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Abstract. We study the asymptotic behavior of weak energy solutions of the following
damped hyperbolic equation in a bounded domain Q C R3:

e0fu + y0u — Apu + f(u) = g, ulyg =0,

where v is a positive constant and ¢ > 0 is a small parameter. We do not make any growth
restrictions on the nonlinearity f and, consequently, we do not have the uniqueness of weak
solutions for this problem.

We prove that the trajectory dynamical system acting on the space of all properly defined
weak energy solutions of this equation possesses a global attractor AL and verify that this
attractor consists of global strong regular solutions, if ¢ > 0 is small enough. Moreover,
we also establish that, generically, any weak energy solution converges erponentially to the
attractor AL,

0. Introduction. We consider the following singularly perturbed damped wave
equation in a bounded domain Q C R?® with a smooth boundary 9:

{ e0}u + yOu — Ayu + f(u) = g, 0.1)

—_ —_ _ !
u|8§2 =0, u|t:0 = Uo, 6tu|t=0 = Up-

Here ¢ > 0 and v > 0 are given positive numbers, v = u(t,z) is an unknown
function, A, is the Laplacian with respect to the variable z = (z!',22,23) and
g = g(x) are given external forces which satisfy the following assumption:

g€ L*(0). (0.2)

We also assume that the nonlinear interaction function f(u) satisfies the following
conditions:

1. feC*RR), f(0)=0,
2. [f"(0)| < CQA +olP), (0-3)
3. f'(v) > —K + §|v|PTt,

where p > 0, C > 0, K > 0, and § > 0 are given constants. Equation (0.1) is
considered in the standard energy phase space:

E=E(Q):= |Hy(Q)NnLP3(Q)| x L*(N). (0.4)
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Consequently, we assume that the solution &,(t) := (u(t), Oyu(t)) belongs to E, for
every t > 0, and, particularly, the initial data &,(0) := (uo, ug) also belongs to E:

€u(0) € E. (0.5)

In the subcritical case p < 1, the behavior of the solutions of (0.1) is now well
understood. Indeed, in this case, equation (0.1) generates a differentiable semigroup
S; in the phase space E:

S;:E— E, S;&(0):=¢&,(t), where u(t) solves (0.1), (0.6)

which possesses the compact global attractor A9 in E, see e.g. [1], [3], [14-17], [23]
and the references therein. These attractors are uniformly (with respect to e — 0)
bounded in the space

E' = [H*(Q) N H ()] x Hy(Q) (0.7)

and (consequently) they converge as ¢ — 0 to the limit attractor Agl associated
with the limit parabolic equation (at least in the sense of the upper semicontinuity
in E', see [3], [16] or [11] for the details).

Moreover, since equation (0.1) possesses a global Liapunov function (see [3] or
[16]) then, under the additional generic assumption that the set R of equilibria of
equation (0.1) is finite:

#R = N < oo and all the equilibria are hyperbolic, (0.8)

the attractor A¢' consists of a finite collection of finite dimensional unstable C*-
submanifolds in E:
AL = Uy er M (20) (0.9)

and the rate of convergence to it is exponential, i.e., for every bounded subset
B C E, the following estimate is valid:

distz . (S; B, A%) < Q(||Bl|g.c)e™°, (0.10)

where the monotonic function @) and the positive constant a are independent of B
and ¢ < &g,
+3
1€ull,e == elldeullze + llullzn + llullf,3s (0.11)

and distz . denotes the nonsymmetric Hausdorff distance between sets in ”"metric”
(0.11). Tt is also known that, in this case, we also have the lower semicontinuity of
the attractors A9 as ¢ — 0 and the following estimate on the rate of convergence:

dist gy, 1 (AL, AZH) < Ce", (0.12)

where C' > 0 and x > 0 are independent of € (see [3], [11] or [16]).

Moreover, the nonautonomous equations of the form of (0.1) were studied in
[4]; exponential attractors for (0.1) were considered in [10] and [11]; the Gevrey
regularity of attractors A. was established in [6]; and attractors for equations (0.1)
in unbounded domains Q were investigated in [12] and [28]. We note however
that the proof of the E'-regularity of the attractor A9 in the critical case p = 1
essentially uses the finiteness of a suitable dissipation integral (see [3]) so, to the
best of our knowledge, the higher (e.g., E') regularity of attractors is still an open
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problem in the case of more general (than (0.1)) semilinear hyperbolic equations and

systems (e.g., nonautonomous ones) with critical growth rate on the nonlinearity.
In contrast to this, very few is known about the solutions of (0.1) in the super-

critical case p > 1. Indeed, although the global existence of weak energy solutions

§u € C(Ry, EY) (0.13)

(where, as usual, the symbol 'w’ denotes the weak topology in E) can be derived in
a standard way from the energy estimate (see e.g. [18]), the regularity (0.13) is not
enough in order to prove the uniqueness of such solutions and, to the best of our
knowledge, only the local existence of more regular solutions is known for p > 1.

Thus, semigroup (0.6) associated with equation (0.1) can be rigorously defined
only as a semigroup of multivalued maps. A (generalized) global attractor for this
semigroup has been constructed in [2].

A similar result was reproved in [5], using the concept of trajectory dynamical
system and the associated trajectory attractor. We recall that, under this approach,
the set K of all properly defined weak energy solutions of (0.1) (for all initial data
£.(0) belonging to E, see Definition 1.1) endowed with the appropriate topology
is considered as a (trajectory) phase space for the semigroup of positive temporal
shifts

Ty : KX — KX, (Thu)(t) :=u(t+h), t,h € R,. (0.14)

This semigroup (acting on the trajectory phase space K) is called a trajectory
dynamical system associated with problem (0.1) and its global attractor (if it exists)
is called a trajectory attractor A!" of problem (0.1). It is worth to note that, in
the case where uniqueness holds, the trajectory attractor A" is usually equivalent
(Lipschitz homeomorphic) to the global one (see Remark 1.1 below).

The trajectory attractors AY" for problem (0.1) were constructed in [5] and their
weak upper semicontinuity as € — 0 was established in [6], see also [5], [13] and
[22] for applications of the trajectory approach described above to other classes of
ill-posed evolution equations and [19], [25] and [26] for its applications to elliptic
boundary value problems in unbounded domains.

In the present paper, we give a systematic study of the attractors associated with
problem (0.1) in case € > 0 is small enough.

In Section 1, we recall the construction of a weak energy solution &, (t) of problem
(0.1) using Galerkin approximations. Using this explicit construction, we then
define the trajectory phase space K7~ as a space of all weak energy solutions of (0.1)
which can be obtained as a weak limit of the corresponding Galerkin approximations
and establish that the trajectory dynamical system (0.14) possesses the compact
global attractor A" in the following weak-* topology:

0T = [L{S.(Ry, E)™ (0.15)

(see §1 for the details). Thus, we restrict ourselves to the weak solutions &, (t) of
problem (0.1) that can be obtained as a ©@T-limit of the corresponding Galerkin
approximations only (we do not know whether or not every weak solution of (0.1)
satisfying (0.13) can be obtained in such way).

As usual (see [2], [5], [6]), the attractor AY" possesses the following description:

Al =TI, K., (0.16)

where K. C L®(R, E) is the set of all weak solutions of (0.1) that are defined
for every ¢t € R and can be obtained as a weak limit of the appropriate Galerkin
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approximations (see Theorem 1.1 below) and 11§, := £“|t>0 is the restriction of
the function &, € K. to the semiaxis Ry . -

In Section 2, we study the regularity properties of the weak solutions &, € K..
Particularly, we prove that every such solution is regular if ¢ € R is small enough.
To be more precise, for every &, € K., there exists T'= T, € R such that

ult) € BN if ¢ <T. (0.17)

Moreover, we obtain some uniqueness result for such solutions. We note that these
results are proved without the assumption that £ > 0 is small, but they are essen-
tially based on the finiteness of the dissipation integral

“+o00
/ Ouu() e dt < o0, VEu € K. (0.18)

—00

The main result of Section 3 is the existence of global strong solutions of (0.1), if
the E'-energy of the initial data is not very large and € > 0 is small enough. To be
more precise, we prove that there exist €9 < 1 and a nonincreasing function

R:(0,e0] = Ry, lim R(e) = +o0,
e—=0
such that, for every ¢ < gg and every initial data satisfying

1€u(0)ll 1, < R(e),

where
1€ullFr - == ellOullFr + llulle, (0.19)

there exists a unique global strong solution &, € Cy(R, E*) and this solution satisfies
the estimate

1€a®)lpr e < QUIEO)IE )™ + Q(llgllz2), (0.20)

where the positive constant a and the monotonic function () are independent of
e < gp-

In contrast to Section 2, this result is based on the comparison of the strong
solution of (0.1) with an appropriate strong solution of the limit (¢ = 0) parabolic
problem and does not require the dissipation integral (0.18) to be finite.

Combining this result with regularity (0.17) obtained in Section 2, we finally
obtain that, for all ¢ < g9 < 1, the trajectory attractor A" consists of the global
strong solutions:

A" c Cy(Ry, EY). (0.21)

Since a strong solution &, € Cy(Ry, E') is unique, we may define a global attractor
Ag! for equation (0.1) by the standard expression:

A9l =TT, AL (0.22)

where Iy, := &,(0), and define a classical semigroup associated with (0.1) on this
attractor via

Stsfu(o) = fu(t)a Stg : Agl — Agla (023)

where &, (t) is a unique strong solution of (0.1).
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We note that, since H2(Q) C C(Q), then estimate (0.20) gives a uniform (with
respect to €) estimate of the C-norm of the trajectories belonging to attractor
A9l. Therefore, the growth rate of the nonlinearity f with respect to u becomes
nonessential for further investigations of global attractors 49! and we may study
them exactly as in the subcritical case p <1 (see [3] or [11]).

In particular, we indicate in Section 4 that, under the additional assumption
(0.8), description (0.9) and estimate (0.10) remain valid for the supercritical case
as well.

Moreover, we prove that, not only strong solutions &, € Cy(Ry, E') converge
ezponentially to the global attractor A¢' (which can be proved exactly as in the
subcritical case), but also that the same is valid for every weak solution &, € K.
To be more precise, for every € < g¢ and every bounded subset of weak energy
solutions B C K7, the following estimate is valid:

sup distpg . (£4(2), A2") < Cpe ™, (0.24)
£u€EB

where Cg and a > 0 are independent of € (see Theorem 4.4).

To conclude, we note that our method seems to be applicable for the study of
problem (0.1) in @ CC R™ with an arbitrary n > 1, but we restrict ourselves to the
case n = 3 only in order to avoid the additional technicalities. Moreover, it is also
applicable to other classes of perturbed hyperbolic equations, e.g., to the following
problem in a bounded domain Q C R3:

OPu+you — Agu +euful’ +u* —Pu=g, p>2, BER, e K 1. (0.26)

We will study these questions in a forthcoming paper.

Acknowledgements. This research was partially supported by the INTAS project
no. 00-899 and CRDF grant RM1-2343-MO-02. The author is also grateful to
M.I.Vishik and A.Liapin for many stimulating discussions.

1. The trajectory dynamical system and its attractor. In this section,
we prove that problem (0.1) possesses at least one weak solution &,(t), for every
&.(0) € E. Using the explicit construction of such solutions, we then define a
trajectory dynamical system associated with problem (0.1) and verify that this
dynamical system possesses the global attractor.

We start with constructing the Galerkin approximations for problem (0.1). Let
{ei}2, be the orthonormal system of eigenvectors of the Laplacian A, with Dirich-
let boundary conditions and let {A;}52, be the corresponding eigenvectors:

—Azei = )\iei, = 0, )\i+1 Z /\, (].].)

ei|aQ
We denote by Py : v — Pxyv the orthoprojector in L?(Q2) to the first IV eigenvectors
of system {e;}2, and consider, for every N € N, the following auxiliary problem in
the phase space En := PyE (e.g., (un,0un) € En):

{ edfun + v0un — Ayun + Py f(un) = gn == Pnyg, (12)

un(t) == o, uiy(t)es, Euy (0) = €} € Ex.

