
Asymptoti regularity of solutionsof singularly perturbed damped wave equationswith superritial nonlinearities.Sergey ZelikUniversit�e de PoitiersLaboratoire d'Appliations des Math�ematiques - SP2MIBoulevard Marie et Pierre Curie - T�el�eport 286962 Chasseneuil Futurosope Cedex - Frane(Communiated by R. Temam)Abstrat. We study the asymptoti behavior of weak energy solutions of the followingdamped hyperboli equation in a bounded domain 
 � R3:"�2t u+ �tu��xu+ f(u) = g; u���
 = 0;where  is a positive onstant and " > 0 is a small parameter. We do not make any growthrestritions on the nonlinearity f and, onsequently, we do not have the uniqueness of weaksolutions for this problem.We prove that the trajetory dynamial system ating on the spae of all properly de�nedweak energy solutions of this equation possesses a global attrator Atr" and verify that thisattrator onsists of global strong regular solutions, if " > 0 is small enough. Moreover,we also establish that, generially, any weak energy solution onverges exponentially to theattrator Atr" .0. Introdution. We onsider the following singularly perturbed damped waveequation in a bounded domain 
 � R3 with a smooth boundary �
:� "�2t u+ �tu��xu+ f(u) = g;u���
 = 0; u��t=0 = u0; �tu��t=0 = u00: (0.1)Here " > 0 and  > 0 are given positive numbers, u = u(t; x) is an unknownfuntion, �x is the Laplaian with respet to the variable x = (x1; x2; x3) andg = g(x) are given external fores whih satisfy the following assumption:g 2 L2(
): (0.2)We also assume that the nonlinear interation funtion f(u) satis�es the followingonditions: 8><>: 1: f 2 C2(R;R); f(0) = 0;2: jf 00(v)j � C(1 + jvjp);3: f 0(v) � �K + Æjvjp+1; (0.3)where p > 0, C > 0, K > 0, and Æ > 0 are given onstants. Equation (0.1) isonsidered in the standard energy phase spae:E = E(
) := �H10 (
) \ Lp+3(
)�� L2(
): (0.4)AMS 1991 Subjet Classi�ation: Primary 35B40, 35B45, 35L30.Key words and phrases: Singularly perturbed damped wave equation, superritial nonlinearity,regular attrators. 1



2 SERGEY ZELIKConsequently, we assume that the solution �u(t) := (u(t); �tu(t)) belongs to E, forevery t � 0, and, partiularly, the initial data �u(0) := (u0; u00) also belongs to E:�u(0) 2 E: (0.5)In the subritial ase p � 1, the behavior of the solutions of (0.1) is now wellunderstood. Indeed, in this ase, equation (0.1) generates a di�erentiable semigroupS"t in the phase spae E:S"t : E ! E; S"t �u(0) := �u(t); where u(t) solves (0.1); (0.6)whih possesses the ompat global attrator Agl" in E, see e.g. [1℄, [3℄, [14{17℄, [23℄and the referenes therein. These attrators are uniformly (with respet to "! 0)bounded in the spae E1 := [H2(
) \H10 (
)℄�H10 (
) (0.7)and (onsequently) they onverge as " ! 0 to the limit attrator Agl0 assoiatedwith the limit paraboli equation (at least in the sense of the upper semiontinuityin E1, see [3℄, [16℄ or [11℄ for the details).Moreover, sine equation (0.1) possesses a global Liapunov funtion (see [3℄ or[16℄) then, under the additional generi assumption that the set R of equilibria ofequation (0.1) is �nite:#R = N <1 and all the equilibria are hyperboli; (0.8)the attrator Agl" onsists of a �nite olletion of �nite dimensional unstable C1-submanifolds in E: Agl" := [z02RM+" (z0) (0.9)and the rate of onvergene to it is exponential, i.e., for every bounded subsetB � E, the following estimate is valid:distE;"(StB;Agl" ) � Q(kBkE;")e��t; (0.10)where the monotoni funtion Q and the positive onstant � are independent of Band " � "0, k�uk2E;" := "k�tuk2L2 + kuk2H1 + kukp+3Lp+3 (0.11)and distE;" denotes the nonsymmetri Hausdor� distane between sets in "metri"(0.11). It is also known that, in this ase, we also have the lower semiontinuity ofthe attrators Agl" as "! 0 and the following estimate on the rate of onvergene:distsymm;E1(Agl" ;Agl0 ) � C"�; (0.12)where C > 0 and � > 0 are independent of " (see [3℄, [11℄ or [16℄).Moreover, the nonautonomous equations of the form of (0.1) were studied in[4℄; exponential attrators for (0.1) were onsidered in [10℄ and [11℄; the Gevreyregularity of attrators A" was established in [6℄; and attrators for equations (0.1)in unbounded domains 
 were investigated in [12℄ and [28℄. We note howeverthat the proof of the E1-regularity of the attrator Agl" in the ritial ase p = 1essentially uses the �niteness of a suitable dissipation integral (see [3℄) so, to thebest of our knowledge, the higher (e.g., E1) regularity of attrators is still an open



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 3problem in the ase of more general (than (0.1)) semilinear hyperboli equations andsystems (e.g., nonautonomous ones) with ritial growth rate on the nonlinearity.In ontrast to this, very few is known about the solutions of (0.1) in the super-ritial ase p > 1. Indeed, although the global existene of weak energy solutions�u 2 C(R+ ; Ew) (0.13)(where, as usual, the symbol 'w' denotes the weak topology in E) an be derived ina standard way from the energy estimate (see e.g. [18℄), the regularity (0.13) is notenough in order to prove the uniqueness of suh solutions and, to the best of ourknowledge, only the loal existene of more regular solutions is known for p > 1.Thus, semigroup (0.6) assoiated with equation (0.1) an be rigorously de�nedonly as a semigroup of multivalued maps. A (generalized) global attrator for thissemigroup has been onstruted in [2℄.A similar result was reproved in [5℄, using the onept of trajetory dynamialsystem and the assoiated trajetory attrator. We reall that, under this approah,the set K+" of all properly de�ned weak energy solutions of (0.1) (for all initial data�u(0) belonging to E, see De�nition 1.1) endowed with the appropriate topologyis onsidered as a (trajetory) phase spae for the semigroup of positive temporalshifts Th : K+" ! K+" ; (Thu)(t) := u(t+ h); t; h 2 R+ : (0.14)This semigroup (ating on the trajetory phase spae K+" ) is alled a trajetorydynamial system assoiated with problem (0.1) and its global attrator (if it exists)is alled a trajetory attrator Atr" of problem (0.1). It is worth to note that, inthe ase where uniqueness holds, the trajetory attrator Atr" is usually equivalent(Lipshitz homeomorphi) to the global one (see Remark 1.1 below).The trajetory attrators Atr" for problem (0.1) were onstruted in [5℄ and theirweak upper semiontinuity as " ! 0 was established in [6℄, see also [5℄, [13℄ and[22℄ for appliations of the trajetory approah desribed above to other lasses ofill-posed evolution equations and [19℄, [25℄ and [26℄ for its appliations to elliptiboundary value problems in unbounded domains.In the present paper, we give a systemati study of the attrators assoiated withproblem (0.1) in ase " > 0 is small enough.In Setion 1, we reall the onstrution of a weak energy solution �u(t) of problem(0.1) using Galerkin approximations. Using this expliit onstrution, we thende�ne the trajetory phase spae K+" as a spae of all weak energy solutions of (0.1)whih an be obtained as a weak limit of the orresponding Galerkin approximationsand establish that the trajetory dynamial system (0.14) possesses the ompatglobal attrator Atr" in the following weak-� topology:�+ := [L1lo(R+ ; E)℄w� (0.15)(see x1 for the details). Thus, we restrit ourselves to the weak solutions �u(t) ofproblem (0.1) that an be obtained as a �+-limit of the orresponding Galerkinapproximations only (we do not know whether or not every weak solution of (0.1)satisfying (0.13) an be obtained in suh way).As usual (see [2℄, [5℄, [6℄), the attrator Atr" possesses the following desription:Atr" = �+K"; (0.16)where K" � L1(R; E) is the set of all weak solutions of (0.1) that are de�nedfor every t 2 R and an be obtained as a weak limit of the appropriate Galerkin



4 SERGEY ZELIKapproximations (see Theorem 1.1 below) and �+�u := �u��t�0 is the restrition ofthe funtion �u 2 K" to the semiaxis R+ .In Setion 2, we study the regularity properties of the weak solutions �u 2 K".Partiularly, we prove that every suh solution is regular if t 2 R is small enough.To be more preise, for every �u 2 K", there exists T = Tu 2 R suh that�u(t) 2 E1 if t � T: (0.17)Moreover, we obtain some uniqueness result for suh solutions. We note that theseresults are proved without the assumption that " > 0 is small, but they are essen-tially based on the �niteness of the dissipation integralZ +1�1 k�tu(t)k2L2 dt <1; 8�u 2 K": (0.18)The main result of Setion 3 is the existene of global strong solutions of (0.1), ifthe E1-energy of the initial data is not very large and " > 0 is small enough. To bemore preise, we prove that there exist "0 � 1 and a noninreasing funtionR : (0; "0℄! R+ ; lim"!0R(") = +1;suh that, for every " � "0 and every initial data satisfyingk�u(0)kE1;" � R(");where k�uk2E1;" := "k�tuk2H1 + kuk2H2 ; (0.19)there exists a unique global strong solution �u 2 Cb(R; E1 ) and this solution satis�esthe estimate k�u(t)kE1;" � Q(k�u(0)kE1;")e��t +Q(kgkL2); (0.20)where the positive onstant � and the monotoni funtion Q are independent of" � "0.In ontrast to Setion 2, this result is based on the omparison of the strongsolution of (0.1) with an appropriate strong solution of the limit (" = 0) paraboliproblem and does not require the dissipation integral (0.18) to be �nite.Combining this result with regularity (0.17) obtained in Setion 2, we �nallyobtain that, for all " � "0 � 1, the trajetory attrator Atr" onsists of the globalstrong solutions: Atr" � Cb(R+ ; E1): (0.21)Sine a strong solution �u 2 Cb(R+ ; E1) is unique, we may de�ne a global attratorAgl" for equation (0.1) by the standard expression:Agl" := �0Atr" (0.22)where �0�u := �u(0), and de�ne a lassial semigroup assoiated with (0.1) on thisattrator via S"t �u(0) := �u(t); S"t : Agl" ! Agl" ; (0.23)where �u(t) is a unique strong solution of (0.1).



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 5We note that, sine H2(
) � C(
), then estimate (0.20) gives a uniform (withrespet to ") estimate of the C-norm of the trajetories belonging to attratorAgl" . Therefore, the growth rate of the nonlinearity f with respet to u beomesnonessential for further investigations of global attrators Agl" and we may studythem exatly as in the subritial ase p � 1 (see [3℄ or [11℄).In partiular, we indiate in Setion 4 that, under the additional assumption(0.8), desription (0.9) and estimate (0.10) remain valid for the superritial aseas well.Moreover, we prove that, not only strong solutions �u 2 Cb(R+ ; E1) onvergeexponentially to the global attrator Agl" (whih an be proved exatly as in thesubritial ase), but also that the same is valid for every weak solution �u 2 K+" .To be more preise, for every " � "0 and every bounded subset of weak energysolutions B � K+" , the following estimate is valid:sup�u2B distE;"(�u(t);Agl" ) � CBe��t; (0.24)where CB and � > 0 are independent of " (see Theorem 4.4).To onlude, we note that our method seems to be appliable for the study ofproblem (0.1) in 
 �� Rn with an arbitrary n � 1, but we restrit ourselves to thease n = 3 only in order to avoid the additional tehnialities. Moreover, it is alsoappliable to other lasses of perturbed hyperboli equations, e.g., to the followingproblem in a bounded domain 
 � R3 :�2t u+ �tu��xu+ "ujujp + u3 � �u = g; p > 2; � 2 R; "� 1: (0.26)We will study these questions in a forthoming paper.Aknowledgements. This researh was partially supported by the INTAS projetno. 00-899 and CRDF grant RM1-2343-MO-02. The author is also grateful toM.I.Vishik and A.Liapin for many stimulating disussions.1. The trajetory dynamial system and its attrator. In this setion,we prove that problem (0.1) possesses at least one weak solution �u(t), for every�u(0) 2 E. Using the expliit onstrution of suh solutions, we then de�ne atrajetory dynamial system assoiated with problem (0.1) and verify that thisdynamial system possesses the global attrator.We start with onstruting the Galerkin approximations for problem (0.1). Letfeig1i=1 be the orthonormal system of eigenvetors of the Laplaian �x with Dirih-let boundary onditions and let f�ig1i=1 be the orresponding eigenvetors:��xei = �iei; ei���
 = 0; �i+1 � �i: (1.1)We denote by PN : v ! PNv the orthoprojetor in L2(
) to the �rst N eigenvetorsof system feig1i=1 and onsider, for every N 2 N, the following auxiliary problem inthe phase spae EN := PNE (e.g., (uN ; �tuN ) 2 EN ):� "�2t uN + �tuN ��xuN + PNf(uN) = gN := PNg;uN(t) :=PNi=1 uiN(t)ei; �uN (0) = �0N 2 EN : (1.2)We note that (1.2) is a seond order system of ODE with respet to the funtionsfuiN(t)gNi=1 and with the smooth (C2-smooth) nonlinearity. The following standardlemma gives a uniform with respet to N estimate for the solutions of (1.2) in theenergy phase spae E.



