(1 + kgk2L2); C 0 = C 0(L); (2.3)where the 
onstant C 0 is independent of " and T . Moreover, it is important for ourmethod that, a

ording to Corollary 1.3�th 2 Cb(R; H2�� (
)) and limt!�1 k�th(t)kH2��(
) = 0; (2.4)for every 0 < � � 1.Our strategy is the following: we �rst show that (2.4) allows to 
onstru
t aregular ba
kward solution �v(t), t � Tu, for problem (2.2) and then prove theidentity u(t) � v(t).



14 SERGEY ZELIKLemma 2.1. For a suÆ
iently large L, there exists time T = T ("; u; L) su
h thatthe problem "�2t v + 
�tv ��xv + f(v) + L(��x)�1v = h(t); t � T (2.5)possesses a unique regular bounded ba
kward solution �v(t) 2 E1 whi
h satis�es thefollowing estimate: k�tv(t)kH2 + kv(t)kH2 � Q(kgkL2); t � T; (2.6)where the monotoni
 fun
tion Q depends on L, but is independent of " � "0. More-over, the derivative �tv(t) tends to 0 in the L1-norm as t! �1:limt!�1 k�tv(t)kL1 = 0: (2.7)In order to prove this lemma, we �rst 
onstru
t a solution w(t) of the paraboli
problem 
�tw ��xw + f(w) + L(��x)�1w = h(t); t 2 R: (2.8)Lemma 2.2. For suÆ
iently large L, problem (2.8) possesses a unique solutionw(t), t 2 R, in the 
lass Cb(R; H2 (
)) and the following estimate is valid:kw(t)k2H2 � CL(1 + kgk2L2); (2.9)where the 
onstant CL depends on L, but is independent of ". Moreover,�tw 2 Cb(R; H2 (
)); �2tw 2 L2([T; T + 1℄; H1(
)); (2.10)for every T 2 R, and the following 
onvergen
e is valid:limT!�1�k�tw(T )kH2 + k�2twkL2([T;T+1℄;H1(
))	 = 0: (2.11)Proof of Lemma 2.2. The existen
e of a solution for problem (2.8) whi
h is boundedin H2 
an be easily derived from estimate (2.3) and from the dissipativity assump-tion (0.3)(3) using standard paraboli
 te
hnique (see e.g. [3℄, [17℄, [27℄). So, thereremains to verify (2.9) { (2.11). Di�erentiating equation (2.8) with respe
t to t andsetting � = �tw, we have
�t� ��x� + f 0(w)� + L(��x)�1� = �th(t); t 2 R: (2.12)Multiplying equation (2.12) by �(t) and integrating over x 2 
, we �nd
�tk�(t)k2 + k�(t)k2H1 + 2Lk�(t)k2H�1 � �2(f 0(w)�(t); �(t)) +Ck�th(t)k2L2 : (2.13)We now re
all that, due to (0.3) and an appropriate interpolation inequality2(f 0(w)�; �) � 2Kk�k2L2 � 2CKk�kH1k�kH�1 �� 12(k�k2H1 + 4C2K2k�k2H�1) � 12(k�k2H1 + Lk�k2H�1); (2.14)



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 15if L > 4C2K2. Then, estimate (2.13) reads
 ddtk�(t)k2L2 + 12k�(t)k2H1 � Ck�th(t)k2L2 : (2.15)Therefore, Gronwall's inequality applied to (2.15) givesk�(T )k2L2 + Z T+1T k�(t)k2H1 dt � C(1 + kgk2L2): (2.16)Moreover, due to 
onvergen
e (2.4), we havelimt!�1 k�kL2((t;t+1);H1(
)) = 0: (2.17)After obtaining estimate (2.16) for the derivative �tw(t), we may interpret problem(2.8) as an ellipti
 boundary value problem�xw(T )� f(w(T )) + L(��x)�1w(T ) = �h(T ) + 
�tw(T ): (2.18)Multiplying then (2.18) by �xw(T ), integrating over x 2 
, using estimates (2.3),(2.16) and (0.3)(3) and arguing in a standard way, we derive estimate (2.9). Inorder to derive (2.10) and (2.11), we note that the fun
tion �(t) satis�es the heatequation
�t� ��x� = h�(t) := �th(t)� f 0(w(t))�(t) � L(��x)�1�(t); (2.19)and, a

ording to (2.3) and (2.17)limt!�1 kh�kL2(t;t+1);H1(
)) = 0: (2.20)Applying now the standard regularity theorem to the heat equation (2.19), we haveZ T+1T k�t�(t)k2H1 dt+ k�(T )k2H2 � C Z T+1�1 e��(T�t)kh�(t)k2H1 dt: (2.21)Embedding (2.10) and 
onvergen
e (2.11) are immediate 
orollaries of (2.21), (2.4)and (2.20). Lemma 2.2 is proven.Proof of Lemma 2.1. Let us seek the desired regular solution of problem (2.5) inthe form v(t) = w(t) +W (t). Then, the fun
tion W (t) solves"�2tW + 
�tW ��xW + [f(w(t) +W )� f(w(t))℄++ L(��x)�1W = H(t) := �"�2tw(t): (2.22)We apply the impli
it fun
tion theorem in order to solve equation (2.22) in thespa
e �T := Cb((�1; T ℄; E1); (2.23)where the time T is small enough. Indeed, a

ording to Lemma 2.2, we haveH 2 L2([t; t+ 1℄; H10 (
)), for every t 2 R, andlimT!�1 kHkL2((T;T+1);H10 (
)) = 0: (2.24)



16 SERGEY ZELIKSo, there only remains to verify that the variation equation at W = 0"�2t V + 
�tV ��xV + f 0(w(t))V + L(��x)�1V = G(t); t � T (2.25)is uniquely solvable for every G 2 L2lo
((�1; T ℄; H10 (
)) su
h thatkGkL2b((�1;T );H10 (
)) := supt2(�1;T�1℄ kGkL2((t;t+1);H10 (
)) <1; (2.26)if the time T is small enough. Let us verify this fa
t. Indeed, multiplying equation(2.25) by �tV (t) + �V (t) and integrating over x 2 
, we haveddt ["k�tV k2L2 + krxV k2L2 + LkV k2H�1 + (f 0(w(t))V; V ) + 2�"(V; �tV )++ �
kV k2L2 ℄ + 2(
 � �")k�tV k2L2 + 2�krxV k2L2++ 2�LkV k2H�1 + 2�(f 0(w(t))V; V ) = 2(G; �tV + �V ) + (f 00(w(t))�tw(t); jV j2):(2.27)We denote the expression [� � � ℄ by EV (t) and assume that L is large enough so that(f 0(w(t))V; V ) + 12(kV k2H1 + LkV k2H�1) � 0 (2.28)(see (2.14)). Then, analogously to (1.12) and (1.13), there exists a suÆ
iently small,but independent of " and L, parameter � > 0 su
h thatC�11 ("k�tV (t)k2L2 + kV (t)k2H1) � EV (t) � C1("k�tV (t)k2L2 + kV (t)k2H1) (2.29)(here we have impli
itly used the fa
t that kw(t)kH2 is uniformly bounded withrespe
t to ") andddtEV (t)+�EV (t) � h(t) := CkG(t)k2L2+(f 00(w(t))�tw(t); jV j2)��2 kV k2H1 ; (2.30)where the 
onstants C and C1 depend on L, but are independent of ". Convergen
e(2.11), together with embedding H2(
) � C(
) and estimate (2.9), imply thath(t) � CkG(t)k2L2 ; (2.31)if t � T and T is small enough. Applying Gronwall's inequality to (2.30) and using(2.31) and (2.29), we obtain"k�tV (t)k2L2 + kV (t)k2H1 � C Z t�1 e��(t�s)kG(t)k2L2 ds; t � T; (2.32)where C depends on L, but is independent of ". Thus, the solution of (2.25) isunique. Moreover, multiplying now equation (2.25) by ��x(�tV + �V ), inter-preting the term f 0(w)V as an external for
e, and using estimate (2.32), we have,analogously"k�tV (t)k2H1 + kV (t)k2H2 � C1 Z t�1 e��(t�s)kG(t)k2H1 ds; t � T; (2.33)