We note that (1.2) is a second order system of ODE with respect to the functions
{ul,(#)}N., and with the smooth (C2?-smooth) nonlinearity. The following standard
lemma gives a uniform with respect to N estimate for the solutions of (1.2) in the
energy phase space F.
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Lemma 1.1. Let assumptions (0.2) and (0.3) hold. Then, there exists a unique
solution &y (t) of problem (1.2) and the following estimate holds:

1€un (D), + /t 10sun (5)|[72 ds < Clléuy ()T + C(1+[|gll72), (1.3)
wheret > s > 0,
16u®) I, = ellOeu(®)l72 + IVaul@®)72 + lu®)} 375, (1.4)
and constants a > 0 and C > 0 are independent of N and € € [0,&0].
Proof. Multiplying equation (1.2) by d;un(t) and integrating over z € 2, we have
d
E[EllatuN(t)lli2 +[IVoun ()72 + 2(F(un(t)),1) = 2(g, un(t)] =
= =29/10un(®)||72,  (1.5)

where F(v) := [ f(w)dw. We now recall (see e.g. [27]) that assumption (0.3)(3)
implies that

)
> P = Pl
F)0> o (=K + S,

FO) 2 1P (<5 + gy ). (16)
FO) < f0)0= b (=5 + ~p+)

Moreover, assumption (0.3)(2) obviously implies that
)] < Clol (1+oP*Y), F(o) < Clof? (1 + o). (1.7)

Integrating identity (1.5) over t € (¢,T) and using estimates (1.6) and (1.7), we
have

T
[1€un (D)7 + /t 18run (s)]72 ds < C ([|€un )| To,c + 1+ 1lgll72) (1.8)

where the constant C is independent of N, t, T and £. In particular, (1.8) gives
the uniform (with respect to T') a priori estimate for the solution &, (t) of problem
(1.2) and, consequently (since (1.2) is an ODE with a smooth nonlinearity), the
global solution &, (t), t € Ry, of problem (1.2) exists, for every £ € En, and is
unique. Moreover, passing to the limit 7" — +o00 in estimate (1.8), we obtain

/t 18cun (s)II72 ds < C (Iléun ()| + 1+ lglIZ2) - (1.9)

So, there remains to prove the dissipative estimate for the quantity ||&, (¢)||£,e. To
this end, as usual, we multiply equation (1.2) by aun(t), where o > 0 is a small
positive parameter which will be fixed below and integrate over = € ). Then, we
have

%[2048(3WN(75),UN(75)) +yallun(t)[|72] — 20¢]|dun )17+
+ 2a||Voun ()||32 + 2a(f(un(t), un(t)) = 2a(g,un(t)). (1.10)
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Summing identity (1.5) with identity (1.10) and setting
E(t) == ell@sun (®)[I72 + [Vaun (0|72 + 2(F (un(t)), 1)+
+20e(Qun (t), un () + avllun(Oll7: — 2(g,un(t), (1.11)
we obtain the following equation:

d

ZE-(t) + aB.(t) = h(t) =
= (27 - 3ae) | 0un (t)[72 — allVoun (1|72 +

+ 20 (F(un(t) = flun(t)un (t),1) + a®yllun (|72 +20°(Qun(t), UJ(vl(tl)Q))-

It is not difficult to verify, using estimates (1.6) and Schwartz inequality, that it is
possible to fix & > 0 (which is independent of € € [0,£9] and N) such that

h(t) < C, (1.13)
and, consequently, using Gronwall’s inequality, we derive from (1.12) that
E.(t) < E.(s)e =9 4.Cy, t>5>0, (1.14)

where the constant C is independent of € and N. There only remains to note that,
due to (1.6) and (1.7), we have the estimates

Cy Hléun Ol = C3(1+ 1lgllz2) < Ee(t) < Co (l6un B + 1+ 1lgllZ2) , (1.15)
where the constants C; > 0 are independent of ¢, € and N. Indeed, estimate (1.3)
is an immediate corollary of (1.14), (1.15) and (1.9). Lemma 1.1 is proven.

We now assume that the initial data &3 for the Galerkin system (1.2) converge
weakly in F to some &° € E:
& =€ as N - . (1.16)

Then, obviously, the sequence £Y; is uniformly bounded in E with respect to N, and
consequently, due to estimate (1.3), the sequence of corresponding solutions &, (¢)
is uniformly (with respect to N) bounded in the space L*° (R, , E):

€un Lo ® 4, E) < C- (1.17)

We recall that bounded subsets in the Frechet space L (Ry, E) are precompact

loc
in the w*-topology (see e.g. [20]) and, consequently, we may extract from the

sequence of solutions &, (t) a subsequence &y, (t) which w*-converges to some
function &, (t) € L®(Ry, E):

=07 — klim un,, Where ot = {LﬁC(M,E)] . (1.18)
—00
We also recall (see [20]) that (1.18) is equivalent to the following: for every T' € Ry

uy, = &u weakly-xin L>((T,T +1), E).
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Moreover, since un(t) solves (1.2) then, expressing the second derivative 07 up (t)
from equation (1.2) and using estimate (1.17), we have
107un |l o, -1 (2)+1e(2)) < Ch, (1.19)
where the exponent ¢ is conjugated to p+ 3 (i.e. % + ﬁ = 1) and the constant Cy
is independent of N.
We now note (see e.g. [8] or [18]) that, for every 0 < 8 < 1, the following
embedding is compact:
{(v,8v) € L5, (Ry, B)} N {07v € Lig, (R, H™'(Q) + L(2))} CC
CC {(v,0v) € Croe(Ry, [H P(Q) N LPT38(Q)] x HP(Q))}. (1.20)

Thus, weak-* convergence (1.18) implies the strong convergence
bun, = & strongly in - Cioe(Ry, [H'77(Q) N LPHP=2(Q)] x HP(Q)).  (1.21)

Consequently (see [18])

§u € C(Ry, EY) (1.22)
and, for every t > 0, we have the weak convergence
un, (1) = &u(t) in E. (1.23)

Moreover, the strong convergence (1.21) allows to pass in a standard way to the
limit Ny — oo in equations (1.2) (in the sense of distributions) and verify that the
function &, (t) := (u(t), Oru(t)) constructed above solves equation (0.1) with

¢u(0) = BY — lim &, . (1.24)

Thus, we have proved the following result.

Lemma 1.2. Let the assumptions of Lemma 1.1 hold. Then, for every £° € E,
there ezists at least one weak global solution &,(t), t € Ry, of problem (0.1) with

£u(0) = ¢°, (1.25)

which can be obtained as a weak limit (1.18) of the corresponding solutions &y, (t)
of the Galerkin approzimations (1.2).

Indeed, let £° € E. Then, we can find a sequence &3, € En such that &%, — &°
in E (since the orthonormal system {e;}$, of the Laplace eigenfunctions is dense
in E, see [24]). Thus, the limit process (1.18) gives the desired solution of equation
(0.1).

We are now ready to construct the trajectory dynamical system associated with
equation (0.1).

Definition 1.1. We define the trajectory phase space KX of problem (0.1) as the
set of all solutions of this problem which can be obtained as a weak-x limit (1.18)
of solutions of the Galerkin approximations (1.2):

K= {fu € L*(Ry, E), Fuy, (t) which solve (1.2)

such that &,(0) = EY — lim €4y (0) and &, = ©F — lim £y, } (1.26)
k—00 k k—o00 k
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Obviously, K is a subset of L>(R, , E). We endow the trajectory phase space KT
with the topology induced by the embedding

Krcet (1.27)
(i.e. by the weak-* topology of the space L (Ry, E)).

loc
We now consider the following semigroup of positive temporal translations:

Th:0" =01, h>0, (Thu)(t) :=u(t+h). (1.28)

Then, due to (1.23) and the fact that (0.1) is autonomous, semigroup (1.28) acts
on the trajectory phase space K:

Ty: K+ — K. (1.29)

Semigroup (1.29) (acting on the topological space K1) is called the trajectory
dynamical system associated with equation (0.1).

Remark 1.1. It is well known (see e.g. [3]) that, in the subcritical case p < 1, the
solution u(t) of equation (0.1) is unique and, consequently, this equation generates
a semigroup in the classical phase space E in a standard way:

S;:E—E, t>0, S;&(0):=&,(t). (1.30)
Moreover, in this case, the map
My: K = E, &, = &.(0) (1.31)

is one to one and realizes a (sequential) homeomorphism between K1 and EY.
Thus,
S; =TpoTyo (o)™, (1.32)

and, therefore (in the subcritical case), the trajectory dynamical system (1.29) is
conjugated to the classical dynamical system (1.30) defined on the phase space E
endowed with the weak topology.

We note however that, in the supercritical case p > 1, the uniqueness problem for
(0.1) is not solved yet and classical semigroup (1.30) can be defined as a semigroup of
multivalued maps only (see [2] for the details). The use of the trajectory dynamical
system (1.29) allows to avoid the multivalued maps and to apply the standard
attractors theory in order to study the long time behavior of solutions of (0.1) in
the supercritical case.

In order to construct the global attractor for dynamical system (1.29), we need
the following generalization of energy functional (1.4).

Definition 1.2. Let &, € K. We define the functional M,(t), ¢ > 0, by the
following expression:

M (t) := inf { liminfy_, o0 ||£uNk: e :

€= 0% — lim €, 6(0) = B — lim &y, (0)}, (1.33)

where the external infimum in the right-hand side of (1.33) is taken over all se-
quences of the Galerkin approximations {u, (#)}7Z; which weakly-* converge to
the given solution &,.

The following corollary gives the simplest properties of the M -energy functional
introduced.
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Corollary 1.1. Let the assumptions of Lemma 1.1 hold and let &, € KX. Then,
the following estimates hold:

My(t) < oo, [[€u(®)llme < My(t), Mz, () < My(t+h) (1.34)
and
M (t)® +/ 1u(t)l|72 dt < OM(s)*e™ =) + C(1+ |lgll72), (1.35)
t
where t > s > 0 and constants a > 0 and C > 0 are the same as in (1.3).

Indeed, estimates (1.34) are immediate corollaries of the definition of K and
MZ:(t) and estimates (1.35) follow from estimate (1.3) in which we pass to the limit
Nj — o0.

Remark 1.2. It is known (see [3]) that, in the subcritical case p < 1, we have
leu®llme = M (). (1.36)
So, in this case, the M-energy coincides with the classical one. But to the best of our
knowledge, neither identity (1.36) nor the fact that any solution &, € L®(Ry, E)
of (0.1) can be obtained as a limit of the Galerkin approximations (1.2) are known

in the supercritical case p > 1. Nevertheless, if the solution &, (¢) of problem (0.1)
is sufficiently regular:

€u € L®(Ry, EY), E':=[H?*(Q)N Hy(Q)] x Hy(9), (1.37)
then it is unique (in class (1.37)) and, consequently, &, € K and satisfies (1.36).
In the sequel, we consider only the solutions of (0.1) which can be approximated by

the Galerkin solutions and use the modified energy M:(t) instead of the classical
one.

Remark 1.3. In contrast to (1.4), the functional MZ(t) is not a priori local with
respect to t, i.e. M:(T) depends not only on &,(T"), but also on the whole trajectory
&€ KT

Asusual (see e.g. [2], [3], [21]), in order to define the global attractor of semigroup
(1.29), we should define the class of bounded sets which will be attracted by this
attractor.

Definition 1.3. A set B C K is called M-bounded if the following quantity is
finite:
[|Bllas := sup M (0) < oo. (1.38)
§u€B

In other words, the set B C K is M-bounded if the modified energy of all the
solutions belonging to B is uniformly bounded.