6 SERGEY ZELIKLemma 1.1. Let assumptions (0.2) and (0.3) hold. Then, there exists a uniquesolution �uN (t) of problem (1.2) and the following estimate holds:k�uN (t)k2E;" + Z 1t k�tuN(s)k2L2 ds � Ck�uN (s)k2E;"e��(t�s) + C(1 + kgk2L2); (1.3)where t � s � 0,k�u(t)k2E;" := "k�tu(t)k2L2 + krxu(t)k2L2 + ku(t)kp+3Lp+3 ; (1.4)and onstants � > 0 and C > 0 are independent of N and " 2 [0; "0℄.Proof. Multiplying equation (1.2) by �tuN (t) and integrating over x 2 
, we haveddt ["k�tuN(t)k2L2 + krxuN (t)k2L2 + 2(F (uN (t)); 1)� 2(g; uN(t))℄ == �2k�tuN(t)k2L2 ; (1.5)where F (v) := R v0 f(w) dw. We now reall (see e.g. [27℄) that assumption (0.3)(3)implies that f(v):v � jvj2��K + Æp+ 2 jvjp+1� ;F (v) � jvj2 ��K2 + Æ(p+ 2)(p+ 3) jvjp+1� ;F (v) � f(v):v � jvj2��K2 + Æp+ 3 jvjp+1� : (1.6)Moreover, assumption (0.3)(2) obviously implies thatjf(v)j � Cjvj �1 + jvjp+1� ; F (v) � Cjvj2 �1 + jvjp+1� : (1.7)Integrating identity (1.5) over t 2 (t; T ) and using estimates (1.6) and (1.7), wehave k�uN (T )k2E;" + Z Tt k�tuN (s)k2L2 ds � ~C �k�uN (t)k2E;" + 1 + kgk2L2� ; (1.8)where the onstant ~C is independent of N , t, T and ". In partiular, (1.8) givesthe uniform (with respet to T ) a priori estimate for the solution �uN (t) of problem(1.2) and, onsequently (sine (1.2) is an ODE with a smooth nonlinearity), theglobal solution �uN (t), t 2 R+ , of problem (1.2) exists, for every �0N 2 EN , and isunique. Moreover, passing to the limit T ! +1 in estimate (1.8), we obtainZ 1t k�tuN(s)k2L2 ds � ~C �k�uN (t)k2E;" + 1+ kgk2L2� : (1.9)So, there remains to prove the dissipative estimate for the quantity k�uN (t)kE;". Tothis end, as usual, we multiply equation (1.2) by �uN (t), where � > 0 is a smallpositive parameter whih will be �xed below and integrate over x 2 
. Then, wehaveddt [2�"(�tuN (t); uN (t)) + �kuN(t)k2L2 ℄� 2�"k�tuN (t)k2L2++ 2�krxuN (t)k2L2 + 2�(f(uN (t)); uN (t)) = 2�(g; uN(t)): (1.10)



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 7Summing identity (1.5) with identity (1.10) and settingE"(t) := "k�tuN(t)k2L2 + krxuN (t)k2L2 + 2(F (uN (t)); 1)++ 2�"(�tuN(t); uN (t)) + �kuN(t)k2L2 � 2(g; uN(t)); (1.11)we obtain the following equation:ddtE"(t) + �E"(t) = h(t) :== �(2 � 3�")k�tuN(t)k2L2 � �krxuN(t)k2L2++ 2� (F (uN(t)) � f(uN(t)):uN (t); 1) + �2kuN(t)k2L2 + 2�2"(�tuN(t); uN (t)):(1.12)It is not diÆult to verify, using estimates (1.6) and Shwartz inequality, that it ispossible to �x � > 0 (whih is independent of " 2 [0; "0℄ and N) suh thath(t) � C; (1.13)and, onsequently, using Gronwall's inequality, we derive from (1.12) thatE"(t) � E"(s)e��(t�s) + C1; t � s � 0; (1.14)where the onstant C1 is independent of " and N . There only remains to note that,due to (1.6) and (1.7), we have the estimatesC�12 k�uN (t)k2E;" � C3(1 + kgk2L2) � E"(t) � C2 �k�uN (t)k2E;" + 1 + kgk2L2� ; (1.15)where the onstants Ci > 0 are independent of t, " and N . Indeed, estimate (1.3)is an immediate orollary of (1.14), (1.15) and (1.9). Lemma 1.1 is proven.We now assume that the initial data �0N for the Galerkin system (1.2) onvergeweakly in E to some �0 2 E: �0N * �0 as N !1: (1.16)Then, obviously, the sequene �0N is uniformly bounded in E with respet to N , andonsequently, due to estimate (1.3), the sequene of orresponding solutions �uN (t)is uniformly (with respet to N) bounded in the spae L1(R+ ; E):k�uN kL1(R+;E) � C: (1.17)We reall that bounded subsets in the Frehet spae L1lo(R+ ; E) are preompatin the w�-topology (see e.g. [20℄) and, onsequently, we may extrat from thesequene of solutions �uN (t) a subsequene �uNk (t) whih w�-onverges to somefuntion �u(t) 2 L1(R+ ; E):�u = �+ � limk!1 �uNk ; where �+ := �L1lo(R+ ; E)�w� : (1.18)We also reall (see [20℄) that (1.18) is equivalent to the following: for every T 2 R+�uNk ! �u weakly-� in L1((T; T + 1); E):



8 SERGEY ZELIKMoreover, sine uN (t) solves (1.2) then, expressing the seond derivative �2t uN(t)from equation (1.2) and using estimate (1.17), we havek�2t uNkL1(R+;H�1(
)+Lq(
)) � C1; (1.19)where the exponent q is onjugated to p+3 (i.e. 1q + 1p+3 = 1) and the onstant C1is independent of N .We now note (see e.g. [8℄ or [18℄) that, for every 0 < � � 1, the followingembedding is ompat:f(v; �tv) 2 L1lo(R+ ; E)g \ f�2t v 2 L1lo(R+ ; H�1(
) + Lq(
))g ���� f(v; �tv) 2 Clo(R+ ; [H1��(
) \ Lp+3��(
)℄�H��(
))g: (1.20)Thus, weak-� onvergene (1.18) implies the strong onvergene�uNk ! �u strongly in Clo(R+ ; [H1��(
) \ Lp+3��(
)℄ �H��(
)): (1.21)Consequently (see [18℄) �u 2 C(R+ ; Ew) (1.22)and, for every t � 0, we have the weak onvergene�uNk (t)* �u(t) in E: (1.23)Moreover, the strong onvergene (1.21) allows to pass in a standard way to thelimit Nk !1 in equations (1.2) (in the sense of distributions) and verify that thefuntion �u(t) := (u(t); �tu(t)) onstruted above solves equation (0.1) with�u(0) = Ew � limk!1 �0Nk : (1.24)Thus, we have proved the following result.Lemma 1.2. Let the assumptions of Lemma 1.1 hold. Then, for every �0 2 E,there exists at least one weak global solution �u(t), t 2 R+ , of problem (0.1) with�u(0) = �0; (1.25)whih an be obtained as a weak limit (1.18) of the orresponding solutions �uNk (t)of the Galerkin approximations (1.2).Indeed, let �0 2 E. Then, we an �nd a sequene �0N 2 EN suh that �0N ! �0in E (sine the orthonormal system feig1i=1 of the Laplae eigenfuntions is densein E, see [24℄). Thus, the limit proess (1.18) gives the desired solution of equation(0.1).We are now ready to onstrut the trajetory dynamial system assoiated withequation (0.1).De�nition 1.1. We de�ne the trajetory phase spae K+" of problem (0.1) as theset of all solutions of this problem whih an be obtained as a weak-� limit (1.18)of solutions of the Galerkin approximations (1.2):K+" := ��u 2 L1(R+ ; E); 9�uNk (t) whih solve (1.2)suh that �u(0) = Ew � limk!1 �uNk (0) and �u = �+ � limk!1 �uNk�: (1.26)



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 9Obviously, K+" is a subset of L1(R+ ; E). We endow the trajetory phase spae K+"with the topology indued by the embeddingK+" � �+ (1.27)(i.e. by the weak-� topology of the spae L1lo(R+ ; E)).We now onsider the following semigroup of positive temporal translations:Th : �+ ! �+; h � 0; (Thu)(t) := u(t+ h): (1.28)Then, due to (1.23) and the fat that (0.1) is autonomous, semigroup (1.28) atson the trajetory phase spae K+" :Th : K+" ! K+" : (1.29)Semigroup (1.29) (ating on the topologial spae K+" ) is alled the trajetorydynamial system assoiated with equation (0.1).Remark 1.1. It is well known (see e.g. [3℄) that, in the subritial ase p � 1, thesolution u(t) of equation (0.1) is unique and, onsequently, this equation generatesa semigroup in the lassial phase spae E in a standard way:S"t : E ! E; t � 0; S"t �u(0) := �u(t): (1.30)Moreover, in this ase, the map�0 : K+" ! E; �0�u = �u(0) (1.31)is one to one and realizes a (sequential) homeomorphism between K+" and Ew.Thus, S"t = �0 Æ Tt Æ (�0)�1; (1.32)and, therefore (in the subritial ase), the trajetory dynamial system (1.29) isonjugated to the lassial dynamial system (1.30) de�ned on the phase spae Eendowed with the weak topology.We note however that, in the superritial ase p > 1, the uniqueness problem for(0.1) is not solved yet and lassial semigroup (1.30) an be de�ned as a semigroup ofmultivalued maps only (see [2℄ for the details). The use of the trajetory dynamialsystem (1.29) allows to avoid the multivalued maps and to apply the standardattrators theory in order to study the long time behavior of solutions of (0.1) inthe superritial ase.In order to onstrut the global attrator for dynamial system (1.29), we needthe following generalization of energy funtional (1.4).De�nition 1.2. Let �u 2 K+" . We de�ne the funtional Mu(t), t � 0, by thefollowing expression:M"u(t) := inf � liminfk!1 k�uNk (t)kE;" :�u = �+ � limk!1 �uNk ; �u(0) = Ew � limk!1 �uNk (0)�; (1.33)where the external in�mum in the right-hand side of (1.33) is taken over all se-quenes of the Galerkin approximations f�uNk (t)g1k=1 whih weakly-� onverge tothe given solution �u.The following orollary gives the simplest properties of the M -energy funtionalintrodued.



10 SERGEY ZELIKCorollary 1.1. Let the assumptions of Lemma 1.1 hold and let �u 2 K+" . Then,the following estimates hold:M"u(t) <1; k�u(t)kE;" �M"u(t); M"Thu(t) �M"u(t+ h) (1.34)and M"u(t)2 + Z 1t k�tu(t)k2L2 dt � CM"u(s)2e��(t�s) + C(1 + kgk2L2); (1.35)where t � s � 0 and onstants � > 0 and C > 0 are the same as in (1.3).Indeed, estimates (1.34) are immediate orollaries of the de�nition of K+" andM"u(t) and estimates (1.35) follow from estimate (1.3) in whih we pass to the limitNk !1.Remark 1.2. It is known (see [3℄) that, in the subritial ase p � 1, we havek�u(t)kE;" =M"u(t): (1.36)So, in this ase, theM -energy oinides with the lassial one. But to the best of ourknowledge, neither identity (1.36) nor the fat that any solution �u 2 L1(R+ ; E)of (0.1) an be obtained as a limit of the Galerkin approximations (1.2) are knownin the superritial ase p > 1. Nevertheless, if the solution �u(t) of problem (0.1)is suÆiently regular:�u 2 L1(R+ ; E1); E1 := [H2(
) \H10 (
)℄�H10 (
); (1.37)then it is unique (in lass (1.37)) and, onsequently, �u 2 K+" and satis�es (1.36).In the sequel, we onsider only the solutions of (0.1) whih an be approximated bythe Galerkin solutions and use the modi�ed energy M"u(t) instead of the lassialone.Remark 1.3. In ontrast to (1.4), the funtional M"u(t) is not a priori loal withrespet to t, i.e. M"u(T ) depends not only on �u(T ), but also on the whole trajetory�u 2 K+" .As usual (see e.g. [2℄, [3℄, [21℄), in order to de�ne the global attrator of semigroup(1.29), we should de�ne the lass of bounded sets whih will be attrated by thisattrator.De�nition 1.3. A set B � K+" is alled M -bounded if the following quantity is�nite: kBkM := sup�u2BM"u(0) <1: (1.38)In other words, the set B � K+" is M -bounded if the modi�ed energy of all thesolutions belonging to B is uniformly bounded.We are now ready to reall the de�nition of the global attrator of the trajetorydynamial system (1.29) (=trajetory attrator of equation (0.1)).De�nition 1.4. A set Atr" is a global attrator of the trajetory dynamial system(1.29) (= the trajetory attrator of equation (0.1)) if the following onditions hold:1. The set Atr" is a ompat M -bounded set in K+" .2. This set is stritly invariant, i.e. ThAtr" = Atr" , for h � 0.3. This set is an attrating set for semigroup (1.29), i.e. for every M -boundedsubset B � K+" and every neighborhood O(Atr" ) of Atr" in K+" , there exists T =T (B;O) suh that ThB � O(Atr" ); for h � T: (1.39)The main result of this setion is the following theorem whih establishes theexistene of the attrator Atr" for the trajetory dynamial system assoiated withproblem (0.1).