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 17where C1 is also independent of ". Estimate (2.33) implies that"k�tV (t)k2H1 + kV (t)k2H2 � C2kGk2L2b((�1;T ℄;H10 (
)); t � T; (2.34)and, 
onsequently, the variation equation (2.25) is indeed uniquely solvable in spa
e(2.23) if T is small enough. Thus, applying the impli
it fun
tion theorem to equation(2.22), we derive that, for a suÆ
iently small T 2 R, there exists a solution �W 2 �Tof problem (2.22). Moreover, sin
e the 
onstant C1 in (2.33) is independent of "then, "k�tW (t)k2H1 + kW (t)k2H2 � QL(kgkL2); t � T; (2.35)where the fun
tion QL depends on L, but is independent of " andlimt!�1 k�tW (t)kH1 = 0 (2.36)(due to 
onvergen
e (2.24)). Returning to the fun
tion v(t) and taking into a

ountthe estimates for w(t) obtained in Lemma 2.2, we �nally have"k�tv(t)k2H1 + kv(t)k2H2 � Q(kgkL2); t � T = T (L; "; u); (2.37)where the fun
tion Q is independent of " andlimt!�1 k�tv(t)kH1 = 0: (2.38)Thus, there only remains to estimate the H2-norm of �tv(t). To this end, wedi�erentiate equation (2.5) by t and set �(t) = �tv(t). Then, we have"�2t �+ 
�t���x�+ L(��x)� = H�(t) := �th(t)� f 0(v(t))�tv(t): (2.39)It follows from (2.4) and (2.38) thatlimt!�1 kH�(t)kH1 = 0: (2.40)Equation (2.39) has the form of (2.25) with f = 0 and, analogously to (2.33), wederive"k�t�(t)k2H1 + k�(t)k2H2 � C1 Z t�1 e��(t�s)kH�(t)k2H1 ds; t � T: (2.41)Sin
e H2(
) � C(
), then (2.40) and (2.41) imply 
onvergen
e (2.7) and estimatefor �tv(t) in (2.6) and Lemma 2.1 is proven.We are now ready to 
omplete the proof of Theorem 2.1. In order to do so, weneed to prove that u(t) � v(t), for t � T . Indeed, let �uNk (t), t � tk, be a sequen
eof Galerkin solutions, whi
h approximates the fun
tion �u 2 K". We re
all that,due to Theorem 1.1 tk ! �1; �u = �� limk!1 �uNk ; (2.42)and the sequen
e �uNk (tk) = �0k is uniformly bounded with respe
t to k. We also
onsider a sequen
e of fun
tionsvNk (t) := PNkv(t); t � T; (2.43)



18 SERGEY ZELIKwhere the fun
tion v(t) is 
onstru
ted in Lemma 2.1. A

ording to Lemma 2.1,solution �v(t) is bounded in E1 as t � T and, 
onsequentlylimk!1 k�vNk � �vkCb((�1;t℄;E) = 0 and limk!1 kvNk � vkCb((�1;T ℄�
) = 0: (2.44)Moreover, sin
e �tv(t) is also bounded in H2, thenlimk!1 k�tvNk � �tvkCb((�1;T ℄�
) = 0 (2.45)(these 
onvergen
es are standard 
orollaries of the embedding H2(
) �� C(
) andof the fa
t that the 
onvergen
e of Fourier series is uniform on 
ompa
t sets).We now set U(t) := u(t) � v(t) and UNk(t) := uNk(t) � vNk(t). Then, the lastfun
tion satis�es the equation"�2tUNk + 
�tUNk ��xUNk++ PNk(f(vNk(t) + UNk)� f(vNk(t))) + L(��x)�1UNk == hNk(t) := PNk (f(v(t))� f(vNk(t))); �UNk (tk) := �0k � PNk�v(tk): (2.46)Moreover, due to 
onvergen
es (2.44), we havelimk!1 khNkkCb((�1;T ℄�
) = 0 and k�UNk (tk)kE;" � C; (2.47)where C is independent of k. Multiplying now equation (2.46) by �tUNk(t)+�UNk(t)and settingEUNk (t) := "k�tUNkk2L2 + krxUNkk2L2 + LkUNkk2H�1 + 2�"(UNk ; �tUNk)++ �
kUNkk2L2 + 2 (F (vNk(t) + UNk)� F (vNk(t)) � f(vNk(t))UNk ; 1) ; (2.48)we derive the identityddtEUNk (t) + �EUNk (t) = HUNk (t); t � T; (2.49)withHUNk (t) := �(2
 � 3�")k�tUNkk2L2 � �krxUNkk2L2 � �LkUNkk2H�1++ 2��F (vNk (t) + UNk)� F (vNk (t))� f(vNk(t))UNk�� (f(vNk(t) + UNk)� f(vNk(t))UNk ; 1�+ 2�2"(UNk ; �tUNk) + �2
kUNkk2L2++ 2(hNk(t); �tUnk + �UNk)++ 2�f(vNk(t) + UNk)� f(vNk(t)) � f 0(vNk (t))UNk ; �tvNk(t)�: (2.50)In order to estimate fun
tion (2.50), we need the following proposition.



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 19Proposition 2.1. Let the fun
tion f satisfy assumptions (0.3). Then,F (v+w)� F (v)� f(v)w � �Kjwj2 + Æpjwj2(jvjp+1 + jwjp+1); 8v; w 2 R; (2.51)where the 
onstant K is the same as in (0.3) and Æp is some positive 
onstantdepending only on p. Moreover,�v(w) := F (v + w) � F (v)� f(v)w � (f(v + w) � f(v))w �� K2 jwj2 � Æ0pjwj2(jvjp+1 + jwjp+1); (2.52)where Æ0p is positive and depends only on p. And, �nallyj(f(v + w)� f(v)� f 0(v)wj � Cjwj2(1 + jvjp + jwjp); (2.53)where the 
onstant C is independent of v and w.Proof of Proposition 2.1. Estimate (2.53) is an immediate 
orollary of assumption(0.3)(2). Let us now verify (2.52) using the assumption (0.3)(3). Indeed,�v(w) = Z 10 �w�v(sw)w ds = �jwj2 Z 10 sf 0(v + sw) ds �� K2 jwj2 � Æ�p(jvj; jwj)jwj2 ; (2.54)where �p(x; y) := Z 10 sjx� syjp+1 ds � �Z 10 sjx� syj ds�p+1 :The integral in the right-hand side 
an be 
omputed expli
itly:Z 10 sjx� syj ds = � x2 � y3 if x � y;y6 (2(x=y)3 � 3(x=y) + 2) if y > x; � 2�p212 (x+ y) (2.540)(we re
all that x; y � 0). Estimate (2.52) is an immediate 
orollary of (2.54) and(2.540). Let us now verify (2.51). Indeed, using assumption (0.3)(3), we haveF (v + w)� F (v) � f(v)w = w Z 10 [f(v + s1w)� f(v)℄ ds1 == jwj2 Z 10 Z 10 f 0(v + s1s2w) ds1 ds2 � �Kjwj2 + Æ ~�p(jvj; jwj); (2.5400)where~�p(x; y) := Z 10 Z 10 jx� s1s2yjp+1 ds1 ds2 � �~�1(x; y)�p+1 �� �Z 10 �1(x; s1y) ds1�p+1 � Æ0p�Z 10 (x+ sy) ds�p+1 � Æ00p (xp+1 + yp+1):Inserting this estimate into estimate (2.5400), we derive (2.51) and �nish the proofof Proposition 2.1.



20 SERGEY ZELIKIt now follows from estimates (2.52), (2.53) and our 
hoi
e of L (see (2.14)) thatthere exist positive 
onstants �1, C and C1 (whi
h are independent of UNk , vNk , k,L and ") su
h thatHUNk (t) � ��12 kUNk(t)k2H1 � 2�1(jUNk(t)jp+3; 1)�� �1L2 kUNk(t)k2H�1 + CkhNk(t)k2L2++ C1k�tvNk(t)kL1 �jUNk(t)j2(1 + jvNk(t)jp + jUNk(t)jp); 1� : (2.55)A

ording to Lemma 2.1, the derivative �tv(t) tends to zero in L1(
) as t! �1(see (2.7)) and the L1-norm of v(t) remains bounded as t ! �1. Consequently,due to 
onvergen
es (2.44) and (2.45), there exists time T 0 � T su
h that, for asuÆ
iently large k, we haveHuNk (t) � CkhNk(t)k2L2 ; t � T 0: (2.56)Applying now Gronwall's inequality to relation (2.49), we obtainEUNk (t) � EUNk (tk)e��(t�tk) + C Z ttk e��(t�s)khNk(s)k2L2 ds; (2.57)where t � T 0, and the 
onstants C and � > 0 are independent of k. Using estimate(2.51) and our 
hoi
e of exponent L (see (2.14)), we derive from (2.57) that"k�tUNk(t)k2L2 + kUNk(t)k2H1 �� C2 �1 + k�0kk2E;" + k�vNk (tk)k2E;"� e��(t�tk) + 2C Z ttk e��(t�tk)khNk(s)k2L2 ds;(2.58)where the 
onstant C2 is also independent of k. Passing to the limit k !1 in (2.58)and using (2.47), the fa
t that �0k is uniformly bounded in E (due to Theorem 1.1)and �vNk (tk) is also uniformly bounded in E (due to Lemma 2.1 and 
onvergen
e(2.44)), we �nally derive the estimate"k�tU(t)k2L2 + kU(t)k2H1 � 0; for t � T 0and, 
onsequently, u(t) = v(t) for t � T 0. Theorem 2.1 is proven.Corollary 2.1. Let the assumptions of Theorem 2.1 hold and let �u 2 K" be abounded 
omplete weak solution of problem (0.1). Thenku(t)k2H2 + k�tu(t)k2H2 � Q(kgkL2); t � Tu; (2.59)where the monotoni
 fun
tion Q is independent of ".Indeed, estimate (2.59) is an immediate 
orollary of (2.6) and the fa
t that u(t) =v(t), for t � Tu.To 
on
lude the se
tion, we prove that the solution �u(t) 2 K" is unique until itis regular.