We are now ready to recall the definition of the global attractor of the trajectory
dynamical system (1.29) (=trajectory attractor of equation (0.1)).

Definition 1.4. A set A" is a global attractor of the trajectory dynamical system
(1.29) (= the trajectory attractor of equation (0.1)) if the following conditions hold:

1. The set A" is a compact M-bounded set in K.

2. This set is strictly invariant, i.e. Ty A" = A" for h > 0.

3. This set is an attracting set for semigroup (1.29), i.e. for every M-bounded
subset B C K and every neighborhood O(AY") of A" in K}, there exists T =
T (B, O) such that

T,B C O(AY), for h>T. (1.39)

The main result of this section is the following theorem which establishes the

existence of the attractor AY" for the trajectory dynamical system associated with
problem (0.1).
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Theorem 1.1. Let the assumptions of Lemma 1.1 hold. Then, semigroup (1.29)
possesses the global attractor AL in the sense of Definition 1.4 which can be de-
scribed in the following way:

Alr =TI, K. (1.40)

Here K. C L*™(R, E) is the set of all the complete solutions of problem (0.1) which
are defined for all t € R and can be obtained as a Galerkin limit, i.e. £, € K. if
and only if there exist a sequence of times t, — —oo and a sequence of solutions
Eun, (t) of the problems:

{ edfun, +Y0un, — Agun, + P, f(un,) = gn,, (1.41)
fuNk (tk):é.]g GENka tZtka -
such that
Il ze <C, and &, =0O — lim &, , (1.42)
’ k—o00 k
where C' is independent of k and
0= [Lf;’c(]R, E)] . (1.43)

Proof. As usual (see e.g. [3], [23]), in order to prove the attractor’s existence, it is
sufficient to find a M-bounded and compact absorbing set in the phase space of the
semigroup under consideration. We claim that the following set

B.:={& € K, sup Mg (1) <2C(1 + ||g[l72)}, (1.44)
t>0

where the constant C is the same as in (1.35), is the desired compact absorbing set
of the trajectory dynamical system (1.29).

Indeed, the fact that B absorbs all M-bounded subsets of KT is an immediate
corollary of estimates (1.34) and (1.35). Moreover, it follows from (1.34) that

Tw,B: C BE,

and that B. is bounded in L*°(R, , F) and, consequently, it is precompact in ©V.
So, there only remains to verify that the set B. is closed. In order to verify this, we
first note that

B. C By := {&u € L™ (R4, E), sup 1€a®)E,- <40+ llgliz)} (1.45)

and that By is a compact and metrizable subspace of the topological space O (see
[20]). So, there only remains to verify the sequential closedness of B..
Let {&,1}2, € B- and set

£, =01 — lim &,. (1.46)

=00
We need to prove that the limit function &, (¢) belongs to B.. Indeed, due to the
compactness of embedding (1.20), we derive from (1.46) the strong convergence of
&, in space (1.21) and, consequently, the limit function &, (¢) solves equation (0.1).
Let us prove that &, € KX, i.e. that it can be represented as a Galerkin limit



12 SERGEY ZELIK

(1.18). According to the definition of K and the assumption £,; € K, there exist
sequences {&, (t)};2, of Galerkin solutions such that
k

£g =0 — lim ¢
k—o0

Moreover, since &, € B. then the M:,(t) are uniformly bounded with respect to [
and, consequently, without loss of generality, we may assume that

éu,, € Bo, klEN. (1.48)

(1.47)

1
uNk

We now recall that the topology of ©F restricted to By is metrizable. Let dg+ (-, )
be one of such metrics. Then, due to (1.47), for every I, we may found Ny € N
such that

do+ (Eus €, ) <I7H (1.49)
N (1)

Convergence (1.46), together with (1.49) and with the triangle inequality, imply
that

) = 0 and, consequently, &, = O — lim ¢,
l—o0  "Nr)

deo+ (fua fuNllc(z)
Thus, &, € K. Moreover, arguing analogously, we can verify that
M (t) <liminf;_,o M, (t), Vt >0, (1.50)
and, consequently, &, € B.. Thus, B. is indeed a compact semiinvariant absorbing
set for the trajectory dynamical system (1.29). The desired attractor can now be
found in a standard way as the w-limit set of B.:

Al = w(B.) := (1) TubB- (1.51)
h>0

(see e.g. [3], [23]). Description (1.40) is also a standard corollary of the explicit
formula (1.51) for the attractor and of the diagonal procedure described above in
the proof of closedness of B.. Theorem 1.1 is proven.

To conclude this section, we formulate several useful corollaries of the Theorem
1.1.

Corollary 1.2. Let the assumptions of Theorem 1.1 hold and let B C K be an
arbitrary M -bounded subset. Then, for every T € Ry and every 1 > [ > 0, the
following convergence holds:

hhfolo diste s ((n,7+n)) (B|(h7T+h)’ A§r|(h,T+h)) =0, (1.52)
where
Ls (h,T + h) := C((h,T + h),[H' 77 (Q) N LP3=5(Q)] x H7?(Q)), (1.53)
and disty,(U,V) denotes the nonsymmetric Hausdorff distance between sets in L:
disty. (U, V) = sup,cp infyev ||u — oL (1.54)
Proof. Indeed, due to embedding (1.20) and the fact that every &, € K satis-

fies equation (0.1) (from which we can express and estimate the second derivative
O?u(t)), we have the compact embedding

(KF,0%) CC Croe(Ry, [H' 2 (Q) N LPH72(Q)] x H-P(0)), (1.55)
in the sense that every M-bounded subset of K1 is a precompact set in the space

in the right-hand side of (1.55). Convergence (1.52) is an immediate corollary of
(1.55) and (1.39) and Corollary 1.2 is proven.
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Corollary 1.3. Let the assumptions of Theorem 1.1 hold and let &, € K.. Then,

+o00
/ 10ru(s)lIZ2 ds < C(1+ llgllZ2), (1.56)

— 00

where the constant C is the same as (1.35), and moreover, for every 1 > 3 > 0,
Ou € Co(R,H™P(Q)) and lim ||0yu(t)||g-s (o) = 0. (1.57)
t—+oo

Proof. Indeed, let {, € K. and let &y, (t), t > tx, t, — —o0, be the sequence
of Galerkin solutions of (1.41) which approximates this trajectory in the sense of
(1.42). Then, applying estimate (1.3) to the solutions of (1.41), with ¢ = t;/2 and
s = ty, we obtain

[ee]
/ ) 18cun, (5)|[72 ds < Cll&IIE, /% + C(1 + lgll72)- (1.58)
tr /2

Passing now to the limit & — oo in (1.58) and taking into account the fact that
a> 0, ty — —oo and that the &) are uniformly bounded, we derive the dissipative
integral (1.56). In order to obtain convergence (1.57), we first note that, due to the
compactness of embedding (1.20), we derive, analogously to (1.55), that, for every
0<p<,

K. is bounded in  Cy(R, [H' 7 (Q) N LPH3-5(Q)] x H (1)), (1.59)
and, moreover, it is compact in the local topology
K. CC Croe(R,[HY P (Q) N LPT38(Q)] x HP(Q)). (1.60)

Convergence (1.57) is a standard corollary of dissipative integral (1.56) and of em-
bedding (1.60) and Corollary 1.3 is proven.

2. The backward regularity of the solutions belonging to the attractor.
In this section, we show that every bounded weak solution £, € K. of equation (2.1)
becomes regular if ¢ is less than the critical value ¢ < T,,. We emphasize that we
derive this result without the assumption that ¢ is small.

The main result of the section is the following theorem.

Theorem 2.1. Let the assumptions of Theorem 1.1 hold. Then, for every complete
solution &, € K. of equation (0.1), there exists a time T = T,, such that

€ € Cp((—00,T], EY). (2.1)

Proof. Let &, := (u,0:u) € K. be an arbitrary complete solution of (0.1). Let us
rewrite problem (0.1) as follows:

£0%u + Y0 — Agu + f(u) + L(=A) 'u = h(t) == g+ L(=A) 'u(t), (2.2)
where A, is the Laplacian with Dirichlet boundary conditions and the (large) pa-

rameter L will be specified below. It follows from Theorem 1.1 and Lemma 1.1
that

T+1
Ih(T)|IZ2 +/ 102 () |I2 dt < C"(1 + lgll72), €' =C"(L),  (23)
T

where the constant C’ is independent of ¢ and T'. Moreover, it is important for our
method that, according to Corollary 1.3

Oih € Cy(R, H*™7(Q)) and  Tim_[|9,h(t)]]=-s(0) = 0, (2.4)

for every 0 < # < 1.

Our strategy is the following: we first show that (2.4) allows to construct a
regular backward solution &,(t), t < Ty, for problem (2.2) and then prove the
identity u(t) = v(t).
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Lemma 2.1. For a sufficiently large L, there exists time T = T'(e,u, L) such that
the problem

e07v + 0w — Agv + f(v) + L(=A,) o = h(t), t<T (2.5)

possesses a unique regular bounded backward solution &,(t) € E* which satisfies the
following estimate:

10cv(®)l2 + llv(@®)l[m2 < Qlgllz2), t<T, (2.6)

where the monotonic function Q depends on L, but is independent of ¢ < ey. More-
over, the derivative Oyv(t) tends to 0 in the L -norm as t — —oo:

lim_[[8,0(6)]|~ = 0. (2.7)

In order to prove this lemma, we first construct a solution w(t) of the parabolic
problem
YOw — Apw + f(w) + L(—A,) 'w = h(t), t€R (2.8)

Lemma 2.2. For sufficiently large L, problem (2.8) possesses a unique solution
w(t), t € R, in the class Cy(R, H?()) and the following estimate is valid:

lw(®)l7r < Cr(1+llgllz2), (2.9)
where the constant Cp, depends on L, but is independent of €. Moreover,
dw € Cy(R, H*(Q)), 0w € L*([T,T + 1], H(Q)), (2.10)
for every T € R, and the following convergence is valid:

i {19001 + 102wl 7411, mey)} = 0. (2.11)

Proof of Lemma 2.2. The existence of a solution for problem (2.8) which is bounded
in H? can be easily derived from estimate (2.3) and from the dissipativity assump-
tion (0.3)(3) using standard parabolic technique (see e.g. [3], [17], [27]). So, there
remains to verify (2.9) — (2.11). Differentiating equation (2.8) with respect to t and
setting 6 = Oyw, we have

¥0,0 — Aph + f'(w) + L(—A,) '8 = 9,h(t), tER (2.12)
Multiplying equation (2.12) by #(¢) and integrating over z € 2, we find
YOOI +110)][7r + 2LIO@O)I7-1 < —2(f'(w)8(1),6(1)) + Clleh(t)][7-- (2.13)
We now recall that, due to (0.3) and an appropriate interpolation inequality
2(f'(w)8,0) < 2K110]|72 < 2CK |10l 1611 -1 <

1
< S 16117 +4C* K20l -+) < 51017 + LIIENG ), (2.14)

N | =
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if L > 4C?K?. Then, estimate (2.13) reads

d

1
Y10z + S10@) 17 < CllAA@) 172 (2.15)

Therefore, Gronwall’s inequality applied to (2.15) gives

TH1
10(D)II7= + /T 16))17: dt < C(1+ [lgll72)- (2.16)
Moreover, due to convergence (2.4), we have

tll{noo ||9||L2((t7t+1)7H1(Q)) =0. (2.17)

After obtaining estimate (2.16) for the derivative dyw(t), we may interpret problem
(2.8) as an elliptic boundary value problem

Aw(T) = f(w(T)) + L(=Ay) "'w(T) = —h(T) + v8,w(T). (2.18)
Multiplying then (2.18) by A,w(T), integrating over z € {2, using estimates (2.3),
(2.16) and (0.3)(3) and arguing in a standard way, we derive estimate (2.9). In

order to derive (2.10) and (2.11), we note that the function 6(t) satisfies the heat
equation

100 — A0 = ho(t) = Bih(t) — [ (WD) — L(-A,) '6(),  (219)
and, according to (2.3) and (2.17)
tlirjloo ||h0||L2(t7t+1)7H1(Q)) =0. (2.20)

Applying now the standard regularity theorem to the heat equation (2.19), we have
T+1 T+1
/ 18:0(1)||7: dt + 10(T)| 7= < 0/ =TI 1hg (1) 171 dt. (2.21)
T —00

Embedding (2.10) and convergence (2.11) are immediate corollaries of (2.21), (2.4)
and (2.20). Lemma 2.2 is proven.