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 11Theorem 1.1. Let the assumptions of Lemma 1.1 hold. Then, semigroup (1.29)possesses the global attrator Atr" in the sense of De�nition 1.4 whih an be de-sribed in the following way: Atr" = �+K": (1.40)Here K" � L1(R; E) is the set of all the omplete solutions of problem (0.1) whihare de�ned for all t 2 R and an be obtained as a Galerkin limit, i.e. �u 2 K" ifand only if there exist a sequene of times tk ! �1 and a sequene of solutions�uNk (t) of the problems:� "�2t uNk + �tuNk ��xuNk + PNkf(uNk) = gNk ;�uNk (tk) = �0k 2 ENk ; t � tk; (1.41)suh that k�0kkE;" � C; and �u = �� limk!1 �uNk ; (1.42)where C is independent of k and� := �L1lo(R; E)�w� : (1.43)Proof. As usual (see e.g. [3℄, [23℄), in order to prove the attrator's existene, it issuÆient to �nd aM -bounded and ompat absorbing set in the phase spae of thesemigroup under onsideration. We laim that the following setB" := f�u 2 K+" ; supt�0M"u(t)2 � 2C(1 + kgk2L2)g; (1.44)where the onstant C is the same as in (1.35), is the desired ompat absorbing setof the trajetory dynamial system (1.29).Indeed, the fat that B" absorbs all M -bounded subsets of K+" is an immediateorollary of estimates (1.34) and (1.35). Moreover, it follows from (1.34) thatThB" � B";and that B" is bounded in L1(R+ ; E) and, onsequently, it is preompat in �+.So, there only remains to verify that the set B" is losed. In order to verify this, we�rst note thatB" � B0 := f�u 2 L1(R+ ; E); supt�0 k�u(t)k2E;" � 4C(1 + kgk2L2)g; (1.45)and that B0 is a ompat and metrizable subspae of the topologial spae �+ (see[20℄). So, there only remains to verify the sequential losedness of B".Let f�ulg1l=1 2 B" and set �u = �+ � liml!1 �ul : (1.46)We need to prove that the limit funtion �u(t) belongs to B". Indeed, due to theompatness of embedding (1.20), we derive from (1.46) the strong onvergene of�ul in spae (1.21) and, onsequently, the limit funtion �u(t) solves equation (0.1).Let us prove that �u 2 K+" , i.e. that it an be represented as a Galerkin limit



12 SERGEY ZELIK(1.18). Aording to the de�nition of K+" and the assumption �ul 2 K+" , there existsequenes f�ulNk (t)g1k=1 of Galerkin solutions suh that�ul = �+ � limk!1 �ulNk : (1.47)Moreover, sine �ul 2 B" then the M"ul(t) are uniformly bounded with respet to land, onsequently, without loss of generality, we may assume that�ulNk 2 B0; k; l 2 N: (1.48)We now reall that the topology of �+ restrited to B0 is metrizable. Let d�+(�; �)be one of suh metris. Then, due to (1.47), for every l, we may found Nk(l) 2 Nsuh that d�+(�ul ; �ulNk(l) ) � l�1: (1.49)Convergene (1.46), together with (1.49) and with the triangle inequality, implythat d�+(�u; �uNlk(l) )! 0 and, onsequently, �u = �+ � liml!1 �ulNk(l) :Thus, �u 2 K+" . Moreover, arguing analogously, we an verify thatM"u(t) � liminf l!1M"ul(t); 8t � 0; (1.50)and, onsequently, �u 2 B". Thus, B" is indeed a ompat semiinvariant absorbingset for the trajetory dynamial system (1.29). The desired attrator an now befound in a standard way as the !-limit set of B":Atr" = !(B") := \h�0ThB" (1.51)(see e.g. [3℄, [23℄). Desription (1.40) is also a standard orollary of the expliitformula (1.51) for the attrator and of the diagonal proedure desribed above inthe proof of losedness of B". Theorem 1.1 is proven.To onlude this setion, we formulate several useful orollaries of the Theorem1.1.Corollary 1.2. Let the assumptions of Theorem 1.1 hold and let B � K+" be anarbitrary M-bounded subset. Then, for every T 2 R+ and every 1 � � > 0, thefollowing onvergene holds:limh!1 distL�((h;T+h)) �B��(h;T+h);Atr" ��(h;T+h)� = 0; (1.52)whereL� (h; T + h) := C((h; T + h); [H1��(
) \ Lp+3��(
)℄ �H��(
)); (1.53)and distL(U; V ) denotes the nonsymmetri Hausdor� distane between sets in L:distL(U; V ) = supu2U infv2V ku� vkL: (1.54)Proof. Indeed, due to embedding (1.20) and the fat that every �u 2 K+" satis-�es equation (0.1) (from whih we an express and estimate the seond derivative�2t u(t)), we have the ompat embedding(K+" ;�+) �� Clo(R+ ; [H1��(
) \ Lp+3��(
)℄�H��(
)); (1.55)in the sense that every M -bounded subset of K+" is a preompat set in the spaein the right-hand side of (1.55). Convergene (1.52) is an immediate orollary of(1.55) and (1.39) and Corollary 1.2 is proven.



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 13Corollary 1.3. Let the assumptions of Theorem 1.1 hold and let �u 2 K". Then,Z +1�1 k�tu(s)k2L2 ds � C(1 + kgk2L2); (1.56)where the onstant C is the same as (1.35), and moreover, for every 1 � � > 0,�tu 2 Cb(R; H�� (
)) and limt!�1 k�tu(t)kH��(
) = 0: (1.57)Proof. Indeed, let �u 2 K" and let �uNk (t), t � tk, tk ! �1, be the sequeneof Galerkin solutions of (1.41) whih approximates this trajetory in the sense of(1.42). Then, applying estimate (1.3) to the solutions of (1.41), with t = tk=2 ands = tk, we obtainZ 1tk=2 k�tuNk(s)k2L2 ds � Ck�0kk2E;"e�tk=2 + C(1 + kgk2L2): (1.58)Passing now to the limit k ! 1 in (1.58) and taking into aount the fat that� > 0, tk ! �1 and that the �0k are uniformly bounded, we derive the dissipativeintegral (1.56). In order to obtain onvergene (1.57), we �rst note that, due to theompatness of embedding (1.20), we derive, analogously to (1.55), that, for every0 < � � 1,K" is bounded in Cb(R; [H1�� (
) \ Lp+3��(
)℄�H��(
)); (1.59)and, moreover, it is ompat in the loal topologyK" �� Clo(R; [H1�� (
) \ Lp+3��(
)℄�H��(
)): (1.60)Convergene (1.57) is a standard orollary of dissipative integral (1.56) and of em-bedding (1.60) and Corollary 1.3 is proven.2. The bakward regularity of the solutions belonging to the attrator.In this setion, we show that every bounded weak solution �u 2 K" of equation (2.1)beomes regular if t is less than the ritial value t � Tu. We emphasize that wederive this result without the assumption that " is small.The main result of the setion is the following theorem.Theorem 2.1. Let the assumptions of Theorem 1.1 hold. Then, for every ompletesolution �u 2 K" of equation (0.1), there exists a time T = Tu suh that�u 2 Cb((�1; T ℄; E1): (2.1)Proof. Let �u := (u; �tu) 2 K" be an arbitrary omplete solution of (0.1). Let usrewrite problem (0.1) as follows:"�2t u+ �tu��xu+ f(u) + L(��x)�1u = h(t) := g + L(��x)�1u(t); (2.2)where �x is the Laplaian with Dirihlet boundary onditions and the (large) pa-rameter L will be spei�ed below. It follows from Theorem 1.1 and Lemma 1.1that kh(T )k2L2 + Z T+1T k�th(t)k2H2 dt � C 0(1 + kgk2L2); C 0 = C 0(L); (2.3)where the onstant C 0 is independent of " and T . Moreover, it is important for ourmethod that, aording to Corollary 1.3�th 2 Cb(R; H2�� (
)) and limt!�1 k�th(t)kH2��(
) = 0; (2.4)for every 0 < � � 1.Our strategy is the following: we �rst show that (2.4) allows to onstrut aregular bakward solution �v(t), t � Tu, for problem (2.2) and then prove theidentity u(t) � v(t).



14 SERGEY ZELIKLemma 2.1. For a suÆiently large L, there exists time T = T ("; u; L) suh thatthe problem "�2t v + �tv ��xv + f(v) + L(��x)�1v = h(t); t � T (2.5)possesses a unique regular bounded bakward solution �v(t) 2 E1 whih satis�es thefollowing estimate: k�tv(t)kH2 + kv(t)kH2 � Q(kgkL2); t � T; (2.6)where the monotoni funtion Q depends on L, but is independent of " � "0. More-over, the derivative �tv(t) tends to 0 in the L1-norm as t! �1:limt!�1 k�tv(t)kL1 = 0: (2.7)In order to prove this lemma, we �rst onstrut a solution w(t) of the paraboliproblem �tw ��xw + f(w) + L(��x)�1w = h(t); t 2 R: (2.8)Lemma 2.2. For suÆiently large L, problem (2.8) possesses a unique solutionw(t), t 2 R, in the lass Cb(R; H2 (
)) and the following estimate is valid:kw(t)k2H2 � CL(1 + kgk2L2); (2.9)where the onstant CL depends on L, but is independent of ". Moreover,�tw 2 Cb(R; H2 (
)); �2tw 2 L2([T; T + 1℄; H1(
)); (2.10)for every T 2 R, and the following onvergene is valid:limT!�1�k�tw(T )kH2 + k�2twkL2([T;T+1℄;H1(
))	 = 0: (2.11)Proof of Lemma 2.2. The existene of a solution for problem (2.8) whih is boundedin H2 an be easily derived from estimate (2.3) and from the dissipativity assump-tion (0.3)(3) using standard paraboli tehnique (see e.g. [3℄, [17℄, [27℄). So, thereremains to verify (2.9) { (2.11). Di�erentiating equation (2.8) with respet to t andsetting � = �tw, we have�t� ��x� + f 0(w)� + L(��x)�1� = �th(t); t 2 R: (2.12)Multiplying equation (2.12) by �(t) and integrating over x 2 
, we �nd�tk�(t)k2 + k�(t)k2H1 + 2Lk�(t)k2H�1 � �2(f 0(w)�(t); �(t)) +Ck�th(t)k2L2 : (2.13)We now reall that, due to (0.3) and an appropriate interpolation inequality2(f 0(w)�; �) � 2Kk�k2L2 � 2CKk�kH1k�kH�1 �� 12(k�k2H1 + 4C2K2k�k2H�1) � 12(k�k2H1 + Lk�k2H�1); (2.14)



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 15if L > 4C2K2. Then, estimate (2.13) reads ddtk�(t)k2L2 + 12k�(t)k2H1 � Ck�th(t)k2L2 : (2.15)Therefore, Gronwall's inequality applied to (2.15) givesk�(T )k2L2 + Z T+1T k�(t)k2H1 dt � C(1 + kgk2L2): (2.16)Moreover, due to onvergene (2.4), we havelimt!�1 k�kL2((t;t+1);H1(
)) = 0: (2.17)After obtaining estimate (2.16) for the derivative �tw(t), we may interpret problem(2.8) as an ellipti boundary value problem�xw(T )� f(w(T )) + L(��x)�1w(T ) = �h(T ) + �tw(T ): (2.18)Multiplying then (2.18) by �xw(T ), integrating over x 2 
, using estimates (2.3),(2.16) and (0.3)(3) and arguing in a standard way, we derive estimate (2.9). Inorder to derive (2.10) and (2.11), we note that the funtion �(t) satis�es the heatequation�t� ��x� = h�(t) := �th(t)� f 0(w(t))�(t) � L(��x)�1�(t); (2.19)and, aording to (2.3) and (2.17)limt!�1 kh�kL2(t;t+1);H1(
)) = 0: (2.20)Applying now the standard regularity theorem to the heat equation (2.19), we haveZ T+1T k�t�(t)k2H1 dt+ k�(T )k2H2 � C Z T+1�1 e��(T�t)kh�(t)k2H1 dt: (2.21)Embedding (2.10) and onvergene (2.11) are immediate orollaries of (2.21), (2.4)and (2.20). Lemma 2.2 is proven.Proof of Lemma 2.1. Let us seek the desired regular solution of problem (2.5) inthe form v(t) = w(t) +W (t). Then, the funtion W (t) solves"�2tW + �tW ��xW + [f(w(t) +W )� f(w(t))℄++ L(��x)�1W = H(t) := �"�2tw(t): (2.22)We apply the impliit funtion theorem in order to solve equation (2.22) in thespae �T := Cb((�1; T ℄; E1); (2.23)where the time T is small enough. Indeed, aording to Lemma 2.2, we haveH 2 L2([t; t+ 1℄; H10 (
)), for every t 2 R, andlimT!�1 kHkL2((T;T+1);H10 (
)) = 0: (2.24)