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 21Theorem 2.2. Let the assumptions of Lemma 1.1 hold and �v 2 K" be a 
ompleteweak solution of (0.1) whi
h satis�es (2.59), for t � T . We also assume that �u 2 K"is another 
omplete weak solution whi
h satis�es�u(t) = �v(t); for all t � T 0 < T: (2.60)Then, ne
essarily �u(t) = �v(t); for all t � T: (2.61)Proof. The proof of this theorem is very similar to the end of the proof of theprevious theorem. Indeed, let �uNk (t) be a sequen
e of Galerkin solutions whi
happroximates the initial solution �u(t), see Theorem 1.1. Let also�vNk (t) := PNk�v(t); U(t) := u(t)� v(t); UNk(t) := uNk(t)� vNk(t): (2.62)Then, analogously to (2.46), fun
tion UNk(t) solves the equation"�2tUNk + 
�tUNk ��xUNk++ PNk(f(vNk(t) + UNk)� f(vNk(t))) + L(��x)�1UNk == hNk(t) := PNk(f(v(t)) � f(vNk(t))) + L(��x)�1(uNk(t)� vNk(t));�UNk (tk) := �0k � PNk�v(tk); (2.63)where, in 
ontrast to (2.46), external for
es hNk(t) 
ontain the additional termL(��x)�1(uNk(t)� vNk(t)) and, 
onsequently, instead of (2.47), we have the 
on-vergen
ehNk ! L(��x)�1(u� v) strongly in Clo
((�1; T ℄; L2(
))and khNkkCb((�1;T ℄;L2(
)) � C1; (2.64)where the 
onstant C1 is independent of k (here we have impli
itly used embedding(1.20) in order to prove the 
onvergen
e uNk ! u in Clo
((�1; T ℄; L2(
))).Sin
e equation (2.63) has the form (2.46), then, multiplying it by �tUNk(t) +�UNk(t), integrating over x 2 
 and arguing as in the derivation of (2.49), weobtain the estimate ddtEUNk (t) + �EUNk (t) = HUNk (t); t � T; (2.65)where the fun
tions EUNk (t) and HUNk (t) are de�ned by (2.48) and (2.50) respe
-tively. Moreover, analogously to (2.55), there exist positive 
onstants �1, C and C1(whi
h are independent of L) su
h that, for all t � THUNk (t) � ��12 kUNk(t)k2H1 � 2�1(jUNk(t)jp+3; 1)�� �1L2 kUNk(t)k2H�1 + CkhNk(t)k2L2++ C1k�tvNk (t)kL1 �jUNk(t)j2(1 + jvNk(t)jp + jUNk(t)jp); 1� ; (2.66)We note that, in 
ontrast to the 
ase of (2.55), the fun
tion v(t) is now independentof the parameter L. That is the reason why it is possible to �x a large L ( dependingon Q(kgkL2) in the right-hand side of (2.66)) su
h thatHUNk (t) � CkhUNk (t)k2L2 ; for all t � T ; (2.67)



22 SERGEY ZELIKwithout de
reasing the time interval t 2 (�1; T ℄ (in 
ontrast to (2.55)). Applyingnow Gronwall's inequality to identity (2.65) and using (2.67), we derive estimate(2.57), for every t � T . Passing to the limit k !1 in estimate (2.57) and using the
onvergen
e (2.64) and the fa
t that u(t) = v(t) for t � T 0, we obtain the estimate"k�tu(t)� �tv(t)k2L2 + ku(t)� v(t)k2H1 �� 2CL2 Z tT 0 e��(t�s)k(��x)�1(u(s)� v(s))k2L2 ds; (2.68)whi
h is valid for every t 2 [T 0; T ℄. Applying again Gronwall's inequality to relation(2.68) and noting that u(T 0) = v(T 0), we �nally derive that v(t) = u(t), for allt 2 (�1; T ℄ and prove Theorem 2.2.Remark 2.1. Theorems 2.1 and 2.2 show that the only way for a singular weaksolution to appear on the attra
tor Atr" is by a blow up of the 
orresponding strongsolution belonging to the attra
tor. In the next se
tion, we will show that thiss
enario is also impossible if " is small enough and we thus verify that the attra
torAtr" 
onsists of global strong solutions whi
h satisfy (2.59), for every t 2 R.3. The global existen
e of strong solutions. In this se
tion, we prove theexisten
e of a global strong solution of problem (0.1) if " > 0 is small enough andthe E1-energy of the initial data is not very large. Combining this result with theresults of the previous se
tion, we prove that the attra
tor Atr" 
onsists of strongglobal solutions if " > 0 is small enough. The main result of the se
tion is thefollowing theorem.Theorem 3.1. Let the assumptions of Lemma 1.1 hold. Then, there exist a smallpositive "0 and a nonin
reasing fun
tionR : (0; "0℄! R+ ; lim"!0R(") =1; (3.1)su
h that, for every " � "0 and every initial data �u(0) 2 E1 satisfyingk�u(0)kE1;" := �"k�tu(0)k2H1 + ku(0)k2H2�1=2 � R("); (3.2)there exists a unique global strong solution �u 2 L1(R+ ; E1) of problem (0.1) andthe following estimate is valid:k�u(t)k2E1;" + Z t+1t k�tu(s)k2H1 ds � Q(k�u(0)kE1;")e��t +Q(kgkL2); (3.3)where the positive 
onstant � and the monotoni
 fun
tion Q are independent of ".Proof. We divide the proof of the theorem in two steps. In the �rst step, we provethat the solution �u(t) of the hyperboli
 equation (0.1) is 
lose to the appropriateregular solution of the limit paraboli
 equation and, in the se
ond step, we dedu
efrom this fa
t that the strong solution of (0.1) also exists globally if " > 0 is smallenough.We �rst note that, due to the embedding H2(
) � C(
), the strong solution�u(t) 2 E1 exists lo
ally (for t � T (�u(0))) and is unique on the existen
e interval.That is the reason why it is enough to derive a priori estimate (3.3) under theassumption that the strong solution �u(t) exists. We also note that, sin
e the



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 23solution �u(t) is assumed to be regular, then we may multiply equation (0.1) by�tu(t) + �u(t) (without using the Galerkin approximations) and derive, arguing asin the proof of Lemma 1.1, thatk�u(t)k2E;" + Z t+1t k�tu(t)k2L2 ds � Ck�u(0)k2E;"e��t + C(1 + kgk2L2); (3.4)where the positive 
onstants C and � are independent of " (as mentioned in Remark1.2 for the strong solutions, we have equality (1.36) and, 
onsequently, (3.4) 
an be
onsidered as a 
orollary of (1.35)).Moreover, as in the proof of Theorem 2.1, it is 
onvenient to modify the initialequation (0.1) as follows:"�2t u+ 
�tu��xu+ f(u) + L(��x)�1u = hu(t) := g + L(��x)�1u(t);t � 0; �u(0) = �0 := (u0; u00); u���
 = 0; (3.5)where the 
onstant L satis�es (2.14). Then, due to (3.4), the external for
es hu(t)satisfykhu(t)k2L2 + Z t+1t k�thu(s)k2L2 ds � C �1 + kgk2L2 + k�u(0)k2E;"e��t� ; (3.6)where C and � are independent of ".We now 
onsider the limit paraboli
 equation whi
h 
orresponds to (3.5) as " = 0
�tv ��xv + f(v) + L(��x)�1v = hu(t); t � 0; v��t=0 = u0; v���
 = 0: (3.7)Equation (3.7) is of the form (2.8). Consequently, using estimate (3.6) and arguingas in the proof of Lemma 2.2, we derive that v(t) 2 H2(
) andkv(t)k2H2 + k�tv(t)k2L2 � Q(k�u(0)kE1;")e��t + C(1 + kgk2L2); (3.8)where the monotoni
 fun
tion Q and the 
onstants C and � are independent of ".The following Lemma shows that the solution u(t) is indeed 
lose to v(t) if " issmall enough.Lemma 3.1. Let the assumptions of Theorem 3.1 hold and let �u(t) and v(t) bestrong solutions of (0.1) and (3.8) respe
tively. Then, the following estimate is valid:ku(t)� v(t)k2L2 � " �Q(k�u(0)kE1;")e��t + C(1 + kgk2L2)� ; (3.9)where a monotoni
 fun
tion Q and positive 
onstants C and � are independent of ".Proof of Lemma 3.1. We set w(t) := u(t) � v(t). Then, this fun
tion satis�es therelation
�tw��xw+[f(v(t)+w)�f(v(t))℄+L(��x)�1w = �"�2t u(t); w��t=0 = 0: (3.10)Multiplying equation (3.10) by w(t), integrating over x 2 
 and using (0.3)(3) and(2.14), we haveddt [
kw(t)k2L2 + 2"(�tu(t); w(t))℄ + �[
kw(t)k2L2 + 2"(�tu(t); w(t))℄ �� H(t) := C" (j�tw(t)j + jw(t)j; j�tu(t)j) ; (3.11)