Proof of Lemma 2.1. Let us seek the desired regular solution of problem (2.5) in
the form v(t) = w(t) + W(t). Then, the function W (t) solves
eOFW +yO W — AW + [f(w(t) + W) — fw(t))]+
+ L(=A,)"'W = H(t) := —e0?w(t). (2.22)
We apply the implicit function theorem in order to solve equation (2.22) in the

space
&1 := Cy((—00,T], EY), (2.23)

where the time 7 is small enough. Indeed, according to Lemma 2.2, we have
H e L2([t,t + 1], H}(2)), for every t € R, and

Tl_lffoo ||H||L2((T,T+1),H3(Q)) =0. (2.24)
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So, there only remains to verify that the variation equation at W =0
O}V + 70V — AV + flw®)V + L(=A,)"'V =G(t), t<T (2.25)

is uniquely solvable for every G € L?, ((—o0,T], Hi(Q)) such that

loc
G| 22((=00, 1), 1 () = SUPse (=00, —1] IG | L2((2,041), 112 (02)) < 00 (2.26)
if the time T is small enough. Let us verify this fact. Indeed, multiplying equation
(2.25) by 8,V (t) + aV (t) and integrating over x € 2, we have
d
E[EHatVH%Q +IVa V[T + LIVIIG-2 + (f (w®)V, V) + 2ae(V, 8, V) +

+ay[[V[72] + 2(y — a2)|8:V |72 + 20|V, V(|72 +
+ 20 L||V|[5-1 + 2a(f (w(t)V, V) = 2(G, 8V + aV) + (f" (w())dew(t), [V ).
(2.27

We denote the expression [ -] by Ey (t) and assume that L is large enough so that
1
(F'w®)V, V) + 5Vl + LIVIE-2) >0 (2.28)

(see (2.14)). Then, analogously to (1.12) and (1.13), there exists a sufficiently small,
but independent of ¢ and L, parameter a > 0 such that

CrH EldV Iz +IV(OIF) < Bv(t) < CielldV @)z + IVOIIF)  (2:29)

(here we have implicitly used the fact that ||w(t)||gz is uniformly bounded with
respect to €) and

& By (1) +aBy (1) < hit) = CUGOIFa+ (7" (w()Dew(r), V) =S VI, (230

where the constants C' and C depend on L, but are independent of e. Convergence
(2.11), together with embedding H2(Q) C C(Q) and estimate (2.9), imply that

h(t) < CIIG@IL2, (2.31)

if t <T and T is small enough. Applying Gronwall’s inequality to (2.30) and using
(2.31) and (2.29), we obtain

t
elldeV Oz + IV E)IFn < C/ e NG 12 ds, < T, (2.32)

where C depends on L, but is independent of . Thus, the solution of (2.25) is
unique. Moreover, multiplying now equation (2.25) by —A,(8;V + aV), inter-
preting the term f/(w)V as an external force, and using estimate (2.32), we have,
analogously

t
elloeV Ol + IV O)llz < Cl/ e NGO ds, ¢ < T, (2.33)

—00
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where C is also independent of €. Estimate (2.33) implies that
N0V (Ol + VOl < CaG g nom ey t<Te (239

and, consequently, the variation equation (2.25) is indeed uniquely solvable in space
(2.23) if T is small enough. Thus, applying the implicit function theorem to equation
(2.22), we derive that, for a sufficiently small T € R, there exists a solution &y € @7
of problem (2.22). Moreover, since the constant Cy in (2.33) is independent of €
then,

elloeW Iz + W O3 < Qrlllgllee), t < T, (2.35)

where the function )7, depends on L, but is independent of £ and

tim_ |2, (1)1 = 0 (2.36)

(due to convergence (2.24)). Returning to the function v(t) and taking into account
the estimates for w(t) obtained in Lemma 2.2, we finally have

eldw®zn + ol < Qlgllze), ¢t <T =T(L,e,u), (2.37)
where the function @ is independent of € and

t_l}r_noo [|0sv(t)|| g2 = 0. (2.38)

Thus, there only remains to estimate the H2?-norm of d;v(t). To this end, we
differentiate equation (2.5) by t and set ¢(t) = 0;v(t). Then, we have

07 ¢ +V0p — Do+ L(=Da)¢ = Hy(t) := 0h(t) — f'(v(t)Bev(t).  (2.39)
It follows from (2.4) and (2.38) that

lim|[Hy (6)]1 = 0. (2.40)

Equation (2.39) has the form of (2.25) with f = 0 and, analogously to (2.33), we
derive

t

ellded® 7 + oz < 01/ eI Hy () |7 ds, ¢ <T. (2.41)
Since H?() C C(2), then (2.40) and (2.41) imply convergence (2.7) and estimate
for O,v(t) in (2.6) and Lemma 2.1 is proven.

We are now ready to complete the proof of Theorem 2.1. In order to do so, we
need to prove that u(t) = v(t), for ¢ <T'. Indeed, let &, (t), t > ti, be a sequence
of Galerkin solutions, which approximates the function &, € K.. We recall that,
due to Theorem 1.1

ty = —00, & =0— lim &, , (2.42)
k—o00 k

and the sequence &y, () = & is uniformly bounded with respect to k. We also
consider a sequence of functions

v, (t) :== Pyo(t), t<T, (2.43)
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where the function v(t) is constructed in Lemma 2.1. According to Lemma 2.1,
solution &,(t) is bounded in E' as t < T and, consequently

i {|€oy, = &olloy((oon,m) =0 and - lim flon, —vlle((—co,11x0) = 0. (2.44)

Moreover, since d;v(t) is also bounded in H?, then
. {|8con, — Opvlloy((—oo,mix0) = 0 (2.45)

(these convergences are standard corollaries of the embedding H?(Q2) CC C(Q2) and
of the fact that the convergence of Fourier series is uniform on compact sets).

We now set U(t) := u(t) — v(t) and Un, (t) := un, (t) — vn, (t). Then, the last
function satisfies the equation

E@?UN,C + ’yatUNk — AxUNk-i-
+ PNk (f(UNk (t) + UNk) - f(ka (t))) + L(_Az)_lUNk =
= hn, (t) := Py, (f(0(t) — f(on, (1)), Euw, (t) == & — Pn, Eo(ti).  (2.46)

Moreover, due to convergences (2.44), we have

AN llcy((—com1x0) =0 and |[[€uy, (tk)llEe < C, (2.47)

lim
k—o0

where C is independent of k. Multiplying now equation (2.46) by 0,Un, (t)+aUn, (t)
and setting

By, (t) = ell0Un |72 + IVa U, lIz2 + LIUN 71 + 206Uy, 0:Un )+
+ayllUn 172 + 2 (Flow, (t) + Un,) = F(on, (1) = (o, ())Un,, 1), (2.48)

we derive the identity

d
ZBuy, () +aBuy, (t) = Huy, (), ¢<T, (2.49)

Hyy, (8) = =2y = 3ae)[|0:Un, II72 — allVaUn, |I72 — a LU, |71+

20 (F(ka (1) + Uny) — F(uom, (8)) — F(om, () Uns —

= (f(on, (t) + Un,) — f(on, (8)Uny 1> +20%(Un,, 0:Un,,) + &*H||UN, |72+

+ 2(hNk (t)7 8tUnk + aUNk)+

+2 (f(ka (t) + UNk:) - f(ka (t)) - fl(ka (t))UNk ) atka (t)> : (250)

In order to estimate function (2.50), we need the following proposition.
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Proposition 2.1. Let the function f satisfy assumptions (0.3). Then,
Fv+w) — F() — f(o)w > —=K|w]* + &, lw*(Jo|P + |wPT), Vv,w e R, (2.51)

where the constant K is the same as in (0.3) and &, is some positive constant
depending only on p. Moreover,

@y (w) := F(v+w) - Fv) = f)w = (f(v +w) = f(0))w <

<

2| =

wf? = S [wl*(JoP* + wlP*),  (2.52)
where &, is positive and depends only on p. And, finally
|(f(v+w) = f(v) = f'(v)w] < Clwl 1+ [v? + w]P), (2.53)

where the constant C is independent of v and w.

Proof of Proposition 2.1. Estimate (2.53) is an immediate corollary of assumption
(0.3)(2). Let us now verify (2.52) using the assumption (0.3)(3). Indeed,

1 1
D, (w) :/ O Py (sw)w ds = —|w|2/ sf'(v+ sw)ds <
0 0
< ol — 88,00l D, (254)

1 1
Bp(z,y) := / slz — sy|PTt ds > </ s|z—sy|ds>
0 0

The integral in the right-hand side can be computed explicitly:

! §—4 ifr>y, ~2-2
/siw—smdSZ{Q i He2u L 2V20 ) @se)
0 L2x/y)® = 3(x/y)+2) ify>z, 12

where
p+1

(we recall that z,y > 0). Estimate (2.52) is an immediate corollary of (2.54) and
(2.54"). Let us now verify (2.51). Indeed, using assumption (0.3)(3), we have

Flv+w)— F) — f(v)w :w/o [f(v+ s1w) — f(v)]ds; =

1
= |w] / (v + s1s2w) dsy dsg > —K|w|2 +08,(Jv|, |wl]), (2.54")
o Jo

where

Lot L ~ p+1
b= [ [ le— s dsids > () 2
0 0
+1

1 p+1 1 P
> (/ Bi(z, s1y) dsl> > 61'0 </ (z + sy) ds) > 51','(1“?*1 +yP .
0 0

Inserting this estimate into estimate (2.54"), we derive (2.51) and finish the proof
of Proposition 2.1.
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It now follows from estimates (2.52), (2.53) and our choice of L (see (2.14)) that
there exist positive constants ay, C' and C; (which are independent of Un, , vn,, k,
L and ¢) such that

«
Hu, (1) < =S 0N )30 — 201 (Un, (01, 1)

a1 L
— 22 NUN Ol + Cllh, (Bl 2+

+ Cilldwn, O)llz (IUn, ) (1 + o, (O + [Un, (8)[P), 1) . (2.55)
According to Lemma, 2.1, the derivative d;v(t) tends to zero in L*(Q) as t - —oo
(see (2.7)) and the L*°-norm of v(¢) remains bounded as ¢ — —oo. Consequently,

due to convergences (2.44) and (2.45), there exists time 7’ < T such that, for a
sufficiently large k, we have

Hyy, (t) < Cllhn ()7, t<T". (2.56)

Applying now Gronwall’s inequality to relation (2.49), we obtain

t
Euy, (t) < Euy, (t)e 7 + O [ e ||, (s)]172 ds, (2.57)

ty

where ¢ < T', and the constants C' and a > 0 are independent of k. Using estimate
(2.51) and our choice of exponent L (see (2.14)), we derive from (2.57) that

elldeUn, (D)I72 + 1UN, (B)II7 <

t
< O (14 180 + on, (61,0 ) €708 420 [ €720y, (s)]12. ds,
b (2.58)

where the constant Cs is also independent of k. Passing to the limit & — oo in (2.58)
and using (2.47), the fact that £ is uniformly bounded in E (due to Theorem 1.1)
and &y, (tx) is also uniformly bounded in E (due to Lemma 2.1 and convergence
(2.44)), we finally derive the estimate

elldU Oz + UM <0, for ¢ <T"

and, consequently, u(t) = v(t) for + < T'. Theorem 2.1 is proven.