16 SERGEY ZELIKSo, there only remains to verify that the variation equation at W = 0"�2t V + �tV ��xV + f 0(w(t))V + L(��x)�1V = G(t); t � T (2.25)is uniquely solvable for every G 2 L2lo((�1; T ℄; H10 (
)) suh thatkGkL2b((�1;T );H10 (
)) := supt2(�1;T�1℄ kGkL2((t;t+1);H10 (
)) <1; (2.26)if the time T is small enough. Let us verify this fat. Indeed, multiplying equation(2.25) by �tV (t) + �V (t) and integrating over x 2 
, we haveddt ["k�tV k2L2 + krxV k2L2 + LkV k2H�1 + (f 0(w(t))V; V ) + 2�"(V; �tV )++ �kV k2L2 ℄ + 2( � �")k�tV k2L2 + 2�krxV k2L2++ 2�LkV k2H�1 + 2�(f 0(w(t))V; V ) = 2(G; �tV + �V ) + (f 00(w(t))�tw(t); jV j2):(2.27)We denote the expression [� � � ℄ by EV (t) and assume that L is large enough so that(f 0(w(t))V; V ) + 12(kV k2H1 + LkV k2H�1) � 0 (2.28)(see (2.14)). Then, analogously to (1.12) and (1.13), there exists a suÆiently small,but independent of " and L, parameter � > 0 suh thatC�11 ("k�tV (t)k2L2 + kV (t)k2H1) � EV (t) � C1("k�tV (t)k2L2 + kV (t)k2H1) (2.29)(here we have impliitly used the fat that kw(t)kH2 is uniformly bounded withrespet to ") andddtEV (t)+�EV (t) � h(t) := CkG(t)k2L2+(f 00(w(t))�tw(t); jV j2)��2 kV k2H1 ; (2.30)where the onstants C and C1 depend on L, but are independent of ". Convergene(2.11), together with embedding H2(
) � C(
) and estimate (2.9), imply thath(t) � CkG(t)k2L2 ; (2.31)if t � T and T is small enough. Applying Gronwall's inequality to (2.30) and using(2.31) and (2.29), we obtain"k�tV (t)k2L2 + kV (t)k2H1 � C Z t�1 e��(t�s)kG(t)k2L2 ds; t � T; (2.32)where C depends on L, but is independent of ". Thus, the solution of (2.25) isunique. Moreover, multiplying now equation (2.25) by ��x(�tV + �V ), inter-preting the term f 0(w)V as an external fore, and using estimate (2.32), we have,analogously"k�tV (t)k2H1 + kV (t)k2H2 � C1 Z t�1 e��(t�s)kG(t)k2H1 ds; t � T; (2.33)



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 17where C1 is also independent of ". Estimate (2.33) implies that"k�tV (t)k2H1 + kV (t)k2H2 � C2kGk2L2b((�1;T ℄;H10 (
)); t � T; (2.34)and, onsequently, the variation equation (2.25) is indeed uniquely solvable in spae(2.23) if T is small enough. Thus, applying the impliit funtion theorem to equation(2.22), we derive that, for a suÆiently small T 2 R, there exists a solution �W 2 �Tof problem (2.22). Moreover, sine the onstant C1 in (2.33) is independent of "then, "k�tW (t)k2H1 + kW (t)k2H2 � QL(kgkL2); t � T; (2.35)where the funtion QL depends on L, but is independent of " andlimt!�1 k�tW (t)kH1 = 0 (2.36)(due to onvergene (2.24)). Returning to the funtion v(t) and taking into aountthe estimates for w(t) obtained in Lemma 2.2, we �nally have"k�tv(t)k2H1 + kv(t)k2H2 � Q(kgkL2); t � T = T (L; "; u); (2.37)where the funtion Q is independent of " andlimt!�1 k�tv(t)kH1 = 0: (2.38)Thus, there only remains to estimate the H2-norm of �tv(t). To this end, wedi�erentiate equation (2.5) by t and set �(t) = �tv(t). Then, we have"�2t �+ �t���x�+ L(��x)� = H�(t) := �th(t)� f 0(v(t))�tv(t): (2.39)It follows from (2.4) and (2.38) thatlimt!�1 kH�(t)kH1 = 0: (2.40)Equation (2.39) has the form of (2.25) with f = 0 and, analogously to (2.33), wederive"k�t�(t)k2H1 + k�(t)k2H2 � C1 Z t�1 e��(t�s)kH�(t)k2H1 ds; t � T: (2.41)Sine H2(
) � C(
), then (2.40) and (2.41) imply onvergene (2.7) and estimatefor �tv(t) in (2.6) and Lemma 2.1 is proven.We are now ready to omplete the proof of Theorem 2.1. In order to do so, weneed to prove that u(t) � v(t), for t � T . Indeed, let �uNk (t), t � tk, be a sequeneof Galerkin solutions, whih approximates the funtion �u 2 K". We reall that,due to Theorem 1.1 tk ! �1; �u = �� limk!1 �uNk ; (2.42)and the sequene �uNk (tk) = �0k is uniformly bounded with respet to k. We alsoonsider a sequene of funtionsvNk (t) := PNkv(t); t � T; (2.43)



18 SERGEY ZELIKwhere the funtion v(t) is onstruted in Lemma 2.1. Aording to Lemma 2.1,solution �v(t) is bounded in E1 as t � T and, onsequentlylimk!1 k�vNk � �vkCb((�1;t℄;E) = 0 and limk!1 kvNk � vkCb((�1;T ℄�
) = 0: (2.44)Moreover, sine �tv(t) is also bounded in H2, thenlimk!1 k�tvNk � �tvkCb((�1;T ℄�
) = 0 (2.45)(these onvergenes are standard orollaries of the embedding H2(
) �� C(
) andof the fat that the onvergene of Fourier series is uniform on ompat sets).We now set U(t) := u(t) � v(t) and UNk(t) := uNk(t) � vNk(t). Then, the lastfuntion satis�es the equation"�2tUNk + �tUNk ��xUNk++ PNk(f(vNk(t) + UNk)� f(vNk(t))) + L(��x)�1UNk == hNk(t) := PNk (f(v(t))� f(vNk(t))); �UNk (tk) := �0k � PNk�v(tk): (2.46)Moreover, due to onvergenes (2.44), we havelimk!1 khNkkCb((�1;T ℄�
) = 0 and k�UNk (tk)kE;" � C; (2.47)where C is independent of k. Multiplying now equation (2.46) by �tUNk(t)+�UNk(t)and settingEUNk (t) := "k�tUNkk2L2 + krxUNkk2L2 + LkUNkk2H�1 + 2�"(UNk ; �tUNk)++ �kUNkk2L2 + 2 (F (vNk(t) + UNk)� F (vNk(t)) � f(vNk(t))UNk ; 1) ; (2.48)we derive the identityddtEUNk (t) + �EUNk (t) = HUNk (t); t � T; (2.49)withHUNk (t) := �(2 � 3�")k�tUNkk2L2 � �krxUNkk2L2 � �LkUNkk2H�1++ 2��F (vNk (t) + UNk)� F (vNk (t))� f(vNk(t))UNk�� (f(vNk(t) + UNk)� f(vNk(t))UNk ; 1�+ 2�2"(UNk ; �tUNk) + �2kUNkk2L2++ 2(hNk(t); �tUnk + �UNk)++ 2�f(vNk(t) + UNk)� f(vNk(t)) � f 0(vNk (t))UNk ; �tvNk(t)�: (2.50)In order to estimate funtion (2.50), we need the following proposition.



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 19Proposition 2.1. Let the funtion f satisfy assumptions (0.3). Then,F (v+w)� F (v)� f(v)w � �Kjwj2 + Æpjwj2(jvjp+1 + jwjp+1); 8v; w 2 R; (2.51)where the onstant K is the same as in (0.3) and Æp is some positive onstantdepending only on p. Moreover,�v(w) := F (v + w) � F (v)� f(v)w � (f(v + w) � f(v))w �� K2 jwj2 � Æ0pjwj2(jvjp+1 + jwjp+1); (2.52)where Æ0p is positive and depends only on p. And, �nallyj(f(v + w)� f(v)� f 0(v)wj � Cjwj2(1 + jvjp + jwjp); (2.53)where the onstant C is independent of v and w.Proof of Proposition 2.1. Estimate (2.53) is an immediate orollary of assumption(0.3)(2). Let us now verify (2.52) using the assumption (0.3)(3). Indeed,�v(w) = Z 10 �w�v(sw)w ds = �jwj2 Z 10 sf 0(v + sw) ds �� K2 jwj2 � Æ�p(jvj; jwj)jwj2 ; (2.54)where �p(x; y) := Z 10 sjx� syjp+1 ds � �Z 10 sjx� syj ds�p+1 :The integral in the right-hand side an be omputed expliitly:Z 10 sjx� syj ds = � x2 � y3 if x � y;y6 (2(x=y)3 � 3(x=y) + 2) if y > x; � 2�p212 (x+ y) (2.540)(we reall that x; y � 0). Estimate (2.52) is an immediate orollary of (2.54) and(2.540). Let us now verify (2.51). Indeed, using assumption (0.3)(3), we haveF (v + w)� F (v) � f(v)w = w Z 10 [f(v + s1w)� f(v)℄ ds1 == jwj2 Z 10 Z 10 f 0(v + s1s2w) ds1 ds2 � �Kjwj2 + Æ ~�p(jvj; jwj); (2.5400)where~�p(x; y) := Z 10 Z 10 jx� s1s2yjp+1 ds1 ds2 � �~�1(x; y)�p+1 �� �Z 10 �1(x; s1y) ds1�p+1 � Æ0p�Z 10 (x+ sy) ds�p+1 � Æ00p (xp+1 + yp+1):Inserting this estimate into estimate (2.5400), we derive (2.51) and �nish the proofof Proposition 2.1.



20 SERGEY ZELIKIt now follows from estimates (2.52), (2.53) and our hoie of L (see (2.14)) thatthere exist positive onstants �1, C and C1 (whih are independent of UNk , vNk , k,L and ") suh thatHUNk (t) � ��12 kUNk(t)k2H1 � 2�1(jUNk(t)jp+3; 1)�� �1L2 kUNk(t)k2H�1 + CkhNk(t)k2L2++ C1k�tvNk(t)kL1 �jUNk(t)j2(1 + jvNk(t)jp + jUNk(t)jp); 1� : (2.55)Aording to Lemma 2.1, the derivative �tv(t) tends to zero in L1(
) as t! �1(see (2.7)) and the L1-norm of v(t) remains bounded as t ! �1. Consequently,due to onvergenes (2.44) and (2.45), there exists time T 0 � T suh that, for asuÆiently large k, we haveHuNk (t) � CkhNk(t)k2L2 ; t � T 0: (2.56)Applying now Gronwall's inequality to relation (2.49), we obtainEUNk (t) � EUNk (tk)e��(t�tk) + C Z ttk e��(t�s)khNk(s)k2L2 ds; (2.57)where t � T 0, and the onstants C and � > 0 are independent of k. Using estimate(2.51) and our hoie of exponent L (see (2.14)), we derive from (2.57) that"k�tUNk(t)k2L2 + kUNk(t)k2H1 �� C2 �1 + k�0kk2E;" + k�vNk (tk)k2E;"� e��(t�tk) + 2C Z ttk e��(t�tk)khNk(s)k2L2 ds;(2.58)where the onstant C2 is also independent of k. Passing to the limit k !1 in (2.58)and using (2.47), the fat that �0k is uniformly bounded in E (due to Theorem 1.1)and �vNk (tk) is also uniformly bounded in E (due to Lemma 2.1 and onvergene(2.44)), we �nally derive the estimate"k�tU(t)k2L2 + kU(t)k2H1 � 0; for t � T 0and, onsequently, u(t) = v(t) for t � T 0. Theorem 2.1 is proven.Corollary 2.1. Let the assumptions of Theorem 2.1 hold and let �u 2 K" be abounded omplete weak solution of problem (0.1). Thenku(t)k2H2 + k�tu(t)k2H2 � Q(kgkL2); t � Tu; (2.59)where the monotoni funtion Q is independent of ".Indeed, estimate (2.59) is an immediate orollary of (2.6) and the fat that u(t) =v(t), for t � Tu.To onlude the setion, we prove that the solution �u(t) 2 K" is unique until itis regular.