24 SERGEY ZELIKfor some � > 0 and C > 0 whi
h are independent of ". Moreover, a

ording to (3.4)and (3.8), we have the estimateZ t+1t H(s) ds � " �Q(k�u(0)kE1;")e��t + C(1 + kgk2L2)� ; (3.12)where Q, C and � are independent of ". Applying Gronwall's inequality to (3.11)and taking into a

ount (3.12) and the fa
t that w(0) = 0, we obtain
kw(t)k2L2 + 2"(�tu(t); w(t)) � " �Q(k�u(0)kE1;")e��t + C(1 + kgk2L2)� ; (3.13)where Q, C and � are independent of ". There remains to note that�2"(�tu(t); w(t)) � 
2kw(t)k2L2 + 2"
�1 �"k�tu(t)k2L2� : (3.14)Indeed, estimate (3.9) is an immediate 
orollary of (3.13), (3.14) and (3.4) andLemma 3.1 is proven.We are now ready to 
omplete the proof of the theorem. To this end, we interpretequation (0.1) as a linear one"�2t u+ 
�tu��xu = g � f(u(t)); �u(0) = �0: (3.15)Multiplying equation (3.15) by ��x(�tu(t) + �u(t)), integrating over x 2 
, andarguing in a standard way, we derive the estimateddtE1u(t) + �krx�tu(t)k2L2 + �E1u(t) � C �kf(u(t))k2H1 + kgk2L2� ; (3.16)whereE1u(t) := "krx�tu(t)k2L2 + k�xu(t)k2L2++ 2�"(rxu(t);rx�tu(t)) + 2(g;�xu(t)) + 2kgk2L2; (3.17)and the 
onstants � > 0 and C > 0 are independent of ". We also note that (3.17)implies the estimatesC�11 k�u(t)k2E1;" � E1u(t) � C1(k�u(t)k2E1;" + kgk2L2): (3.18)So, there only remains to estimate kf(u(t))kH1 . To this end, we use the followingtri
k: kf(u(t))k2H1 � kf(u(t))� f(v(t))k2H1 + kf(v(t))k2H1 ; (3.19)where v(t) is the solution of limit paraboli
 problem (3.7) 
onstru
ted in Lemma3.1. Then, on the one hand, due to estimate (3.8) and embedding H2(
) � C(
),we have kf(v(t))k2H1 � Q(k�u(0)kE1;")e��t +Q(kgk2L2); (3.20)for an appropriate monotoni
 fun
tion Q and positive 
onstant � > 0 whi
h areindependent of " and, on the other hand, using assumption (0.3)(2) and embeddingH2(
) � C(
), we obtainkf(u(t))� f(v(t))k2H1 � Cku(t)� v(t)k2H1 �1 + kvk2(p+1)H2 + kuk2(p+1)H2 � : (3.21)



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 25Using the interpolation inequalityku(t)� v(t)k2H1 � Cku(t)� v(t)kL2ku(t)� v(t)kH2 ; (3.22)estimate (3.8) for v(t), estimate (3.9) for the L2-norm of u(t) � v(t) and estimate(3.18) for the H2-norm of u(t), we �nally obtainC �kf(u(t))k2H1 + kgk2L2� �� "1=2(Q(k�u(0)kE1;") +Q(kgkL2))[E1u(t)℄p+3=2 +Q(k�u(0)kE1;")e��t +Q(kgkL2);(3.23)for an appropriate monotoni
 fun
tion Q and a positive 
onstant � whi
h are inde-pendent of ". Thus, inserting (3.23) to the right-hand side of (3.16), we derive thedi�erential inequality for E1u(t):ddtE1u(t) + �E1u(t) �"1=2(Q(k�u(0)kE1;") +Q(kgkL2))[E1u(t)℄p+3=2 +Q(k�u(0)kE1;")e��t +Q(kgkL2):(3.24)In order to derive the assertion of the theorem from inequality (3.24), we need thefollowing proposition.Proposition 3.1. Let the fun
tion y(t) � 0 satisfy the inequality:y0(t) + �y(t)� "1=2(A+B)[y(t)℄m �Ae��t �B � 0; t � 0; (3.25)with 0 < � � 1, A;B > 0, m � 1 and y(0) � A+B. We also assume that"1=2� 3��m�1 (A+B)m � 1: (3.26)Then, this fun
tion satis�es the following inequalityy(t) � y0(t) := 3� �Ae��t=2 +B� ; t � 0: (3.27)Indeed, assumption (3.26) guarantees thaty00(t) + �y0(t)� "1=2(A+B)[y0(t)℄m �Ae��t �B � 0; t � 0and, 
onsequently, applying the 
omparison prin
iple to (3.25), we derive esti-mate (3.27).Applying now Proposition 3.1 withy(t) := E1u(t); A := Q(k�u(0)kE1;"); B := Q(kgkL2); m := p+ 3=2;to inequality (3.24), we haveE1u(t) � 3� �Q(k�u(0)kE1;")e��t=2 +Q(kgkL2)� ; (3.28)



26 SERGEY ZELIKand the desired fun
tion R(") 
an be found as a solution of the equation"1=2� 3��p+1=2 (Q(R(")) +Q(kgkL2))p+3=2 = 1:The desired estimate for the integral of �tu(t) follows from (3.16), (3.23) and (3.28)and Theorem 3.1 is proven.Remark 3.1. We have 
onstru
ted the global strong solution of equation (0.1)under assumption (3.2) only. Moreover, sin
e the solutions of (3.24) may blow upin �nite time, then our method gives no information on the strong solutions of (0.1)whose initial E1-energy is larger than R(").We now 
onsider the R-ball in E1B"(R;E1) := f�0 2 E1 : k�0kE1;" � Rg:Then, due to Theorem 3.1, the solving operatorS"t : B"(R;E1)! E1; S"t �u(0) := �u(t); R � R("); (3.29)where �u(t) is a unique strong solution of (0.1), is well de�ned. Moreover, due toestimate (3.3) kS"t �B"(R;E1)� kE1;" � Q̂(R); t 2 R+ ; (3.30)for an appropriate monotoni
 fun
tion Q̂. We now setB "R := � [t2R+S"t �B"(R;E1)� �E1 ; (3.31)where [�℄E1 denotes the 
losure in the spa
e E1. Then, a

ording to (3.30)kB "RkE1;" � Q̂(R) (3.32)and, 
onsequently, we have proven the following 
orollary.Corollary 3.1. Let the assumptions of Theorem 3.1 hold. Then, there exist a smallpositive "00 � "0, a nonin
reasing fun
tionR0 : (0; "00℄! R+ ; lim"!0R0(") =1 (3.33)and a bounded 
losed subset B "R0 (") in E1 whi
h satis�esB"(R0("); E1) � B "R0 (") � B"(Q̂(R0(")); E1) (3.34)su
h that, for all " � "00, (3.29) de�nes a dissipative semigroup in the phase spa
eB "R0 ("): S"t : B "R0 (") ! B "R0 ("); S"t+s = S"t Æ S"s ; t; s � 0: (3.35)Indeed, the desired fun
tion R0(") 
an be found from the equationQ̂(R0(")) = R("); " � "00 � "0;where R(") is the same as in Theorem 3.1.The following 
orollary establishes the existen
e of a global attra
tor Agl" � E1for semigroup (3.35).