Corollary 2.1. Let the assumptions of Theorem 2.1 hold and let &, € K. be a
bounded complete weak solution of problem (0.1). Then

lu(@®)l7r2 + 0@z < QUlgllz2), t < Tu, (2.59)

where the monotonic function Q is independent of .

Indeed, estimate (2.59) is an immediate corollary of (2.6) and the fact that u(t) =
v(t), for t < Ty,.

To conclude the section, we prove that the solution &,(t) € K. is unique until it
is regular.
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Theorem 2.2. Let the assumptions of Lemma 1.1 hold and &, € K. be a complete
weak solution of (0.1) which satisfies (2.59), fort < T. We also assume that &, € K.
is another complete weak solution which satisfies

Eu(t) =&,(t), forall t<T' <T. (2.60)

Then, necessarily
Eu(t) =& (t), forall t<T. (2.61)

Proof. The proof of this theorem is very similar to the end of the proof of the
previous theorem. Indeed, let &y, () be a sequence of Galerkin solutions which
approximates the initial solution &,(¢), see Theorem 1.1. Let also

Son, (1) = Py &u(t), U() == u(t) —v(t), Uni(t) :=un, () —on, (1) (2.62)
Then, analogously to (2.46), function Uy, (t) solves the equation

E@?UN,C + ’yatUNk — AxUNk-i-
+ P (f (o, (8) + Uny,) = fow, (1)) + L(=Ay) "' Un, =
= hy, () := P (F(0(1) = F(om, (1) + L(=20) 7" (u, (£) = v, (2)),

Eun, (k) == & — Pn, &u(tr),  (2.63)
where, in contrast to (2.46), external forces hpy, (t) contain the additional term
L(=A,) " (un, (t) — vn, (t)) and, consequently, instead of (2.47), we have the con-
vergence

hy, = L(=A,) H(u —v) strongly in Cipe((—o0, T], L*(Q))
and ([ lley((—oo,1,22(0) < C1,  (2.64)
where the constant C; is independent of k (here we have implicitly used embedding
(1.20) in order to prove the convergence uy, — u in Cjoe((—00,T], L?(2))).
Since equation (2.63) has the form (2.46), then, multiplying it by 0,Un, (t) +

aUn, (t), integrating over z € Q and arguing as in the derivation of (2.49), we
obtain the estimate

d
aEUNk (t) + OéEUNk (t) = HUNk (t), t<T, (2.65)

where the functions Ey, (t) and Hy,, (t) are defined by (2.48) and (2.50) respec-
tively. Moreover, analogously to (2.55), there exist positive constants oy, C' and C;
(which are independent of L) such that, for all t <T'
a
Hury, () < = 21U () = 200 (10w, (975, 1)

a1 L
— 22 NUN Ol + Cllh, (Bl 2+

+ Cilldvon, Ol (IUn, O (1 + Jon, (O + [Un, (HI7),1), (2.66)

We note that, in contrast to the case of (2.55), the function v(t) is now independent
of the parameter L. That is the reason why it is possible to fix a large L ( depending
on Q(|lgl|z2) in the right-hand side of (2.66)) such that

Hyy, (t) < Cllhuy, ()||72, forallt < T, (2.67)
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without decreasing the time interval ¢t € (—oo,T| (in contrast to (2.55)). Applying
now Gronwall’s inequality to identity (2.65) and using (2.67), we derive estimate
(2.57), for every t < T. Passing to the limit ¥ — oo in estimate (2.57) and using the
convergence (2.64) and the fact that u(t) = v(t) for t < T', we obtain the estimate

el|Opu(t) — O (t)||7> + llut) — v(®)|3n <

< 201 / e I [(=A,) M(uls) - v(s))Ia s, (2.68)

U

which is valid for every ¢t € [T, T|. Applying again Gronwall’s inequality to relation
(2.68) and noting that u(T") = v(T"), we finally derive that v(t) = u(¢), for all
t € (—00,T] and prove Theorem 2.2.

Remark 2.1. Theorems 2.1 and 2.2 show that the only way for a singular weak
solution to appear on the attractor A" is by a blow up of the corresponding strong
solution belonging to the attractor. In the next section, we will show that this
scenario is also impossible if ¢ is small enough and we thus verify that the attractor
At consists of global strong solutions which satisfy (2.59), for every t € R.

3. The global existence of strong solutions. In this section, we prove the
existence of a global strong solution of problem (0.1) if € > 0 is small enough and
the E'-energy of the initial data is not very large. Combining this result with the
results of the previous section, we prove that the attractor AL" consists of strong
global solutions if € > 0 is small enough. The main result of the section is the
following theorem.

Theorem 3.1. Let the assumptions of Lemma 1.1 hold. Then, there exist a small
positive €9 and a nonincreasing function

R :(0,g0] — Ry, shg(l) R(e) = oo, (3.1)

such that, for every e < g9 and every initial data £,(0) € E* satisfying

1€a(0) 11 2 := (<l1Bsu(0) [ + (0] %2)

< R(e), (3.2)
there exists a unique global strong solution &, € L®(Ry,E') of problem (0.1) and
the following estimate is valid:

t+1
1€u ()] + /t 18su(s) 7 ds < QUIE(O)llpr )e™ + Q(llgllz2),  (33)

where the positive constant a and the monotonic function QQ are independent of €.

Proof. We divide the proof of the theorem in two steps. In the first step, we prove
that the solution &, () of the hyperbolic equation (0.1) is close to the appropriate
regular solution of the limit parabolic equation and, in the second step, we deduce
from this fact that the strong solution of (0.1) also exists globally if € > 0 is small
enough.

We first note that, due to the embedding H?(Q) C C(Q), the strong solution
£u(t) € EY exists locally (for t < T'(£,(0))) and is unique on the existence interval.
That is the reason why it is enough to derive a priori estimate (3.3) under the
assumption that the strong solution &,(t) exists. We also note that, since the



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 23

solution &,(t) is assumed to be regular, then we may multiply equation (0.1) by
Oru(t) + au(t) (without using the Galerkin approximations) and derive, arguing as
in the proof of Lemma 1.1, that

t+1
1€ ()l + / 18eu(t)|I72 ds < CllE(0) T ce™ + C (L + llgll7=),  (3:4)
t

where the positive constants C' and « are independent of € (as mentioned in Remark
1.2 for the strong solutions, we have equality (1.36) and, consequently, (3.4) can be
considered as a corollary of (1.35)).

Moreover, as in the proof of Theorem 2.1, it is convenient to modify the initial
equation (0.1) as follows:

e07u +yO0u — Ayu + f(u) + L(—AL) 'u = hy(t) := g + L(—A,) u(t),
>0, &(0)=¢" = (uo,up), ulyy =0, (3)

where the constant L satisfies (2.14). Then, due to (3.4), the external forces h,(t)
satisfy

t+1
1ha(B)][Z2 + /t 10k (3)[[Z> ds < C (1 + llgllze + 1€ (0) I ™), (3.6)

where C' and « are independent of €.
We now consider the limit parabolic equation which corresponds to (3.5) ase =0

Y0 — Apv + f(v) + L(=A,) tv = hy(t), t>0, v|t:0:u0, v|BQ:0. (3.7)

Equation (3.7) is of the form (2.8). Consequently, using estimate (3.6) and arguing
as in the proof of Lemma 2.2, we derive that v(t) € H>(Q) and

lo(@®)lIF= + 18w ®)]72 < QUIEO) |51 )e™ + C (1 +[lgll72), (3-8)

where the monotonic function ¢ and the constants C' and « are independent of €.
The following Lemma shows that the solution u(t) is indeed close to v(t) if € is
small enough.

Lemma 3.1. Let the assumptions of Theorem 3.1 hold and let &,(t) and v(t) be
strong solutions of (0.1) and (3.8) respectively. Then, the following estimate is valid:

lu(t) = v(@®)IZ> < & (QUIE(0)|zr.)e™" + C(1+[lgllz2)) , (3.9)

where a monotonic function QQ and positive constants C' and a are independent of €.

Proof of Lemma 3.1. We set w(t) := u(t) — v(t). Then, this function satisfies the
relation

YOw — Apw+[f(v(t) +w) = f ()] + L(—Az) 'w = —edfu(t), w|,_, =0. (3.10)

Multiplying equation (3.10) by w(t), integrating over z € 2 and using (0.3)(3) and
(2.14), we have

%[VIIU}(t)IIZ’Lz + 2e(Qpu(t), w(t))] + alyllw )7 + 2e(Beu(t), w(t))] <
< H(t) = Ce (|0w(t)] + [w(®)], [Oru(®)]),  (3.11)
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for some o > 0 and C' > 0 which are independent of . Moreover, according to (3.4)
and (3.8), we have the estimate

t+1

) H(s)ds < e (QIEu(0)llmr )™ + C(1 + llgliz2)) » (3.12)

where @, C and « are independent of €. Applying Gronwall’s inequality to (3.11)
and taking into account (3.12) and the fact that w(0) = 0, we obtain

Vw72 + 26(0u(t), w(t) < e (QUIE)IE)e™ +C (1 +1lgllz2)) ,  (3.13)

where ), C' and « are independent of €. There remains to note that
Y _
—2e(0u(t), w(t)) < Sllw®)lIz2 + 2677 (lldru®)lIz2) - (3.14)

Indeed, estimate (3.9) is an immediate corollary of (3.13), (3.14) and (3.4) and
Lemma 3.1 is proven.

We are now ready to complete the proof of the theorem. To this end, we interpret
equation (0.1) as a linear one

e07u +v0u — Apu = g — f(u(t)), &.(0) = €°. (3.15)

Multiplying equation (3.15) by —A,(Owu(t) + au(t)), integrating over 2 € Q, and
arguing in a standard way, we derive the estimate

%Ei(t) +allVediu(t)|[72 + aBy(t) < C (I @Ol + llgllz=) , (3.16)

where

B, (t) = el Vodru(t)l|72 + 1Az u(t) |72+
+2ae(Vou(t), Va0uu(t)) + 2(g9, Agu(t)) + 2llgl7,  (3.17)

and the constants & > 0 and C' > 0 are independent of e. We also note that (3.17)
implies the estimates

Cr u®iEn - < Eu(t) < Cr(ll€u(®)lBe . + llgllZ2)- (3.18)

So, there only remains to estimate ||f(u(t))||z:- To this end, we use the following
trick:

1F @) < 1f@®) = O + 1 @O, (3.19)

where v(t) is the solution of limit parabolic problem (3.7) constructed in Lemma
3.1. Then, on the one hand, due to estimate (3.8) and embedding H?(Q2) C C(Q),
we have

1f @) < QUIEO) Iz e + Q(llgll72), (3.20)

for an appropriate monotonic function ) and positive constant a > 0 which are
independent of € and, on the other hand, using assumption (0.3)(2) and embedding
H?(Q) c C(Q), we obtain

£ () = FEEIE < Clu) = v@l (1+ I + w3 ). @.21)
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Using the interpolation inequality
lu(t) = o) < Cllu(t) = v®)llz2llult) = o), (3.22)

estimate (3.8) for v(t), estimate (3.9) for the L2-norm of u(t) — v(t) and estimate
(3.18) for the H2-norm of u(t), we finally obtain

C (I1f @)z + gllZ) <

< QUEON) + QDB + QO e~ + Qllgl)

for an appropriate monotonic function () and a positive constant a which are inde-

pendent of e. Thus, inserting (3.23) to the right-hand side of (3.16), we derive the
differential inequality for E():

d
—E't ELN(t) <
7 W (1) +aE,(t) <

2 (QUIEO) g <) + QUlgl =) [EL (D2 + QIEu(0) |1 2)e ™" + Q(“%L;ij

In order to derive the assertion of the theorem from inequality (3.24), we need the
following proposition.