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 21Theorem 2.2. Let the assumptions of Lemma 1.1 hold and �v 2 K" be a ompleteweak solution of (0.1) whih satis�es (2.59), for t � T . We also assume that �u 2 K"is another omplete weak solution whih satis�es�u(t) = �v(t); for all t � T 0 < T: (2.60)Then, neessarily �u(t) = �v(t); for all t � T: (2.61)Proof. The proof of this theorem is very similar to the end of the proof of theprevious theorem. Indeed, let �uNk (t) be a sequene of Galerkin solutions whihapproximates the initial solution �u(t), see Theorem 1.1. Let also�vNk (t) := PNk�v(t); U(t) := u(t)� v(t); UNk(t) := uNk(t)� vNk(t): (2.62)Then, analogously to (2.46), funtion UNk(t) solves the equation"�2tUNk + �tUNk ��xUNk++ PNk(f(vNk(t) + UNk)� f(vNk(t))) + L(��x)�1UNk == hNk(t) := PNk(f(v(t)) � f(vNk(t))) + L(��x)�1(uNk(t)� vNk(t));�UNk (tk) := �0k � PNk�v(tk); (2.63)where, in ontrast to (2.46), external fores hNk(t) ontain the additional termL(��x)�1(uNk(t)� vNk(t)) and, onsequently, instead of (2.47), we have the on-vergenehNk ! L(��x)�1(u� v) strongly in Clo((�1; T ℄; L2(
))and khNkkCb((�1;T ℄;L2(
)) � C1; (2.64)where the onstant C1 is independent of k (here we have impliitly used embedding(1.20) in order to prove the onvergene uNk ! u in Clo((�1; T ℄; L2(
))).Sine equation (2.63) has the form (2.46), then, multiplying it by �tUNk(t) +�UNk(t), integrating over x 2 
 and arguing as in the derivation of (2.49), weobtain the estimate ddtEUNk (t) + �EUNk (t) = HUNk (t); t � T; (2.65)where the funtions EUNk (t) and HUNk (t) are de�ned by (2.48) and (2.50) respe-tively. Moreover, analogously to (2.55), there exist positive onstants �1, C and C1(whih are independent of L) suh that, for all t � THUNk (t) � ��12 kUNk(t)k2H1 � 2�1(jUNk(t)jp+3; 1)�� �1L2 kUNk(t)k2H�1 + CkhNk(t)k2L2++ C1k�tvNk (t)kL1 �jUNk(t)j2(1 + jvNk(t)jp + jUNk(t)jp); 1� ; (2.66)We note that, in ontrast to the ase of (2.55), the funtion v(t) is now independentof the parameter L. That is the reason why it is possible to �x a large L ( dependingon Q(kgkL2) in the right-hand side of (2.66)) suh thatHUNk (t) � CkhUNk (t)k2L2 ; for all t � T ; (2.67)



22 SERGEY ZELIKwithout dereasing the time interval t 2 (�1; T ℄ (in ontrast to (2.55)). Applyingnow Gronwall's inequality to identity (2.65) and using (2.67), we derive estimate(2.57), for every t � T . Passing to the limit k !1 in estimate (2.57) and using theonvergene (2.64) and the fat that u(t) = v(t) for t � T 0, we obtain the estimate"k�tu(t)� �tv(t)k2L2 + ku(t)� v(t)k2H1 �� 2CL2 Z tT 0 e��(t�s)k(��x)�1(u(s)� v(s))k2L2 ds; (2.68)whih is valid for every t 2 [T 0; T ℄. Applying again Gronwall's inequality to relation(2.68) and noting that u(T 0) = v(T 0), we �nally derive that v(t) = u(t), for allt 2 (�1; T ℄ and prove Theorem 2.2.Remark 2.1. Theorems 2.1 and 2.2 show that the only way for a singular weaksolution to appear on the attrator Atr" is by a blow up of the orresponding strongsolution belonging to the attrator. In the next setion, we will show that thissenario is also impossible if " is small enough and we thus verify that the attratorAtr" onsists of global strong solutions whih satisfy (2.59), for every t 2 R.3. The global existene of strong solutions. In this setion, we prove theexistene of a global strong solution of problem (0.1) if " > 0 is small enough andthe E1-energy of the initial data is not very large. Combining this result with theresults of the previous setion, we prove that the attrator Atr" onsists of strongglobal solutions if " > 0 is small enough. The main result of the setion is thefollowing theorem.Theorem 3.1. Let the assumptions of Lemma 1.1 hold. Then, there exist a smallpositive "0 and a noninreasing funtionR : (0; "0℄! R+ ; lim"!0R(") =1; (3.1)suh that, for every " � "0 and every initial data �u(0) 2 E1 satisfyingk�u(0)kE1;" := �"k�tu(0)k2H1 + ku(0)k2H2�1=2 � R("); (3.2)there exists a unique global strong solution �u 2 L1(R+ ; E1) of problem (0.1) andthe following estimate is valid:k�u(t)k2E1;" + Z t+1t k�tu(s)k2H1 ds � Q(k�u(0)kE1;")e��t +Q(kgkL2); (3.3)where the positive onstant � and the monotoni funtion Q are independent of ".Proof. We divide the proof of the theorem in two steps. In the �rst step, we provethat the solution �u(t) of the hyperboli equation (0.1) is lose to the appropriateregular solution of the limit paraboli equation and, in the seond step, we deduefrom this fat that the strong solution of (0.1) also exists globally if " > 0 is smallenough.We �rst note that, due to the embedding H2(
) � C(
), the strong solution�u(t) 2 E1 exists loally (for t � T (�u(0))) and is unique on the existene interval.That is the reason why it is enough to derive a priori estimate (3.3) under theassumption that the strong solution �u(t) exists. We also note that, sine the



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 23solution �u(t) is assumed to be regular, then we may multiply equation (0.1) by�tu(t) + �u(t) (without using the Galerkin approximations) and derive, arguing asin the proof of Lemma 1.1, thatk�u(t)k2E;" + Z t+1t k�tu(t)k2L2 ds � Ck�u(0)k2E;"e��t + C(1 + kgk2L2); (3.4)where the positive onstants C and � are independent of " (as mentioned in Remark1.2 for the strong solutions, we have equality (1.36) and, onsequently, (3.4) an beonsidered as a orollary of (1.35)).Moreover, as in the proof of Theorem 2.1, it is onvenient to modify the initialequation (0.1) as follows:"�2t u+ �tu��xu+ f(u) + L(��x)�1u = hu(t) := g + L(��x)�1u(t);t � 0; �u(0) = �0 := (u0; u00); u���
 = 0; (3.5)where the onstant L satis�es (2.14). Then, due to (3.4), the external fores hu(t)satisfykhu(t)k2L2 + Z t+1t k�thu(s)k2L2 ds � C �1 + kgk2L2 + k�u(0)k2E;"e��t� ; (3.6)where C and � are independent of ".We now onsider the limit paraboli equation whih orresponds to (3.5) as " = 0�tv ��xv + f(v) + L(��x)�1v = hu(t); t � 0; v��t=0 = u0; v���
 = 0: (3.7)Equation (3.7) is of the form (2.8). Consequently, using estimate (3.6) and arguingas in the proof of Lemma 2.2, we derive that v(t) 2 H2(
) andkv(t)k2H2 + k�tv(t)k2L2 � Q(k�u(0)kE1;")e��t + C(1 + kgk2L2); (3.8)where the monotoni funtion Q and the onstants C and � are independent of ".The following Lemma shows that the solution u(t) is indeed lose to v(t) if " issmall enough.Lemma 3.1. Let the assumptions of Theorem 3.1 hold and let �u(t) and v(t) bestrong solutions of (0.1) and (3.8) respetively. Then, the following estimate is valid:ku(t)� v(t)k2L2 � " �Q(k�u(0)kE1;")e��t + C(1 + kgk2L2)� ; (3.9)where a monotoni funtion Q and positive onstants C and � are independent of ".Proof of Lemma 3.1. We set w(t) := u(t) � v(t). Then, this funtion satis�es therelation�tw��xw+[f(v(t)+w)�f(v(t))℄+L(��x)�1w = �"�2t u(t); w��t=0 = 0: (3.10)Multiplying equation (3.10) by w(t), integrating over x 2 
 and using (0.3)(3) and(2.14), we haveddt [kw(t)k2L2 + 2"(�tu(t); w(t))℄ + �[kw(t)k2L2 + 2"(�tu(t); w(t))℄ �� H(t) := C" (j�tw(t)j + jw(t)j; j�tu(t)j) ; (3.11)



24 SERGEY ZELIKfor some � > 0 and C > 0 whih are independent of ". Moreover, aording to (3.4)and (3.8), we have the estimateZ t+1t H(s) ds � " �Q(k�u(0)kE1;")e��t + C(1 + kgk2L2)� ; (3.12)where Q, C and � are independent of ". Applying Gronwall's inequality to (3.11)and taking into aount (3.12) and the fat that w(0) = 0, we obtainkw(t)k2L2 + 2"(�tu(t); w(t)) � " �Q(k�u(0)kE1;")e��t + C(1 + kgk2L2)� ; (3.13)where Q, C and � are independent of ". There remains to note that�2"(�tu(t); w(t)) � 2kw(t)k2L2 + 2"�1 �"k�tu(t)k2L2� : (3.14)Indeed, estimate (3.9) is an immediate orollary of (3.13), (3.14) and (3.4) andLemma 3.1 is proven.We are now ready to omplete the proof of the theorem. To this end, we interpretequation (0.1) as a linear one"�2t u+ �tu��xu = g � f(u(t)); �u(0) = �0: (3.15)Multiplying equation (3.15) by ��x(�tu(t) + �u(t)), integrating over x 2 
, andarguing in a standard way, we derive the estimateddtE1u(t) + �krx�tu(t)k2L2 + �E1u(t) � C �kf(u(t))k2H1 + kgk2L2� ; (3.16)whereE1u(t) := "krx�tu(t)k2L2 + k�xu(t)k2L2++ 2�"(rxu(t);rx�tu(t)) + 2(g;�xu(t)) + 2kgk2L2; (3.17)and the onstants � > 0 and C > 0 are independent of ". We also note that (3.17)implies the estimatesC�11 k�u(t)k2E1;" � E1u(t) � C1(k�u(t)k2E1;" + kgk2L2): (3.18)So, there only remains to estimate kf(u(t))kH1 . To this end, we use the followingtrik: kf(u(t))k2H1 � kf(u(t))� f(v(t))k2H1 + kf(v(t))k2H1 ; (3.19)where v(t) is the solution of limit paraboli problem (3.7) onstruted in Lemma3.1. Then, on the one hand, due to estimate (3.8) and embedding H2(
) � C(
),we have kf(v(t))k2H1 � Q(k�u(0)kE1;")e��t +Q(kgk2L2); (3.20)for an appropriate monotoni funtion Q and positive onstant � > 0 whih areindependent of " and, on the other hand, using assumption (0.3)(2) and embeddingH2(
) � C(
), we obtainkf(u(t))� f(v(t))k2H1 � Cku(t)� v(t)k2H1 �1 + kvk2(p+1)H2 + kuk2(p+1)H2 � : (3.21)



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 25Using the interpolation inequalityku(t)� v(t)k2H1 � Cku(t)� v(t)kL2ku(t)� v(t)kH2 ; (3.22)estimate (3.8) for v(t), estimate (3.9) for the L2-norm of u(t) � v(t) and estimate(3.18) for the H2-norm of u(t), we �nally obtainC �kf(u(t))k2H1 + kgk2L2� �� "1=2(Q(k�u(0)kE1;") +Q(kgkL2))[E1u(t)℄p+3=2 +Q(k�u(0)kE1;")e��t +Q(kgkL2);(3.23)for an appropriate monotoni funtion Q and a positive onstant � whih are inde-pendent of ". Thus, inserting (3.23) to the right-hand side of (3.16), we derive thedi�erential inequality for E1u(t):ddtE1u(t) + �E1u(t) �"1=2(Q(k�u(0)kE1;") +Q(kgkL2))[E1u(t)℄p+3=2 +Q(k�u(0)kE1;")e��t +Q(kgkL2):(3.24)In order to derive the assertion of the theorem from inequality (3.24), we need thefollowing proposition.Proposition 3.1. Let the funtion y(t) � 0 satisfy the inequality:y0(t) + �y(t)� "1=2(A+B)[y(t)℄m �Ae��t �B � 0; t � 0; (3.25)with 0 < � � 1, A;B > 0, m � 1 and y(0) � A+B. We also assume that"1=2� 3��m�1 (A+B)m � 1: (3.26)Then, this funtion satis�es the following inequalityy(t) � y0(t) := 3� �Ae��t=2 +B� ; t � 0: (3.27)Indeed, assumption (3.26) guarantees thaty00(t) + �y0(t)� "1=2(A+B)[y0(t)℄m �Ae��t �B � 0; t � 0and, onsequently, applying the omparison priniple to (3.25), we derive esti-mate (3.27).Applying now Proposition 3.1 withy(t) := E1u(t); A := Q(k�u(0)kE1;"); B := Q(kgkL2); m := p+ 3=2;to inequality (3.24), we haveE1u(t) � 3� �Q(k�u(0)kE1;")e��t=2 +Q(kgkL2)� ; (3.28)