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 27Corollary 3.2. Let the assumptions of Theorem 3.1 hold. Then, for " � "0, semi-group (3.35) possesses the 
ompa
t (in E1) global attra
tor Agl" :S"tAgl" = Agl" and limt!1 distE1(S"t B "R0 (");Agl" ) = 0; (3.36)whi
h satis�es Agl" = �0K̂"; (3.37)where K̂" � Cb(R; E1 ) is the set of all the global strong solutions of (0.1) belongingto B "R0 ("):K̂" := f�u 2 Cb(R; E1 ); u(t) solves (0.1) and k�u(t)kE1;" � R0("); t 2 Rg: (3.38)Moreover, every �u 2 K̂" satis�es the estimatek�tu(t)k2H2 + ku(t)k2H2 � Q(kgkL2); t 2 R; (3.39)where the monotoni
 fun
tion Q is independent of ".Proof. The existen
e of the global attra
tor for S"t in E1 has been proved in [3℄for the sub
riti
al 
ase p � 1 (see also [11℄). We note however that Theorem 3.1,together with embedding H2(
) � C(
), give the uniform (with respe
t to ")estimate for the C-norm of solution u(t) in the super
riti
al 
ase as well. Thus, thegrowth rate of the nonlinearity f be
omes nonessential, due to this estimate, and,repeating word by word the proof performed in [3℄, we establish the existen
e of theglobal attra
tor Agl" . Des
riptions (3.37) and (3.38) are the standard 
orollaries ofthe attra
tor's existen
e theorem. So, there remains to verify estimate (3.39).Indeed, let �u 2 K̂" Then, due to estimate (3.3)"k�tu(t)k2H1 + ku(t)k2H2 + "2k�2t u(t)k2L2 + Z t+1t k�tu(s)k2H1 ds � Q(kgkL2); (3.40)where the fun
tion Q is independent of ". Di�erentiating now equation (0.1) withrespe
t to t and setting �(t) := �tu(t), we obtain the linear equation"�2t � + 
�t� ��x� = h�(t) := �f 0(u(t))�tu(t); t 2 R: (3.41)Moreover, due to (3.40) and embedding H2(
) � C(
), we have the estimateZ t+1t kh�(s)k2H1 ds � Q1(kgkL2); t 2 R; (3.42)for an appropriate monotoni
 fun
tion Q1 whi
h is independent of ". Estimate(3.42) implies in a standard way (multiplying (3.41) by ��x(�t�(t)+��(t)) and soon, see e.g. [17℄) that�� 2 Cb(R; E1 ) and k��(t)kE1;" � CQ1(kgkL2); (3.43)where C is independent of ". Estimate (3.39) is an immediate 
orollary of (3.40)and (3.43) and Corollary 3.2 is proven.We are now ready to verify that the traje
tory attra
tor Atr" 
onstru
ted inSe
tion 1 
onsists of strong solutions.



28 SERGEY ZELIKTheorem 3.2. Let the assumptions of Lemma 1.1 hold. Then, there exists a smallpositive 
onstant "0 su
h that, for every " � "0, the sets K" and K̂" de�ned inTheorem 1.1 and Corollary 3.2 respe
tively 
oin
ide:K" = K̂": (3.44)Thus K" � Cb(R; E1 ); Atr" � Cb(R+ ; E1); (3.45)and every �u 2 K" satis�es (3.39). Moreover, the attra
tors Agl" and Atr" satisfy thestandard relation Agl" = �0Atr" : (3.46)Proof. A

ording to Theorem 1.1 and Corollary 3.2, it is suÆ
ient to verify (3.44).Moreover, sin
e K̂" 
onsists of strong 
omplete bounded solutions whi
h are unique(see e.g. the proof of Theorem 2.2) (and, 
onsequently, 
an be approximated byGalerkin solutions), then K̂" � K": (3.47)So, there remains to verify the inverse embedding. Indeed, let �u 2 K" be anarbitrary 
omplete weak solution of (0.1). Then, due to Theorem 2.1, there existsa time T = Tu su
h that �u(t) 2 E1, for t � T , andk�u(t)kE1;" � Q(kgkL2); t � T; (3.48)where the fun
tion Q is independent of ". We now assume that the parameter0 < " � "0 is small enough so thatQ(kgkL2) � R0("0); (3.49)where R0(") is the same as in Corollary 3.1 (su
h "0 exists due to (3.1) and thefa
t that Q is independent of "). Then, due to Theorem 3.1, there exists a uniquestrong global solution v(t), t � T , of problem (0.1) with the initial 
ondition�v��t=T = �u(T ): (3.50)We now de�ne a new solution �~v(t), t 2 R, of problem (0.1) via~v(t) = � u(t) if t � T ;v(t) if t � T : (3.51)Then, due to estimates (3.3), (3.48) and (3.49), we have �~v 2 K̂" and, 
onsequently,due to (3.47), �~v 2 K". Applying now Theorem 2.2 to the solutions u(t) and ~v(t),we 
on
lude that u(t) � ~v(t), for all t 2 R, and Theorem 3.2 is proven.In the sequel, we need also more regular (than �u 2 E1) strong solutions ofequation (0.1). We note however that we have the regularity g 2 L2(
) only and,therefore, we 
annot expe
t that u be more regular than u(t) 2 H2(
) even forsmoother initial 
onditions. In order to over
ome this diÆ
ulty, we �x an arbitraryequilibrium z0 2 H2(
) \H10 (
). Then, the fun
tion z0 = z0(x) solves��xz0 + f(z0) = g; z0���
 = 0: (3.52)Let us introdu
e the spa
eE2g := (z0; 0) + [H3(
) \ fu0���
 = �xu0���
 = 0g℄� [H2(
) \H10 (
)℄: (3.53)It is not diÆ
ult to see that E2g is independent of the 
on
rete 
hoi
e of the equilib-rium z0 and depends only on g. The following 
orollary gives the global solvabilityof problem (0.1) in the phase spa
e E2g .



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 29Corolary 3.3. Let the assumptions of Corollary 3.1 hold. Then, for every�u(0) 2 E2g \ B "R0 ("); (3.54)there exists a unique strong solution �u(t) 2 E2g of problem (0.1) and the followingestimate is valid:k�u(t)k2E2g ;" + Z t+1t k�tu(s)k2H2 ds � Q(k�u(0)kE2g;")e��t +Q(kgkL2); (3.55)where k�u(t)k2E2g;" := "k�tu(t)k2H2 + ku(t)� z0k2H3 (3.56)and � > 0 and the monotoni
 fun
tion Q are independent of " � "0.Proof. Let v(t) = u(t)� z0. Then, this fun
tion satis�es� "�2t v + 
�tv ��xv = h(t) := f(z0)� f(u(t));v���
 = �xv���
 = 0; �tv���
 = 0; �v��t=0 = �u(0)� �z0 : (3.57)A

ording to estimate (3.3) and the fa
t that H2(
) � C(
), we have h(t) 2H2(
) \H10 (
) and the following estimate holds:kh(t)kH2 � Q(k�u(0)kE1;")e��t +Q(kgkL2): (3.58)Multiplying equation (3.57) by �2x(�tu + �u) and arguing in a standard way (seee.g. [11℄), we derive estimate (3.55) and Corollary 3.3 is proven.Remark 3.2. Theorem 3.1 and Corollary 3.2 establish the uniqueness of the globalstrong solution �u(t) := S"t �u(0), for �u(0) 2 B "R0 ("), in the 
lass of strong solutions�u 2 Cb(R+ ; E1) only.In fa
t, we do not know whether or not this solution is unique in the 
lass ofweak solutions �u 2 K+" even in the 
ase where �u(0) 2 Agl" .Remark 3.3. The proof of Theorem 3.1 is independent of the results of Se
tion2 and requires only that " � 1 and the global solvability of the limit paraboli
equation at " = 0. In parti
ular, this result does not require the �niteness ofthe dissipation integral (1.56). Consequently, one may extend Theorem 3.1 andCorollary 3.2, for instan
e, to the 
ase of systems of hyperboli
 equations in theform (0.1) with nongradient nonlinearities or for a 
ertain 
lass of nonautonomousequations in the form (0.1) for whi
h the dissipation integral is in�nite.In 
ontrast to this, we have essentially used the dissipation integral in order toprove that there are no any bounded singular weak solution �u(t), t 2 R, of problem(0.1) (whi
h does not belong to K̂") if " > 0 is small enough.Remark 3.4. The limit value "0 of the parameter ", for whi
h Theorem 3.2 is valid,obviously depends on the other parameter 
 > 0 of equation (0.1): "0 = "0(
).Res
aling however the time t! 
t0 in equation (0.1), we derive again an equationof the form (0.1) with 
0 := 1 and "0 := "=
2. Therefore, Theorem 3.2 remains validif we repla
e the assumption " � "0 by"
2 � "0(1); (3.59)