Proposition 3.1. Let the function y(t) > 0 satisfy the inequality:
V(1) +ay(t) — A+ By@®]" — Ae @t —B <0, >0,  (3.25)

with0 < a<1, A,B>0,m>1 and y(0) < A+ B. We also assume that
3 m—1
gl/? (E) (A+B)™ < 1. (3.26)
Then, this function satisfies the following inequality
3
y(t) < po(t) = = (Ae’“tﬂ + B) , >0 (3.27)
Indeed, assumption (3.26) guarantees that

yh () + oo (t) — /2 (A + B)[yo(t)]™ — Ae™* =B >0, t>0

and, consequently, applying the comparison principle to (3.25), we derive esti-
mate (3.27).
Applying now Proposition 3.1 with

y(t) = Ey(t), A:=Q(I&u(O)lr ), B:=Q(lgllzz), m:=p+3/2,
to inequality (3.24), we have

3
Elft)< =
HOES™

(QUIEO) 1 e + Qllgllz=)) (3.28)
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and the desired function R(e) can be found as a solution of the equation

p+1/2
o172 <§> (Q(RE)) + Q(llgllz=))P /% = 1.

a

The desired estimate for the integral of d;u(t) follows from (3.16), (3.23) and (3.28)
and Theorem 3.1 is proven.

Remark 3.1. We have constructed the global strong solution of equation (0.1)
under assumption (3.2) only. Moreover, since the solutions of (3.24) may blow up
in finite time, then our method gives no information on the strong solutions of (0.1)
whose initial E'-energy is larger than R(g).

We now consider the R-ball in E*

B*(R,E") :={" € E" : ||€°]|m - < R}.
Then, due to Theorem 3.1, the solving operator
S::B°(R,E") = E', Si€,(0):=&,(t), R< R(e), (3.29)

where &,(t) is a unique strong solution of (0.1), is well defined. Moreover, due to
estimate (3.3)

IS (B*(R, EM) g1 < Q(R), t€Ry, (3.30)
for an appropriate monotonic function Q We now set
o = { U S; (B*(R,EY)) | (3.31)
teER 4 B

where [-]g1 denotes the closure in the space E'. Then, according to (3.30)

Bxll5 - < Q(R) (3.32)
and, consequently, we have proven the following corollary.

Corollary 3.1. Let the assumptions of Theorem 3.1 hold. Then, there exist a small
positive g, < €9, a nonincreasing function

Ry : (0,ep] = Ry, lim Ro(e) = oo (3.33)
e—=0
and a bounded closed subset By (=) in E' which satisfies
B*(Ro(e), E') C By, (o) € B*(Q(Ro(e)), E') (3.34)

such that, for all e < gf, (3.29) defines a dissipative semigroup in the phase space

BE ( ):
Ro (e
Stg : B&;{O (e) — B&;{g () Stg s = Stg o Si, t,S > 0. (335)

Indeed, the desired function Ry(e) can be found from the equation
Q(Ro(e)) = R(e), &< &g <eo,

where R(e) is the same as in Theorem 3.1.
The following corollary establishes the existence of a global attractor A% C E!
for semigroup (3.35).
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Corollary 3.2. Let the assumptions of Theorem 3.1 hold. Then, for e < o, semi-
group (3.35) possesses the compact (in E') global attractor A9 :

S; A9 = A9 and tlim dist g1 (S; By, (E),Agl) =0, (3.36)
which satisfies .

Agl = HO’Csa (337)
where K. C Cy(R, E') is the set of all the global strong solutions of (0.1) belonging
to IB%O (o)

K. := {& € Co(R, E"), u(t) solves (0.1) and 1€u(®)||Er,e < Ro(e), t€ R} (3.38)

Moreover, every &, € K. satisfies the estimate

10eu() 772 + [lu(®)]72 < QUllgllz2), tER (3.39)

where the monotonic function Q is independent of .

Proof. The existence of the global attractor for Sf in E' has been proved in [3]
for the subcritical case p < 1 (see also [11]). We note however that Theorem 3.1,
together with embedding H?(Q2) C C(Q), give the uniform (with respect to &)
estimate for the C-norm of solution u(t) in the supercritical case as well. Thus, the
growth rate of the nonlinearity f becomes nonessential, due to this estimate, and,
repeating word by word the proof performed in [3], we establish the existence of the
global attractor A¢'. Descriptions (3.37) and (3.38) are the standard corollaries of
the attractor’s existence theorem. So, there remains to verify estimate (3.39).
Indeed, let &, € K. Then, due to estimate (3.3)

t+1
elldeu(®) 7 + lu(®)|7 + 2107 u®)]l7- +/t 10eu(s) 172 ds < Q(llgllz2), (3.40)

where the function @ is independent of €. Differentiating now equation (0.1) with
respect to t and setting 0(t) := dyu(t), we obtain the linear equation

€070 + 70:0 — A = hy(t) == —f'(u(t))Ou(t), t€R (3.41)

Moreover, due to (3.40) and embedding H2(Q) C C(Q2), we have the estimate

t+1
/ ()| ds < Qu(llgllez), ¢ € R, (3.42)
t

for an appropriate monotonic function (7 which is independent of €. Estimate
(3.42) implies in a standard way (multiplying (3.41) by —A,(8:0(t) + af(t)) and so
on, see e.g. [17]) that

& € Co(R,E") and  [[&(t)llp2,c < CQ1(llgllz2), (3.43)

where C' is independent of . Estimate (3.39) is an immediate corollary of (3.40)
and (3.43) and Corollary 3.2 is proven.

We are now ready to verify that the trajectory attractor A" constructed in
Section 1 consists of strong solutions.
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Theorem 3.2. Let the assumptions of Lemma 1.1 hold. Then, there exists a small
positive constant €y such that, for every e < &g, the sets K. and K. defined in
Theorem 1.1 and Corollary 3.2 respectively coincide:

K. =K.. (3.44)
Thus
K. Cc Cy(R,E"), A" C Cy(Ry,E"), (3.45)

and every &, € K. satisfies (3.39). Moreover, the attractors A3 and AL satisfy the
standard relation
AL =TTy Alr. (3.46)

Proof. According to Theorem 1.1 and Corollary 3.2, it is sufficient to verify (3.44).
Moreover, since K. consists of strong complete bounded solutions which are unique
(see e.g. the proof of Theorem 2.2) (and, consequently, can be approximated by
Galerkin solutions), then

K. c K.. (3.47)

So, there remains to verify the inverse embedding. Indeed, let &, € K. be an
arbitrary complete weak solution of (0.1). Then, due to Theorem 2.1, there exists
a time T' = T, such that &,(t) € E', for t < T, and

1€u(®ller e < QUlgllL2), t<T, (3.48)

where the function () is independent of €. We now assume that the parameter
0 < e < gg is small enough so that

Q(llgllz2) < Ro(eo), (3.49)

where Rp(e) is the same as in Corollary 3.1 (such g¢ exists due to (3.1) and the
fact that @ is independent of €). Then, due to Theorem 3.1, there exists a unique
strong global solution v(t), t > T', of problem (0.1) with the initial condition

& |t:T = &u(T). (3.50)
We now define a new solution &;(t), t € R, of problem (0.1) via

ﬁ(t):{u(t) ift<T,

v(t) ift>T. (3:51)

Then, due to estimates (3.3), (3.48) and (3.49), we have & € K. and, consequently,
due to (3.47), & € K.. Applying now Theorem 2.2 to the solutions u(t) and o(¢),
we conclude that u(t) = 0(t), for all ¢ € R, and Theorem 3.2 is proven.

In the sequel, we need also more regular (than ¢, € E!) strong solutions of
equation (0.1). We note however that we have the regularity g € L?(Q) only and,
therefore, we cannot expect that u be more regular than u(t) € H?() even for
smoother initial conditions. In order to overcome this difficulty, we fix an arbitrary
equilibrium zo € H?(Q) N H (). Then, the function 2o = z¢(z) solves

—Azzo + f(20) = g, Zo|BQ = 0. (3.52)
Let us introduce the space
E; = (20,0) + [H*(Q) N {uo| 5 = Astio] ,, = 03] x [H?*(Q) N Hy()].  (3.53)

It is not difficult to see that E; is independent of the concrete choice of the equilib-
rium zp and depends only on g. The following corollary gives the global solvability
of problem (0.1) in the phase space Ej.
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Corolary 3.3. Let the assumptions of Corollary 3.1 hold. Then, for every
£u(0) € E2 N By, (), (3.54)

there exists a unique strong solution &,(t) € Eg of problem (0.1) and the following
estimate is valid:

t+1
1€u(®)l 2 - +/t 10ru(s)lI= ds < QUUIEu(0)][m2,-)e™ + Q(llgllz2),  (3.55)

where
16u(®lI 2 - == ellBeu(®)l[7r + llu(t) — zoll (3.56)

and a > 0 and the monotonic function @) are independent of € < gg.

Proof. Let v(t) = u(t) — zp. Then, this function satisfies
{ e0}v + 0w — Ayv = h(t) := f(20) — f(u(t)), (3.57)
Vg = Bavfyg =0, Oy =0, &l,_y=&u(0) = &o-

According to estimate (3.3) and the fact that H?(Q2) C C(Q), we have h(t) €
H?(Q) N H}(Q) and the following estimate holds:

1Bl < QUIEu(0) I, )e™" + Q(llgllz2). (3.58)

Multiplying equation (3.57) by A2(9;u + au) and arguing in a standard way (see
e.g. [11]), we derive estimate (3.55) and Corollary 3.3 is proven.

Remark 3.2. Theorem 3.1 and Corollary 3.2 establish the uniqueness of the global
strong solution &, (t) := S;&u(0), for £,(0) € By (., in the class of strong solutions
&u € Cy(Ry, EY) only.

In fact, we do not know whether or not this solution is unique in the class of
weak solutions ¢, € KX even in the case where &,(0) € AJ.

Remark 3.3. The proof of Theorem 3.1 is independent of the results of Section
2 and requires only that ¢ < 1 and the global solvability of the limit parabolic
equation at € = 0. In particular, this result does not require the finiteness of
the dissipation integral (1.56). Consequently, one may extend Theorem 3.1 and
Corollary 3.2, for instance, to the case of systems of hyperbolic equations in the
form (0.1) with nongradient nonlinearities or for a certain class of nonautonomous
equations in the form (0.1) for which the dissipation integral is infinite.

In contrast to this, we have essentially used the dissipation integral in order to
prove that there are no any bounded singular weak solution &,(t), t € R, of problem
(0.1) (which does not belong to K.) if € > 0 is small enough.

Remark 3.4. The limit value g of the parameter €, for which Theorem 3.2 is valid,
obviously depends on the other parameter v > 0 of equation (0.1): €9 = go(7).

Rescaling however the time ¢ — ¢’ in equation (0.1), we derive again an equation
of the form (0.1) with 4/ := 1 and &' := ¢/+%. Therefore, Theorem 3.2 remains valid
if we replace the assumption € < gg by

% < eo(1), (3.59)
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with small enough eo(1) which is independent of . In particular, the trajectory
attractor AY" of equation (0.1) consists of strong solutions if ¢ > 0 is fixed and
v > 0 is large enough.

4. The regular attractor and the exponential attraction property. In this
concluding section, we give a more detailed study of equation (0.1) in the case where
all the equilibria of equation (0.1) are hyperbolic. We extend to the supercritical
case the results on the regular structure of 49" and on the convergence of A to
the attractor Agl of the limit parabolic problem. Since these results are well known
in the subcritical case and the rate of growth of the nonlinearity is nonessential if
one already has a-priori estimates in C' (which are obtained in Theorem 3.1) then,
in order to avoid the technicalities, we give below only the rigorous statements of
these results. As the main result of the section, we finally establish that all weak
solutions of (0.1) are attracted exponentially in the strong topology of E to the
global attractor AZ'.
We denote by R C E the set of all the equilibria of equation (0.1):

R :={(20,0) € E, Ayzo— f(20) =g} (4.1)

Then, obviously, R is independent of €. Moreover, since zg solves an elliptic bound-
ary value problem, then 2y € H?(Q) and

lz0ll> < C(1+ llgllz2), (4.2)

for every zg € R (see e.g. [24]).
The main additional assumption of this section is the following:

R:={z}Y, and o(A, — f'(z))N{ReX =0} = @. (4.3)
Then, as known (see e.g. [24]), the following value is finite:
ind™(2;) :== #{A € 0(A, — f'(2:)) :ReX >0} < o0 (4.4)

and it is called the instability index of the hyperbolic equilibrium z; € R.
The following theorem extends to the supercritical case the well-known descrip-
tion of the structure of A9 (see e.g. [3]).