26 SERGEY ZELIKand the desired funtion R(") an be found as a solution of the equation"1=2� 3��p+1=2 (Q(R(")) +Q(kgkL2))p+3=2 = 1:The desired estimate for the integral of �tu(t) follows from (3.16), (3.23) and (3.28)and Theorem 3.1 is proven.Remark 3.1. We have onstruted the global strong solution of equation (0.1)under assumption (3.2) only. Moreover, sine the solutions of (3.24) may blow upin �nite time, then our method gives no information on the strong solutions of (0.1)whose initial E1-energy is larger than R(").We now onsider the R-ball in E1B"(R;E1) := f�0 2 E1 : k�0kE1;" � Rg:Then, due to Theorem 3.1, the solving operatorS"t : B"(R;E1)! E1; S"t �u(0) := �u(t); R � R("); (3.29)where �u(t) is a unique strong solution of (0.1), is well de�ned. Moreover, due toestimate (3.3) kS"t �B"(R;E1)� kE1;" � Q̂(R); t 2 R+ ; (3.30)for an appropriate monotoni funtion Q̂. We now setB "R := � [t2R+S"t �B"(R;E1)� �E1 ; (3.31)where [�℄E1 denotes the losure in the spae E1. Then, aording to (3.30)kB "RkE1;" � Q̂(R) (3.32)and, onsequently, we have proven the following orollary.Corollary 3.1. Let the assumptions of Theorem 3.1 hold. Then, there exist a smallpositive "00 � "0, a noninreasing funtionR0 : (0; "00℄! R+ ; lim"!0R0(") =1 (3.33)and a bounded losed subset B "R0 (") in E1 whih satis�esB"(R0("); E1) � B "R0 (") � B"(Q̂(R0(")); E1) (3.34)suh that, for all " � "00, (3.29) de�nes a dissipative semigroup in the phase spaeB "R0 ("): S"t : B "R0 (") ! B "R0 ("); S"t+s = S"t Æ S"s ; t; s � 0: (3.35)Indeed, the desired funtion R0(") an be found from the equationQ̂(R0(")) = R("); " � "00 � "0;where R(") is the same as in Theorem 3.1.The following orollary establishes the existene of a global attrator Agl" � E1for semigroup (3.35).



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 27Corollary 3.2. Let the assumptions of Theorem 3.1 hold. Then, for " � "0, semi-group (3.35) possesses the ompat (in E1) global attrator Agl" :S"tAgl" = Agl" and limt!1 distE1(S"t B "R0 (");Agl" ) = 0; (3.36)whih satis�es Agl" = �0K̂"; (3.37)where K̂" � Cb(R; E1 ) is the set of all the global strong solutions of (0.1) belongingto B "R0 ("):K̂" := f�u 2 Cb(R; E1 ); u(t) solves (0.1) and k�u(t)kE1;" � R0("); t 2 Rg: (3.38)Moreover, every �u 2 K̂" satis�es the estimatek�tu(t)k2H2 + ku(t)k2H2 � Q(kgkL2); t 2 R; (3.39)where the monotoni funtion Q is independent of ".Proof. The existene of the global attrator for S"t in E1 has been proved in [3℄for the subritial ase p � 1 (see also [11℄). We note however that Theorem 3.1,together with embedding H2(
) � C(
), give the uniform (with respet to ")estimate for the C-norm of solution u(t) in the superritial ase as well. Thus, thegrowth rate of the nonlinearity f beomes nonessential, due to this estimate, and,repeating word by word the proof performed in [3℄, we establish the existene of theglobal attrator Agl" . Desriptions (3.37) and (3.38) are the standard orollaries ofthe attrator's existene theorem. So, there remains to verify estimate (3.39).Indeed, let �u 2 K̂" Then, due to estimate (3.3)"k�tu(t)k2H1 + ku(t)k2H2 + "2k�2t u(t)k2L2 + Z t+1t k�tu(s)k2H1 ds � Q(kgkL2); (3.40)where the funtion Q is independent of ". Di�erentiating now equation (0.1) withrespet to t and setting �(t) := �tu(t), we obtain the linear equation"�2t � + �t� ��x� = h�(t) := �f 0(u(t))�tu(t); t 2 R: (3.41)Moreover, due to (3.40) and embedding H2(
) � C(
), we have the estimateZ t+1t kh�(s)k2H1 ds � Q1(kgkL2); t 2 R; (3.42)for an appropriate monotoni funtion Q1 whih is independent of ". Estimate(3.42) implies in a standard way (multiplying (3.41) by ��x(�t�(t)+��(t)) and soon, see e.g. [17℄) that�� 2 Cb(R; E1 ) and k��(t)kE1;" � CQ1(kgkL2); (3.43)where C is independent of ". Estimate (3.39) is an immediate orollary of (3.40)and (3.43) and Corollary 3.2 is proven.We are now ready to verify that the trajetory attrator Atr" onstruted inSetion 1 onsists of strong solutions.



28 SERGEY ZELIKTheorem 3.2. Let the assumptions of Lemma 1.1 hold. Then, there exists a smallpositive onstant "0 suh that, for every " � "0, the sets K" and K̂" de�ned inTheorem 1.1 and Corollary 3.2 respetively oinide:K" = K̂": (3.44)Thus K" � Cb(R; E1 ); Atr" � Cb(R+ ; E1); (3.45)and every �u 2 K" satis�es (3.39). Moreover, the attrators Agl" and Atr" satisfy thestandard relation Agl" = �0Atr" : (3.46)Proof. Aording to Theorem 1.1 and Corollary 3.2, it is suÆient to verify (3.44).Moreover, sine K̂" onsists of strong omplete bounded solutions whih are unique(see e.g. the proof of Theorem 2.2) (and, onsequently, an be approximated byGalerkin solutions), then K̂" � K": (3.47)So, there remains to verify the inverse embedding. Indeed, let �u 2 K" be anarbitrary omplete weak solution of (0.1). Then, due to Theorem 2.1, there existsa time T = Tu suh that �u(t) 2 E1, for t � T , andk�u(t)kE1;" � Q(kgkL2); t � T; (3.48)where the funtion Q is independent of ". We now assume that the parameter0 < " � "0 is small enough so thatQ(kgkL2) � R0("0); (3.49)where R0(") is the same as in Corollary 3.1 (suh "0 exists due to (3.1) and thefat that Q is independent of "). Then, due to Theorem 3.1, there exists a uniquestrong global solution v(t), t � T , of problem (0.1) with the initial ondition�v��t=T = �u(T ): (3.50)We now de�ne a new solution �~v(t), t 2 R, of problem (0.1) via~v(t) = � u(t) if t � T ;v(t) if t � T : (3.51)Then, due to estimates (3.3), (3.48) and (3.49), we have �~v 2 K̂" and, onsequently,due to (3.47), �~v 2 K". Applying now Theorem 2.2 to the solutions u(t) and ~v(t),we onlude that u(t) � ~v(t), for all t 2 R, and Theorem 3.2 is proven.In the sequel, we need also more regular (than �u 2 E1) strong solutions ofequation (0.1). We note however that we have the regularity g 2 L2(
) only and,therefore, we annot expet that u be more regular than u(t) 2 H2(
) even forsmoother initial onditions. In order to overome this diÆulty, we �x an arbitraryequilibrium z0 2 H2(
) \H10 (
). Then, the funtion z0 = z0(x) solves��xz0 + f(z0) = g; z0���
 = 0: (3.52)Let us introdue the spaeE2g := (z0; 0) + [H3(
) \ fu0���
 = �xu0���
 = 0g℄� [H2(
) \H10 (
)℄: (3.53)It is not diÆult to see that E2g is independent of the onrete hoie of the equilib-rium z0 and depends only on g. The following orollary gives the global solvabilityof problem (0.1) in the phase spae E2g .



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 29Corolary 3.3. Let the assumptions of Corollary 3.1 hold. Then, for every�u(0) 2 E2g \ B "R0 ("); (3.54)there exists a unique strong solution �u(t) 2 E2g of problem (0.1) and the followingestimate is valid:k�u(t)k2E2g ;" + Z t+1t k�tu(s)k2H2 ds � Q(k�u(0)kE2g;")e��t +Q(kgkL2); (3.55)where k�u(t)k2E2g;" := "k�tu(t)k2H2 + ku(t)� z0k2H3 (3.56)and � > 0 and the monotoni funtion Q are independent of " � "0.Proof. Let v(t) = u(t)� z0. Then, this funtion satis�es� "�2t v + �tv ��xv = h(t) := f(z0)� f(u(t));v���
 = �xv���
 = 0; �tv���
 = 0; �v��t=0 = �u(0)� �z0 : (3.57)Aording to estimate (3.3) and the fat that H2(
) � C(
), we have h(t) 2H2(
) \H10 (
) and the following estimate holds:kh(t)kH2 � Q(k�u(0)kE1;")e��t +Q(kgkL2): (3.58)Multiplying equation (3.57) by �2x(�tu + �u) and arguing in a standard way (seee.g. [11℄), we derive estimate (3.55) and Corollary 3.3 is proven.Remark 3.2. Theorem 3.1 and Corollary 3.2 establish the uniqueness of the globalstrong solution �u(t) := S"t �u(0), for �u(0) 2 B "R0 ("), in the lass of strong solutions�u 2 Cb(R+ ; E1) only.In fat, we do not know whether or not this solution is unique in the lass ofweak solutions �u 2 K+" even in the ase where �u(0) 2 Agl" .Remark 3.3. The proof of Theorem 3.1 is independent of the results of Setion2 and requires only that " � 1 and the global solvability of the limit paraboliequation at " = 0. In partiular, this result does not require the �niteness ofthe dissipation integral (1.56). Consequently, one may extend Theorem 3.1 andCorollary 3.2, for instane, to the ase of systems of hyperboli equations in theform (0.1) with nongradient nonlinearities or for a ertain lass of nonautonomousequations in the form (0.1) for whih the dissipation integral is in�nite.In ontrast to this, we have essentially used the dissipation integral in order toprove that there are no any bounded singular weak solution �u(t), t 2 R, of problem(0.1) (whih does not belong to K̂") if " > 0 is small enough.Remark 3.4. The limit value "0 of the parameter ", for whih Theorem 3.2 is valid,obviously depends on the other parameter  > 0 of equation (0.1): "0 = "0().Resaling however the time t! t0 in equation (0.1), we derive again an equationof the form (0.1) with 0 := 1 and "0 := "=2. Therefore, Theorem 3.2 remains validif we replae the assumption " � "0 by"2 � "0(1); (3.59)



30 SERGEY ZELIKwith small enough "0(1) whih is independent of . In partiular, the trajetoryattrator Atr of equation (0.1) onsists of strong solutions if " > 0 is �xed and � 0 is large enough.4. The regular attrator and the exponential attration property. In thisonluding setion, we give a more detailed study of equation (0.1) in the ase whereall the equilibria of equation (0.1) are hyperboli. We extend to the superritialase the results on the regular struture of Agl" and on the onvergene of Agl" tothe attrator Agl0 of the limit paraboli problem. Sine these results are well knownin the subritial ase and the rate of growth of the nonlinearity is nonessential ifone already has a-priori estimates in C (whih are obtained in Theorem 3.1) then,in order to avoid the tehnialities, we give below only the rigorous statements ofthese results. As the main result of the setion, we �nally establish that all weaksolutions of (0.1) are attrated exponentially in the strong topology of E to theglobal attrator Agl" .We denote by R � E the set of all the equilibria of equation (0.1):R := f(z0; 0) 2 E; �xz0 � f(z0) = gg: (4.1)Then, obviously, R is independent of ". Moreover, sine z0 solves an ellipti bound-ary value problem, then z0 2 H2(
) andkz0k2H2 � C(1 + kgk2L2); (4.2)for every z0 2 R (see e.g. [24℄).The main additional assumption of this setion is the following:R := fzigNi=1 and �(�x � f 0(zi)) \ fRe� = 0g = ?: (4.3)Then, as known (see e.g. [24℄), the following value is �nite:ind+(zi) := #f� 2 �(�x � f 0(zi)) : Re� > 0g <1 (4.4)and it is alled the instability index of the hyperboli equilibrium zi 2 R.The following theorem extends to the superritial ase the well-known desrip-tion of the struture of Agl" (see e.g. [3℄).Theorem 4.1. Let the assumptions of Theorem 3.2 hold and let, in addition, as-sumption (4.3) be valid. Then, the attrator Agl" of semigroup (3.35) possesses thefollowing desription: Agl" = [Ni=1M+" (zi); (4.5)where M+" (zi) are the ind+(zi)-dimensional C1-submanifolds of E1 whih onsistof all the strong solutions of (0.1) de�ned for t 2 R and onverging to (zi; 0) ast! �1: M+" (zi) := f�u 2 K̂" : limt!�1 k�u(t)� (zi; 0)kE1;" = 0g: (4.6)Moreover, M+" (zi) is C1-di�eomorphi to Rind+(zi) and every solution �u 2 K̂"stabilizes to di�erent equilibria as t! �1:limt!�1 k�u(t)� (z�; 0)kE1 = 0; z� 2 R; z+ 6= z�: (4.7)