30 SERGEY ZELIKwith small enough "0(1) whi
h is independent of 
. In parti
ular, the traje
toryattra
tor Atr of equation (0.1) 
onsists of strong solutions if " > 0 is �xed and
 � 0 is large enough.4. The regular attra
tor and the exponential attra
tion property. In this
on
luding se
tion, we give a more detailed study of equation (0.1) in the 
ase whereall the equilibria of equation (0.1) are hyperboli
. We extend to the super
riti
al
ase the results on the regular stru
ture of Agl" and on the 
onvergen
e of Agl" tothe attra
tor Agl0 of the limit paraboli
 problem. Sin
e these results are well knownin the sub
riti
al 
ase and the rate of growth of the nonlinearity is nonessential ifone already has a-priori estimates in C (whi
h are obtained in Theorem 3.1) then,in order to avoid the te
hni
alities, we give below only the rigorous statements ofthese results. As the main result of the se
tion, we �nally establish that all weaksolutions of (0.1) are attra
ted exponentially in the strong topology of E to theglobal attra
tor Agl" .We denote by R � E the set of all the equilibria of equation (0.1):R := f(z0; 0) 2 E; �xz0 � f(z0) = gg: (4.1)Then, obviously, R is independent of ". Moreover, sin
e z0 solves an ellipti
 bound-ary value problem, then z0 2 H2(
) andkz0k2H2 � C(1 + kgk2L2); (4.2)for every z0 2 R (see e.g. [24℄).The main additional assumption of this se
tion is the following:R := fzigNi=1 and �(�x � f 0(zi)) \ fRe� = 0g = ?: (4.3)Then, as known (see e.g. [24℄), the following value is �nite:ind+(zi) := #f� 2 �(�x � f 0(zi)) : Re� > 0g <1 (4.4)and it is 
alled the instability index of the hyperboli
 equilibrium zi 2 R.The following theorem extends to the super
riti
al 
ase the well-known des
rip-tion of the stru
ture of Agl" (see e.g. [3℄).Theorem 4.1. Let the assumptions of Theorem 3.2 hold and let, in addition, as-sumption (4.3) be valid. Then, the attra
tor Agl" of semigroup (3.35) possesses thefollowing des
ription: Agl" = [Ni=1M+" (zi); (4.5)where M+" (zi) are the ind+(zi)-dimensional C1-submanifolds of E1 whi
h 
onsistof all the strong solutions of (0.1) de�ned for t 2 R and 
onverging to (zi; 0) ast! �1: M+" (zi) := f�u 2 K̂" : limt!�1 k�u(t)� (zi; 0)kE1;" = 0g: (4.6)Moreover, M+" (zi) is C1-di�eomorphi
 to Rind+(zi) and every solution �u 2 K̂"stabilizes to di�erent equilibria as t! �1:limt!�1 k�u(t)� (z�; 0)kE1 = 0; z� 2 R; z+ 6= z�: (4.7)



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 31Proof. The proof of Theorem 4.1 is given in [3℄ in the sub
riti
al 
ase p � 1. Wenote however that Theorem 3.1 gives the uniform (with respe
t to ") estimate forthe C-norm of traje
tories of semigroup (3.35) and this estimate makes the growthrate of the nonlinearity f unessential for further investigation of the attra
tor Agl"of semigroup (3.35). Thus, repeating word by word the proof of Proposition 4.1 inthe sub
riti
al 
ase (see [3℄) and using this estimate, we extend this theorem to thesuper
riti
al 
ase. Theorem 4.1 is proven.The next theorem establishes that E1-bounded subsets are attra
ted exponen-tially to the attra
tor Agl" .Theorem 4.2. Let the assumptions of Theorem 4.1 hold. Then, for every B �B "R0 ("), the following estimate is valid:distE1;"(S"tB;Agl" ) � Q(kBkE1;")e��t; (4.8)where the 
onstant � > 0 and the monotoni
 fun
tion Q are independent of " � "0and B and distE1;" denotes the nonsymmetri
 Hausdor� distan
e in metri
 (3.2).As in the previous 
ase, the proof of the uniform exponential attra
tion prop-erty is given in [3℄ for the sub
riti
al 
ase and the super
riti
al growth rate of thenonlinearity 
an be easily over
ome, due to the uniform estimate on the C-normsof traje
tories of (3.35) whi
h is proven in Theorem 3.1.Let us establish now the 
onvergen
e of the global attra
tors Agl" to the globalattra
tor Agl of the limit paraboli
 equation
�tu��xu+ f(u) = g; u���
 = 0; u��t=0 = u0: (4.9)We re
all (see e.g. [3℄ or [27℄) that equation (4.9) possesses a 
ompa
t global at-tra
tor Agl in the phase spa
e H2(
)\H10 (
) (even without any growth restri
tionon the nonlinearity f).As usual (see [3℄), in order to 
ompare the attra
tors Agl" and Agl, we introdu
ethe extension of Agl to the phase spa
e E byAgl0 := f(u0; v0) 2 E : u0 2 Agl; 
v0 ��xu0 + f(u0) = gg: (4.10)The following standard theorem gives an estimate of symmetri
 Hausdor� distan
ebetween Agl" and Agl0 in the spa
e E1.Theorem 4.3. Let the assumptions of Theorem 4.1 hold. Then, Agl0 2 E1 and thefollowing estimate is valid:distsymm;H2(
)�H1(
) �Agl" ;Agl0 � � C"�; (4.11)where C > 0 and 0 < � � 1 are independent of ".As before, estimate (4.11) is well known for the sub
riti
al 
ase p � 1 (see e.g.[3℄ or [11℄) and the super
riti
al growth rate of f is now nonessential, due to theuniform C-estimate of solutions proved in Theorem 3.1.We are now ready to formulate the main result of the se
tion whi
h establishesthe analogue of estimate (4.8) for the weak solutions �u 2 K+" of equation (0.1).



32 SERGEY ZELIKTheorem 4.4. Let assumptions (0.2){(0.5) and (4.3) hold. Then, there exists asmall positive number "0 > 0 su
h that, for every " � "0 and every M-bounded (inthe sense of De�nition 1.3) subset B � K+" , the following estimate is valid:sup�u2B distE;" ��u(t);Agl" � � Q(kBkM )e��t; (4.12)where the 
onstant � > 0 and the fun
tion Q are independent of " and B and distE;"denotes the nonsymmetri
 Hausdor� distan
e with respe
t to norm (1.4).Proof. We divide the proof of the theorem into a number of lemmata whi
h arestandard for the proof of exponential attra
tion property of a regular attra
tor (see[3℄). The �rst one shows that every traje
tory �u 2 K+" stays near the equilibria Rmost of the time.Lemma 4.1. Let the assumptions of Theorem 4.3 hold. Then, for every smallÆ > 0 and every large P > 0, there exist"0 = "0(Æ; P ) > 0; T = T (Æ; P ) > 0; and 0 < Æ0 = Æ0(Æ; P ) � Æ (4.13)su
h that, for every " � "0 and every traje
tory �u 2 K+" satisfying k�ukM � P thefollowing 
ondition is satis�ed:�[t2[0;T ℄u(t)� \ OÆ(R; L2(
)) 6= ?; (4.14)where OÆ(V;E) is a Æ-neighborhood of the set V in the spa
e E.Moreover, if u(0) 2 OÆ0(zi; L2(
)) and u(t0) =2 OÆ(zi; L2(
)); (4.15)for some i 2 f1; � � � ; Ng and t0 > 0, then, ne
essarilyu(t) =2 OÆ0(zi; L2(
)); 8t � t0: (4.16)Proof of Lemma 4.1. We adopt the method of [9℄ to our situation. Indeed, letus assume that (4.14) is wrong. Then, there exist a sequen
e "n > 0, "n ! 0, asequen
e Tn !1 and a sequen
e �uN 2 K+"n su
h thatk�unkM � C and �[t2[0;Tn℄un(t)� \ OÆ0(R; L2(
)) = ?; (4.17)for a �xed Æ0 > 0. Then, due to estimate (1.35)"nk�tun(t)k2L2 + kun(t)k2H1 + kun(t)kp+3Lp+3 + Z 10 k�tun(s)k2L2 ds � C1; (4.18)where C1 is independent of n and ". Thus, without loss of generality, we mayassume that�un * �u weakly-� in L1lo
(R+ ; H10 (
) \ Lp+3(
))� L2(R+ �
): (4.19)Using now the 
ompa
tness of the embeddingfu 2 L1lo
(R+ ; H10 (
) \ Lp+3(
))g \ f�tu 2 L2lo
(R+ �
)g ���� fu 2 Clo
(R+ ; H1��(
) \ Lp+3��(
))g; (4.20)



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 33for every � 2 (0; 1) (see, e.g. [8℄), we derive from (4.19) thatun ! u strongly in Clo
(R+ ; H1��(
) \ Lp+3��(
)): (4.21)The strong 
onvergen
e (4.21) allows to pass to the limit n!1 in equations (0.1)for un(t) in a standard way and to establish that the limit fun
tion u(t) satis�esthe limit paraboli
 equation (4.9) and satis�es the estimateku(t)k2H1 + ku(t)kp+3Lp+3 + Z 10 k�tu(s)k2L2 ds � C1: (4.22)Sin
e u(t) solves the limit paraboli
 equation (4.9) whi
h possesses a global Liapunovfun
tion (see e.g. [3℄), then we have the 
onvergen
e to one of the �nite number ofequilibria: limt!1 ku(t)� z0kL2 = 0; for some z0 2 R: (4.23)On the other hand, passing to the limit n!1 in (4.17), we haveu(t) =2 OÆ0(R; L2(
)); t 2 R+ : (4.24)This 
ontradi
tion proves (4.14).Assuming now that (4.16) is wrong and arguing analogously, we obtain a homo-
lini
 
onne
tion zi1 ! zi2 ! � � � ! ziN = zi1 ; zik 2 R; (4.25)whi
h 
onsists of solutions of the limit paraboli
 equation (4.9), i.e. there existsolutions uk(t), t 2 R, of (4.9) su
h thatlimt!+1 kuk(t)� zik+1kL2 = limt!�1 kuk(t)� zikkL2 = 0 (4.26)(see [9℄ for the details). There remains to note that (4.25) 
learly 
ontradi
ts theexisten
e of a global Liapunov fun
tion for the paraboli
 equation (4.9) and Lemma4.1 is proven.As usual, Lemma 4.1 implies the following result.Lemma 4.2. For every Æ > 0, there exist "0 = "0(Æ) > 0 and T = T (Æ) su
h that,for every " � "0 and every traje
tory �u 2 B" � K+" belonging to the absorbing setB" de�ned by (1.44), there existK = Ku 2 N; K � #R = N;a sequen
e of di�erent equilibria zk 2 R, k � K, and two sequen
es of timesT+k := T+k (u), T�k := T�k (u), for k 2 f0; � � � ;Kg, su
h thatT�0 = 0; T�K =1; T+k � T�k�1 � T; k = 1; � � � ;K (4.27)and u(t) 2 OÆ(zk; L2(
)) if t 2 [T+k ; T�k ℄; k = 1; � � � ;K: (4.28)Indeed, Lemma 4.2 is a standard 
orollary of Lemma 4.1 (see e.g. [3℄ or [9℄).Parti
ularly, Lemma 4.2 shows that the time whi
h the traje
tory �u 2 B" spendsoutside of OÆ(R; L2(
)) is �nite and 
an be estimated from above in a uniform wayby #R � T (Æ).