Theorem 4.1. Let the assumptions of Theorem 3.2 hold and let, in addition, as-
sumption (4.3) be valid. Then, the attractor A9 of semigroup (3.35) possesses the
following description:

A = U M (z0), (4.5)

where Mt (2;) are the ind™ (2;)-dimensional C"-submanifolds of E* which consist
of all the strong solutions of (0.1) defined for t € R and converging to (2;,0) as
t — —oo:

M (z) = {u € Ko+ lim [lu(t) = (20,0151, = 0}. (4.6)

Moreover, MZ*(z;) is C'-diffeomorphic to Rind™ () gpd every solution &, € K.
stabilizes to different equilibria as t - £oo:

lim ||€,(t) — (24,0)||p1 =0, 24 €ER, 24 # 2_. (4.7)

t—+o00
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Proof. The proof of Theorem 4.1 is given in [3] in the subcritical case p < 1. We
note however that Theorem 3.1 gives the uniform (with respect to €) estimate for
the C-norm of trajectories of semigroup (3.35) and this estimate makes the growth
rate of the nonlinearity f unessential for further investigation of the attractor A2
of semigroup (3.35). Thus, repeating word by word the proof of Proposition 4.1 in
the subcritical case (see [3]) and using this estimate, we extend this theorem to the
supercritical case. Theorem 4.1 is proven.

The next theorem establishes that E'-bounded subsets are attracted exponen-
tially to the attractor A¢'.

Theorem 4.2. Let the assumptions of Theorem 4.1 hold. Then, for every B C
B%, () the following estimate is valid:

dist 1 o (SEB, A%) < Q(||Bllpr.c)e ", (4.8)

where the constant § > 0 and the monotonic function @ are independent of € < &g
and B and distg1 . denotes the nonsymmetric Hausdorff distance in metric (3.2).

As in the previous case, the proof of the uniform exponential attraction prop-
erty is given in [3] for the subcritical case and the supercritical growth rate of the
nonlinearity can be easily overcome, due to the uniform estimate on the C-norms
of trajectories of (3.35) which is proven in Theorem 3.1.

Let us establish now the convergence of the global attractors A% to the global
attractor A9 of the limit parabolic equation

you — Agu + f(u) =g, u|8Q =0, u|t:0 = ug. (4.9)

We recall (see e.g. [3] or [27]) that equation (4.9) possesses a compact global at-
tractor A9 in the phase space H2(Q)N HE(Q) (even without any growth restriction
on the nonlinearity f).

As usual (see [3]), in order to compare the attractors A2 and A9, we introduce
the extension of A9 to the phase space E by

A8 = {(ug,v0) € E s ug € A%, ~yvo — Apug + f(uo) = g}. (4.10)
The following standard theorem gives an estimate of symmetric Hausdorff distance
between A¢' and AJ' in the space E'.
Theorem 4.3. Let the assumptions of Theorem 4.1 hold. Then, Agl € E' and the
following estimate is valid:

diStsymm,HQ(Q)XHl(Q) (Agla'Agl) < CSH: (411)

where C' > 0 and 0 < k < 1 are independent of €.

As before, estimate (4.11) is well known for the subcritical case p < 1 (see e.g.
[3] or [11]) and the supercritical growth rate of f is now nonessential, due to the
uniform C-estimate of solutions proved in Theorem 3.1.

We are now ready to formulate the main result of the section which establishes
the analogue of estimate (4.8) for the weak solutions &, € KX of equation (0.1).
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Theorem 4.4. Let assumptions (0.2)-(0.5) and (4.3) hold. Then, there exists a
small positive number g > 0 such that, for every ¢ < o and every M -bounded (in
the sense of Definition 1.3) subset B C K, the following estimate is valid:

supe, ep distm,e (€u(t), AL) < QIBllar)e™, (4.12)
where the constant B > 0 and the function () are independent of € and B and distg .
denotes the nonsymmetric Hausdorff distance with respect to norm (1.4).

Proof. We divide the proof of the theorem into a number of lemmata which are
standard for the proof of exponential attraction property of a regular attractor (see
[3]). The first one shows that every trajectory &, € KT stays near the equilibria R
most of the time.

Lemma 4.1. Let the assumptions of Theorem 4.3 hold. Then, for every small
0 > 0 and every large P > 0, there exist

80:80(6,P)>0, T:T((S,P)>0, and 0<60:60(6,P)S6 (413)

such that, for every e < gq and every trajectory &, € K satisfying ||Eu|lpm < P the
following condition is satisfied:

(Uteo,mu(t)) N Os(R, L*(Q) # 2, (4.14)

where Os(V, E) is a §-neighborhood of the set V in the space E.
Moreover, if

u(0) € Os, (2, L*(Q))  and u(ty) ¢ Os(zi, L*(Q)), (4.15)
for some i € {1,--- N} and ty > 0, then, necessarily
u(t) ¢ Os,(z;, L*(Q)), Vt > to. (4.16)

Proof of Lemma 4.1. We adopt the method of [9] to our situation. Indeed, let
us assume that (4.14) is wrong. Then, there exist a sequence €, > 0, &, — 0, a
sequence T3, — oo and a sequence &, € an such that

1€ llar <C - and (Utego,r,1un(t)) N Os (R, L*(Q)) = 2, (4.17)

for a fixed dp > 0. Then, due to estimate (1.35)
EnllBcun ()72 + [lun(®) 7 + lua (@l +/ 18sun(s)l[z2 ds < Cr,  (4.18)
0

where C] is independent of n and e. Thus, without loss of generality, we may
assume that

€, — & weakly-x in L2 (R, Hy(Q) N LPY3(Q)) x L* (R x Q). (4.19)
Using now the compactness of the embedding

{u e LiS.(Ry, Hy () 0 LPF2(Q))} N {dpu € L, (Ry. x Q)} CC
CC {u € Cpe(Ry, H2(Q) n LP35(Q))},  (4.20)
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for every 8 € (0,1) (see, e.g. [8]), we derive from (4.19) that
U, — u strongly in Cp.(Ry, H'=2(Q) N LPF3-5(Q)). (4.21)

The strong convergence (4.21) allows to pass to the limit n — oo in equations (0.1)
for u,(t) in a standard way and to establish that the limit function wu(¢) satisfies
the limit parabolic equation (4.9) and satisfies the estimate

HUWN%1+Hu@W§ﬁ3+1A 18eu(s)||7> ds < C. (4.22)

Since u(t) solves the limit parabolic equation (4.9) which possesses a global Liapunov
function (see e.g. [3]), then we have the convergence to one of the finite number of
equilibria:
lim ||u(t) — zo||z2 =0, for some zy € R. (4.23)
t—o0

On the other hand, passing to the limit n — oo in (4.17), we have
u(t) ¢ 05, (R, L*(Q)), t€R;. (4.24)

This contradiction proves (4.14).
Assuming now that (4.16) is wrong and arguing analogously, we obtain a homo-
clinic connection
Ziy T Ziy >t Zin = Ziy, Zi, € R, (425)
which consists of solutions of the limit parabolic equation (4.9), i.e. there exist
solutions u(t), t € R, of (4.9) such that

i u(®) = 22y, e = lim i (8) = 23,122 =0 (4.26)

(see [9] for the details). There remains to note that (4.25) clearly contradicts the
existence of a global Liapunov function for the parabolic equation (4.9) and Lemma
4.1 is proven.

As usual, Lemma 4.1 implies the following result.

Lemma 4.2. For every 6 > 0, there exist g = £9(d) > 0 and T = T(d) such that,
for every € < ¢ and every trajectory &, € B- C K belonging to the absorbing set
B. defined by (1.44), there exist

K=K,eN, K<#R=N,

a sequence of different equilibria z, € R, k < K, and two sequences of times
T, =T} (), Ty := T (u), for k € {0,--- , K}, such that

Ty =0, Ty =o0, T, =T,  <T, k=1, ,K (4.27)
and
u(t) € Og (2, L*(Q)) if te [T, T, k=1,---,K. (4.28)

Indeed, Lemma 4.2 is a standard corollary of Lemma 4.1 (see e.g. [3] or [9]).
Particularly, Lemma 4.2 shows that the time which the trajectory &, € B, spends
outside of Os(R, L*(Q)) is finite and can be estimated from above in a uniform way

by #R - T(5).
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Asin Section 1, in order to control distance (4.8), we need the following definition.

Definition 4.1. Let &, € K and let ¢, € E be an arbitrary function. Analogously
0 (1.33), we introduce the modified distance My, , () by

M, ,(t) = inf { liminfreo [|€uy, (1) — PN &ollE,e -

=0 = in iy, 600) = B~ lim €1y, (0)}. (120

We also define the M-distance to the set B C E by

M; () := inf M, (1) (4.30)

The following Lemma gives the analogues of estimates (1.34) for the M-distance.

Lemma 4.3. Let &, € K and &, € EY. Then,

||£u(t) - €U||E7E < Mi,v(t) <
S C(MG @) + 1&ollBe) s M7, () < Mg (E+h),  (4.31)

where C' depends only on p. Moreover, if &, € E' is another arbitrary function,
then

My yr0(t) < C (M, () + lléwlipee) - (4.32)

Indeed, estimates (4.31) and (4.32) are immediate corollaries of definition (4.29)
and of the fact that the Fourier series, associated with &,, &, € E', converge strongly
in E.

The next two lemmata allow to control the M-distance of &, € KX outside
Os(R, L*(2)).