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 31Proof. The proof of Theorem 4.1 is given in [3℄ in the subritial ase p � 1. Wenote however that Theorem 3.1 gives the uniform (with respet to ") estimate forthe C-norm of trajetories of semigroup (3.35) and this estimate makes the growthrate of the nonlinearity f unessential for further investigation of the attrator Agl"of semigroup (3.35). Thus, repeating word by word the proof of Proposition 4.1 inthe subritial ase (see [3℄) and using this estimate, we extend this theorem to thesuperritial ase. Theorem 4.1 is proven.The next theorem establishes that E1-bounded subsets are attrated exponen-tially to the attrator Agl" .Theorem 4.2. Let the assumptions of Theorem 4.1 hold. Then, for every B �B "R0 ("), the following estimate is valid:distE1;"(S"tB;Agl" ) � Q(kBkE1;")e��t; (4.8)where the onstant � > 0 and the monotoni funtion Q are independent of " � "0and B and distE1;" denotes the nonsymmetri Hausdor� distane in metri (3.2).As in the previous ase, the proof of the uniform exponential attration prop-erty is given in [3℄ for the subritial ase and the superritial growth rate of thenonlinearity an be easily overome, due to the uniform estimate on the C-normsof trajetories of (3.35) whih is proven in Theorem 3.1.Let us establish now the onvergene of the global attrators Agl" to the globalattrator Agl of the limit paraboli equation�tu��xu+ f(u) = g; u���
 = 0; u��t=0 = u0: (4.9)We reall (see e.g. [3℄ or [27℄) that equation (4.9) possesses a ompat global at-trator Agl in the phase spae H2(
)\H10 (
) (even without any growth restritionon the nonlinearity f).As usual (see [3℄), in order to ompare the attrators Agl" and Agl, we introduethe extension of Agl to the phase spae E byAgl0 := f(u0; v0) 2 E : u0 2 Agl; v0 ��xu0 + f(u0) = gg: (4.10)The following standard theorem gives an estimate of symmetri Hausdor� distanebetween Agl" and Agl0 in the spae E1.Theorem 4.3. Let the assumptions of Theorem 4.1 hold. Then, Agl0 2 E1 and thefollowing estimate is valid:distsymm;H2(
)�H1(
) �Agl" ;Agl0 � � C"�; (4.11)where C > 0 and 0 < � � 1 are independent of ".As before, estimate (4.11) is well known for the subritial ase p � 1 (see e.g.[3℄ or [11℄) and the superritial growth rate of f is now nonessential, due to theuniform C-estimate of solutions proved in Theorem 3.1.We are now ready to formulate the main result of the setion whih establishesthe analogue of estimate (4.8) for the weak solutions �u 2 K+" of equation (0.1).



32 SERGEY ZELIKTheorem 4.4. Let assumptions (0.2){(0.5) and (4.3) hold. Then, there exists asmall positive number "0 > 0 suh that, for every " � "0 and every M-bounded (inthe sense of De�nition 1.3) subset B � K+" , the following estimate is valid:sup�u2B distE;" ��u(t);Agl" � � Q(kBkM )e��t; (4.12)where the onstant � > 0 and the funtion Q are independent of " and B and distE;"denotes the nonsymmetri Hausdor� distane with respet to norm (1.4).Proof. We divide the proof of the theorem into a number of lemmata whih arestandard for the proof of exponential attration property of a regular attrator (see[3℄). The �rst one shows that every trajetory �u 2 K+" stays near the equilibria Rmost of the time.Lemma 4.1. Let the assumptions of Theorem 4.3 hold. Then, for every smallÆ > 0 and every large P > 0, there exist"0 = "0(Æ; P ) > 0; T = T (Æ; P ) > 0; and 0 < Æ0 = Æ0(Æ; P ) � Æ (4.13)suh that, for every " � "0 and every trajetory �u 2 K+" satisfying k�ukM � P thefollowing ondition is satis�ed:�[t2[0;T ℄u(t)� \ OÆ(R; L2(
)) 6= ?; (4.14)where OÆ(V;E) is a Æ-neighborhood of the set V in the spae E.Moreover, if u(0) 2 OÆ0(zi; L2(
)) and u(t0) =2 OÆ(zi; L2(
)); (4.15)for some i 2 f1; � � � ; Ng and t0 > 0, then, neessarilyu(t) =2 OÆ0(zi; L2(
)); 8t � t0: (4.16)Proof of Lemma 4.1. We adopt the method of [9℄ to our situation. Indeed, letus assume that (4.14) is wrong. Then, there exist a sequene "n > 0, "n ! 0, asequene Tn !1 and a sequene �uN 2 K+"n suh thatk�unkM � C and �[t2[0;Tn℄un(t)� \ OÆ0(R; L2(
)) = ?; (4.17)for a �xed Æ0 > 0. Then, due to estimate (1.35)"nk�tun(t)k2L2 + kun(t)k2H1 + kun(t)kp+3Lp+3 + Z 10 k�tun(s)k2L2 ds � C1; (4.18)where C1 is independent of n and ". Thus, without loss of generality, we mayassume that�un * �u weakly-� in L1lo(R+ ; H10 (
) \ Lp+3(
))� L2(R+ �
): (4.19)Using now the ompatness of the embeddingfu 2 L1lo(R+ ; H10 (
) \ Lp+3(
))g \ f�tu 2 L2lo(R+ �
)g ���� fu 2 Clo(R+ ; H1��(
) \ Lp+3��(
))g; (4.20)



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 33for every � 2 (0; 1) (see, e.g. [8℄), we derive from (4.19) thatun ! u strongly in Clo(R+ ; H1��(
) \ Lp+3��(
)): (4.21)The strong onvergene (4.21) allows to pass to the limit n!1 in equations (0.1)for un(t) in a standard way and to establish that the limit funtion u(t) satis�esthe limit paraboli equation (4.9) and satis�es the estimateku(t)k2H1 + ku(t)kp+3Lp+3 + Z 10 k�tu(s)k2L2 ds � C1: (4.22)Sine u(t) solves the limit paraboli equation (4.9) whih possesses a global Liapunovfuntion (see e.g. [3℄), then we have the onvergene to one of the �nite number ofequilibria: limt!1 ku(t)� z0kL2 = 0; for some z0 2 R: (4.23)On the other hand, passing to the limit n!1 in (4.17), we haveu(t) =2 OÆ0(R; L2(
)); t 2 R+ : (4.24)This ontradition proves (4.14).Assuming now that (4.16) is wrong and arguing analogously, we obtain a homo-lini onnetion zi1 ! zi2 ! � � � ! ziN = zi1 ; zik 2 R; (4.25)whih onsists of solutions of the limit paraboli equation (4.9), i.e. there existsolutions uk(t), t 2 R, of (4.9) suh thatlimt!+1 kuk(t)� zik+1kL2 = limt!�1 kuk(t)� zikkL2 = 0 (4.26)(see [9℄ for the details). There remains to note that (4.25) learly ontradits theexistene of a global Liapunov funtion for the paraboli equation (4.9) and Lemma4.1 is proven.As usual, Lemma 4.1 implies the following result.Lemma 4.2. For every Æ > 0, there exist "0 = "0(Æ) > 0 and T = T (Æ) suh that,for every " � "0 and every trajetory �u 2 B" � K+" belonging to the absorbing setB" de�ned by (1.44), there existK = Ku 2 N; K � #R = N;a sequene of di�erent equilibria zk 2 R, k � K, and two sequenes of timesT+k := T+k (u), T�k := T�k (u), for k 2 f0; � � � ;Kg, suh thatT�0 = 0; T�K =1; T+k � T�k�1 � T; k = 1; � � � ;K (4.27)and u(t) 2 OÆ(zk; L2(
)) if t 2 [T+k ; T�k ℄; k = 1; � � � ;K: (4.28)Indeed, Lemma 4.2 is a standard orollary of Lemma 4.1 (see e.g. [3℄ or [9℄).Partiularly, Lemma 4.2 shows that the time whih the trajetory �u 2 B" spendsoutside of OÆ(R; L2(
)) is �nite and an be estimated from above in a uniform wayby #R � T (Æ).



34 SERGEY ZELIKAs in Setion 1, in order to ontrol distane (4.8), we need the following de�nition.De�nition 4.1. Let �u 2 K+" and let �v 2 E be an arbitrary funtion. Analogouslyto (1.33), we introdue the modi�ed distane M"u;v(t) byM"u;v(t) := inf � liminfk!1 k�uNk (t)� PNk�vkE;" :�u = �+ � limk!1 �uNk ; �u(0) = Ew � limk!1 �uNk (0)�: (4.29)We also de�ne the M -distane to the set B � E byM"u;B(t) := inf�v2BM"u;v(t): (4.30)The following Lemma gives the analogues of estimates (1.34) for theM -distane.Lemma 4.3. Let �u 2 K+" and �v 2 E1. Then,k�u(t)� �vkE;" �M"u;v(t) �� C (M"u(t) + k�vkE;") ; M"Thu;v(t) �M"u;v(t+ h); (4.31)where C depends only on p. Moreover, if �w 2 E1 is another arbitrary funtion,then M"u;v+w(t) � C �M"u;v(t) + k�wkE;"� : (4.32)Indeed, estimates (4.31) and (4.32) are immediate orollaries of de�nition (4.29)and of the fat that the Fourier series, assoiated with �v ; �w 2 E1, onverge stronglyin E.The next two lemmata allow to ontrol the M -distane of �u 2 K+" outsideOÆ(R; L2(
)).Lemma 4.4. Let the assumptions of Theorem 3.2 hold. Then, for every �u 2 K+"and every strong solution �v(t), t 2 [T; T + s℄, of equation (0.1) satisfyingkv(t)k2H2 + Z t+1t k�tv(s)k2H2 ds � P <1; (4.33)we have the following inequality:M"u;v(T+s)(T + s) � CeKsM"u;v(T )(T ); (4.34)where the positive onstants C and K depend on P , but are independent of " � "0and �u 2 K+" .Proof. Let �uNk (t) be a sequene of Galerkin approximations whih onverge in �+to the solution �u(t). Let now vNk(t) := PNkv(t), UNk(t) := uNk(t)� vNk(t). Then,analogously to (2.63)"�2tUNk + �tUNk ��xUNk++ PNk(f(vNk(t) + UNk)� f(vNk(t))) + L(��x)�1UNk == hNk(t) := PNk(f(v(t)) � f(vNk(t))) + L(��x)�1(uNk(t)� vNk(t));�UNk (T ) := �uNk (T )� �vNk (T ); (4.35)



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 35where L� 0 is a large parameter whih will be �xed below. As before, multiplying(4.35) by �tUNk(t) + �UNk(t), integrating over x 2 
 and arguing as in the proofof Theorem 2.1, we derive that there exists a positive � > 0 whih is independentof " suh that ddtEUNk (t) + �EUNk (t) = HUNk (t); t � T; (4.36)where EUNk (t) and HUNk (t) are de�ned by (2.48) and (2.50) respetively and thefuntion HUNk (t) satis�es, in addition, inequality (2.66), for every t � T . Moreover,sine the solution v(t) is independent of L and uniformly bounded in C (due to(4.33)) then, there exists L0 = L0(P ) suh that, for every L > L0, we haveC�1L k�UNk (t)k2E;" � EUNk (t) � CLk�UNk (t)k2E;"; (4.37)where the onstant CL is independent of " (see Proposition 2.1). Arguing analo-gously (2.67) (and using again Proposition 2.1), we derive from (2.66) that, for asuÆiently large L > L0(P ) (whih an be �xed now), the following estimate holds:HUNk (t) � CkhUNk (t)k2L2 + Ck�tvNk(t)kL1EUNk (t); t 2 [T; T + s℄; (4.38)where C = C(P;L) is independent of ". Applying now Gronwall's inequalityto (4.36), using (4.37) and (4.38) and noting that, due to (4.33) and embeddingH2(
) � C(
), we haveC Z tT k�tvNk(s)kL1 ds � C1(t� T + 1): (4.39)If k is large enough, we derive the inequalityk�UNk (t)k2E;" � Ck�UNk (T )k2E;"e(C1��)(t�T )++ C Z tT e(C1��)(t�l)khUNk (l)k2L2 dl; (4.40)where C = C(P ) and C1 = C1(P ) are independent of " and �u. Passing to the limitk !1 in (4.40) and taking into aount the fat thathNk ! L(��x)�1(u� v) strongly in C([T; T + s℄; L2(
)) (4.41)(ompare with (2.64)) and that the approximating sequene �uNk (t) was hosenarbitrarily, we derive from (4.40) thatM"u;v(t)(t) � Ce(C1��)(t�T )Mu;v(T )(T )++ CL Z tT e(C1��)(t�l)k(��x)�1(u(l)� v(l))k2L2 dl: (4.42)Using now estimate (4.31) and applying again Gronwall's inequality to (4.42), we�nally derive that M"u;v(t)(t) � C2eK(t�T )Mu;v(T )(T );where the onstants C2 = C2(P ) and K = K(P ) are independent of " and �u 2 K+"and Lemma 4.4 is proven.