34 SERGEY ZELIKAs in Se
tion 1, in order to 
ontrol distan
e (4.8), we need the following de�nition.De�nition 4.1. Let �u 2 K+" and let �v 2 E be an arbitrary fun
tion. Analogouslyto (1.33), we introdu
e the modi�ed distan
e M"u;v(t) byM"u;v(t) := inf � liminfk!1 k�uNk (t)� PNk�vkE;" :�u = �+ � limk!1 �uNk ; �u(0) = Ew � limk!1 �uNk (0)�: (4.29)We also de�ne the M -distan
e to the set B � E byM"u;B(t) := inf�v2BM"u;v(t): (4.30)The following Lemma gives the analogues of estimates (1.34) for theM -distan
e.Lemma 4.3. Let �u 2 K+" and �v 2 E1. Then,k�u(t)� �vkE;" �M"u;v(t) �� C (M"u(t) + k�vkE;") ; M"Thu;v(t) �M"u;v(t+ h); (4.31)where C depends only on p. Moreover, if �w 2 E1 is another arbitrary fun
tion,then M"u;v+w(t) � C �M"u;v(t) + k�wkE;"� : (4.32)Indeed, estimates (4.31) and (4.32) are immediate 
orollaries of de�nition (4.29)and of the fa
t that the Fourier series, asso
iated with �v ; �w 2 E1, 
onverge stronglyin E.The next two lemmata allow to 
ontrol the M -distan
e of �u 2 K+" outsideOÆ(R; L2(
)).Lemma 4.4. Let the assumptions of Theorem 3.2 hold. Then, for every �u 2 K+"and every strong solution �v(t), t 2 [T; T + s℄, of equation (0.1) satisfyingkv(t)k2H2 + Z t+1t k�tv(s)k2H2 ds � P <1; (4.33)we have the following inequality:M"u;v(T+s)(T + s) � CeKsM"u;v(T )(T ); (4.34)where the positive 
onstants C and K depend on P , but are independent of " � "0and �u 2 K+" .Proof. Let �uNk (t) be a sequen
e of Galerkin approximations whi
h 
onverge in �+to the solution �u(t). Let now vNk(t) := PNkv(t), UNk(t) := uNk(t)� vNk(t). Then,analogously to (2.63)"�2tUNk + 
�tUNk ��xUNk++ PNk(f(vNk(t) + UNk)� f(vNk(t))) + L(��x)�1UNk == hNk(t) := PNk(f(v(t)) � f(vNk(t))) + L(��x)�1(uNk(t)� vNk(t));�UNk (T ) := �uNk (T )� �vNk (T ); (4.35)



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 35where L� 0 is a large parameter whi
h will be �xed below. As before, multiplying(4.35) by �tUNk(t) + �UNk(t), integrating over x 2 
 and arguing as in the proofof Theorem 2.1, we derive that there exists a positive � > 0 whi
h is independentof " su
h that ddtEUNk (t) + �EUNk (t) = HUNk (t); t � T; (4.36)where EUNk (t) and HUNk (t) are de�ned by (2.48) and (2.50) respe
tively and thefun
tion HUNk (t) satis�es, in addition, inequality (2.66), for every t � T . Moreover,sin
e the solution v(t) is independent of L and uniformly bounded in C (due to(4.33)) then, there exists L0 = L0(P ) su
h that, for every L > L0, we haveC�1L k�UNk (t)k2E;" � EUNk (t) � CLk�UNk (t)k2E;"; (4.37)where the 
onstant CL is independent of " (see Proposition 2.1). Arguing analo-gously (2.67) (and using again Proposition 2.1), we derive from (2.66) that, for asuÆ
iently large L > L0(P ) (whi
h 
an be �xed now), the following estimate holds:HUNk (t) � CkhUNk (t)k2L2 + Ck�tvNk(t)kL1EUNk (t); t 2 [T; T + s℄; (4.38)where C = C(P;L) is independent of ". Applying now Gronwall's inequalityto (4.36), using (4.37) and (4.38) and noting that, due to (4.33) and embeddingH2(
) � C(
), we haveC Z tT k�tvNk(s)kL1 ds � C1(t� T + 1): (4.39)If k is large enough, we derive the inequalityk�UNk (t)k2E;" � Ck�UNk (T )k2E;"e(C1��)(t�T )++ C Z tT e(C1��)(t�l)khUNk (l)k2L2 dl; (4.40)where C = C(P ) and C1 = C1(P ) are independent of " and �u. Passing to the limitk !1 in (4.40) and taking into a

ount the fa
t thathNk ! L(��x)�1(u� v) strongly in C([T; T + s℄; L2(
)) (4.41)(
ompare with (2.64)) and that the approximating sequen
e �uNk (t) was 
hosenarbitrarily, we derive from (4.40) thatM"u;v(t)(t) � Ce(C1��)(t�T )Mu;v(T )(T )++ CL Z tT e(C1��)(t�l)k(��x)�1(u(l)� v(l))k2L2 dl: (4.42)Using now estimate (4.31) and applying again Gronwall's inequality to (4.42), we�nally derive that M"u;v(t)(t) � C2eK(t�T )Mu;v(T )(T );where the 
onstants C2 = C2(P ) and K = K(P ) are independent of " and �u 2 K+"and Lemma 4.4 is proven.



36 SERGEY ZELIKLemma 4.5. Let the assumptions of Theorem 3.2 hold. Then, for every �u 2 K+"and every T; s 2 R+ , we haveM"u;Agl" (T + s) � CeKsM"u;Agl" (T ); (4.43)where the positive 
onstants C and K are independent of " � "0 and �u 2 K+" .Proof. Let �u 2 K+" be an arbitrary weak solution of (0.1) and �0 2 Agl" be anarbitrary point from the attra
tor. Then, due to Corollary 3.2, there exists a strongsolution �v(t) 2 Agl" , t 2 R, �v(T ) = �0 and, a

ording to (3.39), this solutionsatis�es estimate (4.33) with P = P (kgkL2) uniformly with respe
t to �0 2 Agl" .Then, a