Lemma 4.4. Let the assumptions of Theorem 3.2 hold. Then, for every &, € K
and every strong solution &,(t), t € [T,T + s|, of equation (0.1) satisfying

t+1
lo(®)[[% +/t 18v(s)|[32 ds < P < oo, (4.33)

we have the following inequality:
Mzi,v(T+s) (T + S) < C@ u v(T) (T) (434)
where the positive constants C and K depend on P, but are independent of € < &g
and &, € K.
Proof. Let &y, () be a sequence of Galerkin approximations which converge in ©F
to the solution &, (t). Let now vy, (t) := Pn,v(t), Un, (t) := un, (t) — vn, (). Then,
analogously to (2.63)
e0;Un,, +7¥0:Un, — AyUn, +
+PNk(f(UNk(t)+UNk) (ka( ))) + ( )_1UNk =
= h, () := P (f(v(t) = fon, (1)) + L(=As) "  (un, () — o, (1),
uw, (T) = &un, (T) = &uy, ('), (4.35)
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where L > 0 is a large parameter which will be fixed below. As before, multiplying
(4.35) by 0;Un;, (t) + aUn, (t), integrating over z € 2 and arguing as in the proof
of Theorem 2.1, we derive that there exists a positive a > 0 which is independent
of € such that

EEUNIC (t) + OéEUNk (t) = HUNk ), t>T, (4.36)

where Eyy, (t) and Hy,, () are defined by (2.48) and (2.50) respectively and the
function Hy,, (t) satisfies, in addition, inequality (2.66), for every ¢t > T'. Moreover,
since the solution v(t) is independent of L and uniformly bounded in C' (due to
(4.33)) then, there exists Lo = Lo(P) such that, for every L > Lo, we have

Cp Névw, O« < Buy, () < Crllévy, ). (4.37)

where the constant Cp, is independent of £ (see Proposition 2.1). Arguing analo-
gously (2.67) (and using again Proposition 2.1), we derive from (2.66) that, for a
sufficiently large L > Lo(P) (which can be fixed now), the following estimate holds:

Hyy, (t) < Cllhuy, OlIz> + Clldwon, Olln=Euy, (t), t€[T,T+s],  (4.38)

where C = C(P,L) is independent of . Applying now Gronwall’s inequality
to (4.36), using (4.37) and (4.38) and noting that, due to (4.33) and embedding
H?(Q) c C(Q), we have

t
c/ 9von, ()] ds < Cr(t — T + 1). (4.39)
T

If k is large enough, we derive the inequality
1€vn, B < Cliéuy, (D)II}eC1 =T
t
+ C’/T 6(01—a)(t—l) ||hUNk (Z)H%Z dl, (440)

where C' = C(P) and Cy = C(P) are independent of € and &,. Passing to the limit
k — oo in (4.40) and taking into account the fact that

hn, — L(=Ay) *(u — ) strongly in  C([T, T + s], L*(2)) (4.41)

(compare with (2.64)) and that the approximating sequence , () was chosen
arbitrarily, we derive from (4.40) that

u

ME,v(t) (t) < Ce(CI_a)(t_T) Mu,v(T) (T)+

t
+CL/ O D) (= AL) " u(l) — o) |22 dl.  (4.42)
T
Using now estimate (4.31) and applying again Gronwall’s inequality to (4.42), we

finally derive that
Mz,v(t) (t) < CQeK(t_T) Mu,v(T) (T)a

where the constants Cy = Cy(P) and K = K (P) are independent of € and &, € K
and Lemma, 4.4 is proven.
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Lemma 4.5. Let the assumptions of Theorem 3.2 hold. Then, for every &, € KT
and every T, s € Ry, we have

ME

o (T +s) <CeM: (1), (4.43)

where the positive constants C and K are independent of € < eg and &, € K.

Proof. Let &, € KX be an arbitrary weak solution of (0.1) and €% € A9 be an
arbitrary point from the attractor. Then, due to Corollary 3.2, there exists a strong
solution &,(t) € A9, t € R, &(T) = £° and, according to (3.39), this solution
satisfies estimate (4.33) with P = P(||g||z2) uniformly with respect to ¢° € A9’
Then, according to Lemma 4.4, we have

Mqiv(T—i—s) (T + S) < CeKSMZ,go (T)a T,s ¢ ]R—Fa (444)
where the constants C' and K are independent of £° € A9, Since £° is arbitrary,
then (4.44) implies (4.43) and Lemma 4.5 is proven.

The next lemma allows to control the M-distance from &,(t) to the attractor AY!
in the case where &,(t) remains inside Os(R, L*(Q)).

Lemma 4.6. Let the assumptions of Theorem 3.2 and assumption (4.3) hold.
Then, there exists a small positive constant § which is independent of € such that,
for every &, € B. C KT, the inclusion

u(t) € Os(20, L*()), fort € [T, T +s] and &, € R, (4.45)
implies that
€ —B(t—T) € K
M 4o(t) < Ce (M (T, te[T,T +5], (4.46)

where the positive constants 3, k < 1 and C are independent of € and &,.
Proof. As in the proof of Theorem 2.1, we use the following auxiliary hyperbolic
equation

e07v + Y0 — Agv + f(v) + L(—=A,) tv =

=hr(t) == g+ L(=A,) " tu(t), 20, Btv|t:T =0, (4.47)

v|t=T =
where L is a large parameter.
The following proposition is an analogue of Lemma 2.1.

Proposition 4.1. Let the assumptions of Lemma 4.6 hold. Then, for every large
L > Lo and every small v > 0, there exists a constant 6 = §(L,v) (which is
independent of €) such that equation (4.47) has a unique strong solution on the
interval t € [T, T + s] and the following estimate is valid:

t+1
<00 (Ol +110(®) ~ zolls + [ 10000 sl < . (4.48)
t

for every t € [T, T + s].

Proof. Proposition 4.1 is analogous to Lemma 2.1, but its proof is essentially sim-
pler, since we may now set w(t) = zp. Indeed, let us seek the solution of (4.47) in
the form v(t) := W (t) + 2o. Then, the function W (t) satisfies

eOFW +yOW — A W + [f(W + 20) — f(20)] + L(=Az) "W = hy, 5(t) :=
= L(—Ay) M(u(t) — 20), W]y =2:W|s, =0, &wl|,_, =0. (4.49)
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According to (4.45), we have
1hes Bl < Q(L,0), with  lim Q(L,0) = 0. (4.50)
—

Consequently, applying the implicit function theorem to equation (4.49) (compare
with (2.22)), we derive that, for every fixed L > Ly, there exists dg = do(L) > 0
such that, for § < &y, equation (4.49) has a unique strong solution & (t) € E?,
t € [T, T + s], which satisfies the estimate:

t+1
lew Ol . + / 18,V (8)|2 ds < CQUL, 5), (4.51)

where the constant C' is independent of § and e. Estimate (4.51), convergence (4.50),
together with assumption f” € C(R) and with the embedding H?(2) C C(f2), imply
that

IF(W(t) + 20) = f(20)lI 7> < Qu(L, ), (4.52)
where lims_,0 Q1(L,d) = 0 and the function @ is independent of €. Multiplying

now equation (4.49) by A2(0,W (t) + aW (t)), we derive, analogously to Corollary
3.3, that

t+1
elloeW ()12 + 1IW (1)l[77s +/t 10:W ()| 7= dll <

where C is independent of d and e. Estimates (4.53), together with convergences
(4.50) and (4.52), prove Proposition 4.1.

The next proposition shows that, under assumptions of Lemma 4.6, the solution
&u(t) converges exponentially to the function &,(t) in E.

Proposition 4.2. Let the assumptions of Lemma 4.6 hold. Then, there exist a large
constant L and a small constant &, which are independent of € such that equation
(4.45) possesses a unique strong solution v(t) = v, 1(t), t € [T, T+ s] which satisfies
(4.48) (where v = v(0, L) is independent of € and u) and the following estimate is
valid:

M; () < CePUDME o) (T), t € [T,T + 5] (4.54)

where constants C' and 8 > 0 are independent of € and &, € K satisfying (4.45).
Proof. Let &y, (t) be a sequence of Galerkin approximations which converges in
O7 to the weak solution &, € K. Let also &,(t), t € [T, T + s], be a strong solution
of equation (4.47), vy, (t) := Pn,v(t) and let Un, (t) := un, (t) — vy, (). Then, the
last function satisfies the equation:
ed?Un, +7v0,Un, — A Un, +
+ PNk (f(UNk (t) + UNk) - f(ka (t))) + L(_Az)ilUNk =
= hy, (t) := P, (f(0(2) = fon, (1)),

U, (T) = Euy, (T) = &un, (T). (4.55)

Multiplying (4.55) by 0;Un, (t) + aUn, (t), integrating over = €  and arguing as

before, we derive that there exists a positive constant o which is independent of L,
0 and ¢ such that

aEUNk (t) + aEUNk (t) = I{UN,C (t)7 (456)
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where the functions Ey, (t) and Hy,, (t) are defined by (2.48) and (2.50) respec-
tively and the function Hy,, (t) satisfies, in addition, inequality (2.66). According
to estimate (4.48), we may fix the constant L such that (4.37) is valid and the
function Hy,, () satisfies the inequality

Hyy, (t) < Cllhuy, (O)I72 + Cllown, (#)l|= Buy, (1), (4.57)

where the constant C is independent of € and §. Due to Proposition 4.1, we may
now fix § so that

t
¢ [ 10w @l dt < ¢ =T+ 1) (4.58)
T

for a sufficiently large k. Applying now Gronwall’s inequality to (4.56) and using
(4.37), (4.57) and (4.58), we obtain

t
By, (t) < Cre D2 Ey (T) + C, / e DR hyy (DIF=dl,  (4.59)
T

where t € [T,t + s] and the constant C; is independent of ¢ and ¢, € K. Passing
to the limit £ — oo in (4.59) and taking into account the fact that

huy, =0 strongly in C([t,T + s], L*(2)),

we derive estimate (4.54) and Proposition 4.2 is proven.

We are now ready to prove that, under the assumptions of Lemma 4.6, every
weak solution &, € KI converges exponentially to the global attractor A9

Proposition 4.3. Let the assumptions of Lemma 4.6 hold and let § be the same
as in Proposition 4.2. Then, for every &, € B. C K} which satisfies (4.45), the
following estimate is valid:

ME

1
u,A?

(t) < Ce =D te[T,T +5s], (4.60)

where positive constants 1 and C are independent of € and &, € B..

Proof. Let &, € B and let &,(t) be the corresponding solution of equation (4.47).
We also fix an arbitrary Ty € [T,T + s]. Then, according to estimate (4.48), the
trajectory &, (¢) is uniformly bounded in Eg and, consequently (due to Corollary
3.3), there exists a unique strong solution &;(t) := S;_r, & (T1) of equation (0.1)
defined for t > T3, with & (T1) = &,(T1). Moreover, due to (4.48) and (3.55), we
have

t+1
10()17 +/t 100(1)][72 dl < K1, (4.61)

where the constant K is independent of € < g9 and of &, € B.. Consequently, due
to Lemma 4.4, we obtain

M (1) < CeXOTIME 0y (Th), (4.62)

u

where C' and K are independent of € and &,. Inserting estimate (4.54) into the
right-hand side of (4.62) and using (4.32), we have

M«iﬁ(t) (t) < CleK(t_Tl)_B(Tl—T)MZ7U(T) (T) < Oy K E=T)=B(Ti~t) (4.63)
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where the positive constants 3, K, C" and C; are independent of € and &, € B.
(here we have also used the fact that, due to (4.31) and (1.44), the value M; , . (T)

is uniformly bounded with respect to € and &, € B.).
On the other hand, due to Theorem 4.2

dist . (0(t), A%) < Cre PE=T) ¢ > 1T,

where the positive constants C and 3 are independent of ¢ and K. Combining
this estimate with (4.63) and taking into account (4.32), we obtain
ME

1
u, AZ

(t) < Cy (e*f*(TrTHK(f*Tl) + e*f*(t*Tl)) , te[T,T+s]. (4.64)

Fixing now the parameter

_ BT+ (K +p)t

- 284K

in an optimal way, we derive estimate (4.60) (with 3; := 32/(28 + K)) and Propo-
sition 4.3 is proven.

T1:

We are now ready to complete the proof of Lemma 4.6. Indeed, it follows from
estimates (4.43) and (4.60) that, for every x € [0, 1]

Me (1) < CetrK=0=mBIE=T)prs  (T))*, te[T,T +s]. (4.65)

1
u, A u,Ad

Fixing now & := 31 /(2K + 2f1), we obtain estimate (4.46). Lemma 4.6 is proven.

The assertion of Theorem 4.4 is a standard corollary of Lemmata 4.2, 4.5 and
4.6. Indeed, arguing as in [3] and [9], we derive from these Lemmata that, for a
sufficiently small € and every &, € B., the following estimate holds:

N

M¢ () < ONeKNT(J)e—BNt[MZ " (0)]*", (4.66)

u, AZ'
where Kk > 0, 8 > 0, C and § are the same as in Lemma, 4.6, K is the same as in
Lemma 4.5 and T'(d) is defined in Lemma 4.2 (see [9] for the details). Since B. is

a uniform (with respect to €) absorbing set in K, then (4.66) implies (4.12) and
Theorem 4.4 is proven.

Remark 4.1. Theorem 4.4 and Lemma 4.5 show that, for a sufficiently small
and under the additional assumption (4.3), the trajectory attractor AL attracts
M-bounded subsets of K not only in the weak topology of ©T, but also in the
strong topology of L (R, E).

loc
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