36 SERGEY ZELIKLemma 4.5. Let the assumptions of Theorem 3.2 hold. Then, for every �u 2 K+"and every T; s 2 R+ , we haveM"u;Agl" (T + s) � CeKsM"u;Agl" (T ); (4.43)where the positive onstants C and K are independent of " � "0 and �u 2 K+" .Proof. Let �u 2 K+" be an arbitrary weak solution of (0.1) and �0 2 Agl" be anarbitrary point from the attrator. Then, due to Corollary 3.2, there exists a strongsolution �v(t) 2 Agl" , t 2 R, �v(T ) = �0 and, aording to (3.39), this solutionsatis�es estimate (4.33) with P = P (kgkL2) uniformly with respet to �0 2 Agl" .Then, aording to Lemma 4.4, we haveM"u;v(T+s)(T + s) � CeKsM"u;�0(T ); T; s 2 R+ ; (4.44)where the onstants C and K are independent of �0 2 Agl" . Sine �0 is arbitrary,then (4.44) implies (4.43) and Lemma 4.5 is proven.The next lemma allows to ontrol theM -distane from �u(t) to the attrator Agl"in the ase where �u(t) remains inside OÆ(R; L2(
)).Lemma 4.6. Let the assumptions of Theorem 3.2 and assumption (4.3) hold.Then, there exists a small positive onstant Æ whih is independent of " suh that,for every �u 2 B" � K+" , the inlusionu(t) 2 OÆ(z0; L2(
)); for t 2 [T; T + s℄ and �z0 2 R, (4.45)implies that M"u;Agl" (t) � Ce��(t�T )[M"u;Agl" (T )℄�; t 2 [T; T + s℄; (4.46)where the positive onstants �, � < 1 and C are independent of " and �u.Proof. As in the proof of Theorem 2.1, we use the following auxiliary hyperboliequation"�2t v + �tv ��xv + f(v) + L(��x)�1v == hL(t) := g + L(��x)�1u(t); v��t=T = z0; �tv��t=T = 0; (4.47)where L is a large parameter.The following proposition is an analogue of Lemma 2.1.Proposition 4.1. Let the assumptions of Lemma 4.6 hold. Then, for every largeL � L0 and every small � > 0, there exists a onstant Æ = Æ(L; �) (whih isindependent of ") suh that equation (4.47) has a unique strong solution on theinterval t 2 [T; T + s℄ and the following estimate is valid:"k�tv(t)k2H2 + kv(t)� z0k2H3 + Z t+1t k�tv(l)k2H2 dl � �; (4.48)for every t 2 [T; T + s℄.Proof. Proposition 4.1 is analogous to Lemma 2.1, but its proof is essentially sim-pler, sine we may now set w(t) � z0. Indeed, let us seek the solution of (4.47) inthe form v(t) :=W (t) + z0. Then, the funtion W (t) satis�es"�2tW + �tW ��xW + [f(W + z0)� f(z0)℄ + L(��x)�1W = hL;Æ(t) :== L(��x)�1(u(t)� z0); W ���
 = �xW ���
 = 0; �W ��t=T = 0: (4.49)



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 37Aording to (4.45), we havekhL;Æ(t)k2H2 � Q(L; Æ); with limÆ!0Q(L; Æ) = 0: (4.50)Consequently, applying the impliit funtion theorem to equation (4.49) (omparewith (2.22)), we derive that, for every �xed L � L0, there exists Æ0 = Æ0(L) > 0suh that, for Æ � Æ0, equation (4.49) has a unique strong solution �W (t) 2 E1,t 2 [T; T + s℄, whih satis�es the estimate:k�W (t)k2E1;" + Z t+1t k�tW (t)k2H1 ds � CQ(L; Æ); (4.51)where the onstant C is independent of Æ and ". Estimate (4.51), onvergene (4.50),together with assumption f 00 2 C(R) and with the embeddingH2(
) � C(
), implythat kf(W (t) + z0)� f(z0)k2H2 � Q1(L; Æ); (4.52)where limÆ!0Q1(L; Æ) = 0 and the funtion Q1 is independent of ". Multiplyingnow equation (4.49) by �2x(�tW (t) + �W (t)), we derive, analogously to Corollary3.3, that"k�tW (t)k2H2 + kW (t)k2H3 + Z t+1t k�tW (l)k2H2 dl �� C1 (Q(L; Æ) +Q1(L; Æ)) ; (4.53)where C1 is independent of Æ and ". Estimates (4.53), together with onvergenes(4.50) and (4.52), prove Proposition 4.1.The next proposition shows that, under assumptions of Lemma 4.6, the solution�u(t) onverges exponentially to the funtion �v(t) in E.Proposition 4.2. Let the assumptions of Lemma 4.6 hold. Then, there exist a largeonstant L and a small onstant Æ, whih are independent of " suh that equation(4.45) possesses a unique strong solution v(t) = vu;L(t), t 2 [T; T+s℄ whih satis�es(4.48) (where � = �(Æ; L) is independent of " and u) and the following estimate isvalid: M"u;v(t)(t) � Ce��(t�T )M"u;v(T )(T ); t 2 [T; T + s℄ (4.54)where onstants C and � > 0 are independent of " and �u 2 K+" satisfying (4.45).Proof. Let �uNk (t) be a sequene of Galerkin approximations whih onverges in�+ to the weak solution �u 2 K+" . Let also �v(t), t 2 [T; T +s℄, be a strong solutionof equation (4.47), vNk (t) := PNkv(t) and let UNk(t) := uNk(t)� vNk(t). Then, thelast funtion satis�es the equation:"�2tUNk + �tUNk ��xUNk++ PNk(f(vNk(t) + UNk)� f(vNk(t))) + L(��x)�1UNk == hNk(t) := PNk (f(v(t))� f(vNk(t)));�UNk (T ) := �uNk (T )� �vNk (T ): (4.55)Multiplying (4.55) by �tUNk(t) + �UNk(t), integrating over x 2 
 and arguing asbefore, we derive that there exists a positive onstant � whih is independent of L,Æ and " suh that ddtEUNk (t) + �EUNk (t) = HUNk (t); (4.56)



38 SERGEY ZELIKwhere the funtions EUNk (t) and HUNk (t) are de�ned by (2.48) and (2.50) respe-tively and the funtion HUNk (t) satis�es, in addition, inequality (2.66). Aordingto estimate (4.48), we may �x the onstant L suh that (4.37) is valid and thefuntion HUNk (t) satis�es the inequalityHUNk (t) � CkhUNk (t)k2L2 + Ck�tvNk (t)kL1EUNk (t); (4.57)where the onstant C is independent of " and Æ. Due to Proposition 4.1, we maynow �x Æ so that C Z tT k�tvNk(l)kL1 dl � �2 (t� T + 1) (4.58)for a suÆiently large k. Applying now Gronwall's inequality to (4.56) and using(4.37), (4.57) and (4.58), we obtainEUNk (t) � C1e��(t�T )=2EUNk (T ) + C1 Z tT e��(t�l)=2khUNk (l)k2L2 dl; (4.59)where t 2 [T; t+ s℄ and the onstant C1 is independent of " and �u 2 K+" . Passingto the limit k !1 in (4.59) and taking into aount the fat thathuNk ! 0 strongly in C([t; T + s℄; L2(
));we derive estimate (4.54) and Proposition 4.2 is proven.We are now ready to prove that, under the assumptions of Lemma 4.6, everyweak solution �u 2 K+" onverges exponentially to the global attrator Agl" .Proposition 4.3. Let the assumptions of Lemma 4.6 hold and let Æ be the sameas in Proposition 4.2. Then, for every �u 2 B" � K+" whih satis�es (4.45), thefollowing estimate is valid:M"u;Agl" (t) � Ce��1(t�T ); t 2 [T; T + s℄; (4.60)where positive onstants �1 and C are independent of " and �u 2 B".Proof. Let �u 2 B" and let �v(t) be the orresponding solution of equation (4.47).We also �x an arbitrary T1 2 [T; T + s℄. Then, aording to estimate (4.48), thetrajetory �v(t) is uniformly bounded in E2g and, onsequently (due to Corollary3.3), there exists a unique strong solution �v̂(t) := S"t�T1�v(T1) of equation (0.1)de�ned for t � T1, with �v̂(T1) = �v(T1). Moreover, due to (4.48) and (3.55), wehave kv̂(t)k2H2 + Z t+1t k�tv̂(l)k2H2 dl � K1; (4.61)where the onstant K1 is independent of " � "0 and of �u 2 B". Consequently, dueto Lemma 4.4, we obtainM"u;v̂(t)(t) � CeK(t�T1)M"u;v(T1)(T1); (4.62)where C and K are independent of " and �u. Inserting estimate (4.54) into theright-hand side of (4.62) and using (4.32), we haveM"u;v̂(t)(t) � C 0eK(t�T1)��(T1�T )M"u;v(T )(T ) � C1eK(t�T1)��(T1�t); (4.63)



WAVE EQUATIONS WITH SUPERCRITICAL NONLINEARITIES 39where the positive onstants �, K, C 0 and C1 are independent of " and �u 2 B"(here we have also used the fat that, due to (4.31) and (1.44), the valueM"u;v(T )(T )is uniformly bounded with respet to " and �u 2 B").On the other hand, due to Theorem 4.2distE;" �v̂(t);Agl" � � C1e��(t�T1); t � T1;where the positive onstants C and � are independent of " and K+" . Combiningthis estimate with (4.63) and taking into aount (4.32), we obtainM"u;Agl" (t) � C1 �e��(T1�T )+K(t�T1) + e��(t�T1)� ; t 2 [T1; T + s℄: (4.64)Fixing now the parameter T1 := �T + (K + �)t2� +Kin an optimal way, we derive estimate (4.60) (with �1 := �2=(2� +K)) and Propo-sition 4.3 is proven.We are now ready to omplete the proof of Lemma 4.6. Indeed, it follows fromestimates (4.43) and (4.60) that, for every � 2 [0; 1℄M"u;Agl" (t) � Ce(�K�(1��)�1)(t�T )[M"u;Agl" (T )℄�; t 2 [T; T + s℄: (4.65)Fixing now � := �1=(2K + 2�1), we obtain estimate (4.46). Lemma 4.6 is proven.The assertion of Theorem 4.4 is a standard orollary of Lemmata 4.2, 4.5 and4.6. Indeed, arguing as in [3℄ and [9℄, we derive from these Lemmata that, for asuÆiently small " and every �u 2 B", the following estimate holds:M"u;Agl" (t) � CNeKNT (Æ)e��Nt[M"u;Agl" (0)℄�N ; (4.66)where � > 0, � > 0, C and Æ are the same as in Lemma 4.6, K is the same as inLemma 4.5 and T (Æ) is de�ned in Lemma 4.2 (see [9℄ for the details). Sine B" isa uniform (with respet to ") absorbing set in K+" , then (4.66) implies (4.12) andTheorem 4.4 is proven.Remark 4.1. Theorem 4.4 and Lemma 4.5 show that, for a suÆiently small "and under the additional assumption (4.3), the trajetory attrator Atr" attratsM -bounded subsets of K+" not only in the weak topology of �+, but also in thestrong topology of L1lo(R+ ; E). Referenes1. J. Arrieta, A. Carvalho and J. Hale, A damped hyperboli equation with ritial exponent,Comm. Partial Di�. Eqns. 17 (1992), 841{866.2. A. Babin and M. Vishik M,Maximal Attrators of Semigroups Corresponding to EvolutionaryDi�erential Equations, Mat. Sb. 126(3) (1984), 397{419.3. A. Babin and M. Vishik, Attrators of Evolutionary Equations, Nauka, Mosow, 1989.4. V. Chepyzhov and M. Vishik, Attrators of Nonautonomous Dynamial Systems and TheirDimension, J. Math. Pures Appl. 73(3) (1994), 279{333.5. V. Chepyzhov and M. Vishik, Evolution Equations and Their Trajetory Attrators, J. Math.Pures Appl. 76(10) (1997), 913{964.6. V. Chepyzhov and M. Vishik, Perturbation of Trajetory Attrators for Dissipative HyperboliEquations, The Maz'ya anniversary olletion 2 (Rostok 1998), 33{54.
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