ording to Lemma 4.4, we haveM"u;v(T+s)(T + s) � CeKsM"u;�0(T ); T; s 2 R+ ; (4.44)where the 
onstants C and K are independent of �0 2 Agl" . Sin
e �0 is arbitrary,then (4.44) implies (4.43) and Lemma 4.5 is proven.The next lemma allows to 
ontrol theM -distan
e from �u(t) to the attra
tor Agl"in the 
ase where �u(t) remains inside OÆ(R; L2(
)).Lemma 4.6. Let the assumptions of Theorem 3.2 and assumption (4.3) hold.Then, there exists a small positive 
onstant Æ whi
h is independent of " su
h that,for every �u 2 B" � K+" , the in
lusionu(t) 2 OÆ(z0; L2(
)); for t 2 [T; T + s℄ and �z0 2 R, (4.45)implies that M"u;Agl" (t) � Ce��(t�T )[M"u;Agl" (T )℄�; t 2 [T; T + s℄; (4.46)where the positive 
onstants �, � < 1 and C are independent of " and �u.Proof. As in the proof of Theorem 2.1, we use the following auxiliary hyperboli
equation"�2t v + 
�tv ��xv + f(v) + L(��x)�1v == hL(t) := g + L(��x)�1u(t); v��t=T = z0; �tv��t=T = 0; (4.47)where L is a large parameter.The following proposition is an analogue of Lemma 2.1.Proposition 4.1. Let the assumptions of Lemma 4.6 hold. Then, for every largeL � L0 and every small � > 0, there exists a 
onstant Æ = Æ(L; �) (whi
h isindependent of ") su
h that equation (4.47) has a unique strong solution on theinterval t 2 [T; T + s℄ and the following estimate is valid:"k�tv(t)k2H2 + kv(t)� z0k2H3 + Z t+1t k�tv(l)k2H2 dl � �; (4.48)for every t 2 [T; T + s℄.Proof. Proposition 4.1 is analogous to Lemma 2.1, but its proof is essentially sim-pler, sin
e we may now set w(t) � z0. Indeed, let us seek the solution of (4.47) inthe form v(t) :=W (t) + z0. Then, the fun
tion W (t) satis�es"�2tW + 
�tW ��xW + [f(W + z0)� f(z0)℄ + L(��x)�1W = hL;Æ(t) :== L(��x)�1(u(t)� z0); W ���
 = �xW ���
 = 0; �W ��t=T = 0: (4.49)
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ording to (4.45), we havekhL;Æ(t)k2H2 � Q(L; Æ); with limÆ!0Q(L; Æ) = 0: (4.50)Consequently, applying the impli
it fun
tion theorem to equation (4.49) (
omparewith (2.22)), we derive that, for every �xed L � L0, there exists Æ0 = Æ0(L) > 0su
h that, for Æ � Æ0, equation (4.49) has a unique strong solution �W (t) 2 E1,t 2 [T; T + s℄, whi
h satis�es the estimate:k�W (t)k2E1;" + Z t+1t k�tW (t)k2H1 ds � CQ(L; Æ); (4.51)where the 
onstant C is independent of Æ and ". Estimate (4.51), 
onvergen
e (4.50),together with assumption f 00 2 C(R) and with the embeddingH2(
) � C(
), implythat kf(W (t) + z0)� f(z0)k2H2 � Q1(L; Æ); (4.52)where limÆ!0Q1(L; Æ) = 0 and the fun
tion Q1 is independent of ". Multiplyingnow equation (4.49) by �2x(�tW (t) + �W (t)), we derive, analogously to Corollary3.3, that"k�tW (t)k2H2 + kW (t)k2H3 + Z t+1t k�tW (l)k2H2 dl �� C1 (Q(L; Æ) +Q1(L; Æ)) ; (4.53)where C1 is independent of Æ and ". Estimates (4.53), together with 
onvergen
es(4.50) and (4.52), prove Proposition 4.1.The next proposition shows that, under assumptions of Lemma 4.6, the solution�u(t) 
onverges exponentially to the fun
tion �v(t) in E.Proposition 4.2. Let the assumptions of Lemma 4.6 hold. Then, there exist a large
onstant L and a small 
onstant Æ, whi
h are independent of " su
h that equation(4.45) possesses a unique strong solution v(t) = vu;L(t), t 2 [T; T+s℄ whi
h satis�es(4.48) (where � = �(Æ; L) is independent of " and u) and the following estimate isvalid: M"u;v(t)(t) � Ce��(t�T )M"u;v(T )(T ); t 2 [T; T + s℄ (4.54)where 
onstants C and � > 0 are independent of " and �u 2 K+" satisfying (4.45).Proof. Let �uNk (t) be a sequen
e of Galerkin approximations whi
h 
onverges in�+ to the weak solution �u 2 K+" . Let also �v(t), t 2 [T; T +s℄, be a strong solutionof equation (4.47), vNk (t) := PNkv(t) and let UNk(t) := uNk(t)� vNk(t). Then, thelast fun
tion satis�es the equation:"�2tUNk + 
�tUNk ��xUNk++ PNk(f(vNk(t) + UNk)� f(vNk(t))) + L(��x)�1UNk == hNk(t) := PNk (f(v(t))� f(vNk(t)));�UNk (T ) := �uNk (T )� �vNk (T ): (4.55)Multiplying (4.55) by �tUNk(t) + �UNk(t), integrating over x 2 
 and arguing asbefore, we derive that there exists a positive 
onstant � whi
h is independent of L,Æ and " su
h that ddtEUNk (t) + �EUNk (t) = HUNk (t); (4.56)



38 SERGEY ZELIKwhere the fun
tions EUNk (t) and HUNk (t) are de�ned by (2.48) and (2.50) respe
-tively and the fun
tion HUNk (t) satis�es, in addition, inequality (2.66). A

ordingto estimate (4.48), we may �x the 
onstant L su
h that (4.37) is valid and thefun
tion HUNk (t) satis�es the inequalityHUNk (t) � CkhUNk (t)k2L2 + Ck�tvNk (t)kL1EUNk (t); (4.57)where the 
onstant C is independent of " and Æ. Due to Proposition 4.1, we maynow �x Æ so that C Z tT k�tvNk(l)kL1 dl � �2 (t� T + 1) (4.58)for a suÆ
iently large k. Applying now Gronwall's inequality to (4.56) and using(4.37), (4.57) and (4.58), we obtainEUNk (t) � C1e��(t�T )=2EUNk (T ) + C1 Z tT e��(t�l)=2khUNk (l)k2L2 dl; (4.59)where t 2 [T; t+ s℄ and the 
onstant C1 is independent of " and �u 2 K+" . Passingto the limit k !1 in (4.59) and taking into a

ount the fa
t thathuNk ! 0 strongly in C([t; T + s℄; L2(
));we derive estimate (4.54) and Proposition 4.2 is proven.We are now ready to prove that, under the assumptions of Lemma 4.6, everyweak solution �u 2 K+" 
onverges exponentially to the global attra
tor Agl" .Proposition 4.3. Let the assumptions of Lemma 4.6 hold and let Æ be the sameas in Proposition 4.2. Then, for every �u 2 B" � K+" whi
h satis�es (4.45), thefollowing estimate is valid:M"u;Agl" (t) � Ce��1(t�T ); t 2 [T; T + s℄; (4.60)where positive 
onstants �1 and C are independent of " and �u 2 B".Proof. Let �u 2 B" and let �v(t) be the 
orresponding solution of equation (4.47).We also �x an arbitrary T1 2 [T; T + s℄. Then, a

ording to estimate (4.48), thetraje
tory �v(t) is uniformly bounded in E2g and, 
onsequently (due to Corollary3.3), there exists a unique strong solution �v̂(t) := S"t�T1�v(T1) of equation (0.1)de�ned for t � T1, with �v̂(T1) = �v(T1). Moreover, due to (4.48) and (3.55), wehave kv̂(t)k2H2 + Z t+1t k�tv̂(l)k2H2 dl � K1; (4.61)where the 
onstant K1 is independent of " � "0 and of �u 2 B". Consequently, dueto Lemma 4.4, we obtainM"u;v̂(t)(t) � CeK(t�T1)M"u;v(T1)(T1); (4.62)where C and K are independent of " and �u. Inserting estimate (4.54) into theright-hand side of (4.62) and using (4.32), we haveM"u;v̂(t)(t) � C 0eK(t�T1)��(T1�T )M"u;v(T )(T ) � C1eK(t�T1)��(T1�t); (4.63)
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onstants �, K, C 0 and C1 are independent of " and �u 2 B"(here we have also used the fa
t that, due to (4.31) and (1.44), the valueM"u;v(T )(T )is uniformly bounded with respe
t to " and �u 2 B").On the other hand, due to Theorem 4.2distE;" �v̂(t);Agl" � � C1e��(t�T1); t � T1;where the positive 
onstants C and � are independent of " and K+" . Combiningthis estimate with (4.63) and taking into a

ount (4.32), we obtainM"u;Agl" (t) � C1 �e��(T1�T )+K(t�T1) + e��(t�T1)� ; t 2 [T1; T + s℄: (4.64)Fixing now the parameter T1 := �T + (K + �)t2� +Kin an optimal way, we derive estimate (4.60) (with �1 := �2=(2� +K)) and Propo-sition 4.3 is proven.We are now ready to 
omplete the proof of Lemma 4.6. Indeed, it follows fromestimates (4.43) and (4.60) that, for every � 2 [0; 1℄M"u;Agl" (t) � Ce(�K�(1��)�1)(t�T )[M"u;Agl" (T )℄�; t 2 [T; T + s℄: (4.65)Fixing now � := �1=(2K + 2�1), we obtain estimate (4.46). Lemma 4.6 is proven.The assertion of Theorem 4.4 is a standard 
orollary of Lemmata 4.2, 4.5 and4.6. Indeed, arguing as in [3℄ and [9℄, we derive from these Lemmata that, for asuÆ
iently small " and every �u 2 B", the following estimate holds:M"u;Agl" (t) � CNeKNT (Æ)e��Nt[M"u;Agl" (0)℄�N ; (4.66)where � > 0, � > 0, C and Æ are the same as in Lemma 4.6, K is the same as inLemma 4.5 and T (Æ) is de�ned in Lemma 4.2 (see [9℄ for the details). Sin
e B" isa uniform (with respe
t to ") absorbing set in K+" , then (4.66) implies (4.12) andTheorem 4.4 is proven.Remark 4.1. Theorem 4.4 and Lemma 4.5 show that, for a suÆ
iently small "and under the additional assumption (4.3), the traje
tory attra
tor Atr" attra
tsM -bounded subsets of K+" not only in the weak topology of �+, but also in thestrong topology of L1lo
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