
FINITE AND INFINITE DIMENSIONALATTRACTORS FOR POROUS MEDIA EQUATIONSM.Efendiev1 and S.Zelik21 GSF/Tehnial University MunihCenter of Math.Sienes Boltzmann str.385747 Garhing/Munih Germany2 University of SurreyDepartment of MathematisGuildford, GU2 7XH, United KingdomAbstrat. The fratal dimension of the global attrators of porous media equationsin bounded domains is studied. The onditions whih guarantee this attrator tobe �nite dimensional are found and the examples of in�nite-dimensional attratorsbeyond of that onditions are onstruted. The upper and lower bounds for theKolmogorov's "-entropy of in�nite-dimensional attrators are also obtained.
Introdution.It is well-known that the long-time behaviour of many dissipative systems gen-erated by evolution PDEs of mathematial physis an be desribed in terms of theso-alled attrators. By de�nition, a global attrator is a ompat invariant set inthe phase spae whih attrats the images of all bounded subsets under the tempo-ral evolution. Thus, on the one hand, the global attrator (if it exists) ontains allof the nontrivial dynamis and, on the other hand, it is usually essentially smallerthan the initial phase spae. Typeset by AMS-TEX1



In partiular, in the ase of dissipative PDEs in bounded domains, this attratorusually has �nite Hausdor� and fratal dimension, see [2℄, [18℄, [23℄ and referenestherein. Consequently, in spite of the in�nite-dimensionality of the initial phasespae, the redued dynamis on the attrator is (in a sense) �nite-dimensionaland an be studied by the methods of the lassial (�nite-dimensional) theory ofdynamial systems.In ontrast to that, in�nite-dimensional global/uniform attrators are typial fordissipative PDEs in unbounded domains or/and for the nonautonomous equations.In order to study suh attrators one usually uses the onept of Kolmogorov's"-entropy, see [5℄, [7℄, [11℄, [14℄, [24-27℄ for the details.We however note that the above results have been obtained mainly for evolutionPDEs with more or less regular struture (e.g., uniformly paraboli or uniformlyhyperboli). In ontrast to this, very little is known about the equations withsingularities or degeneration (even in the relatively simple ase of salar seond orderequations, like porous media equations, ellipti-paraboli equations et.) whih alsoplay a signi�ant role in modern mathematial physis, see [3℄, [22℄ and referenestherein. Indeed, although the attrators for suh equations have been onsidered ina number of papers (see [1℄, [9-10℄, [16℄), to the best of our knowledge, the questionsrelated to the �nite or in�nite-dimensionality of these attrators have been notstudied yet (as an exeption, we mention the reent paper [21℄, where the �nitedimensionality of the attrator of a 3D Cahn-Hilliard problem with logarithminonlinearity is proved).The main aim of the present paper is to give a detailed study of the fratal di-mension and Kolmogorov's entropy of attrators of the following degenerate porousmedia equation:(0.1) �tu = �x(f(u))� g(u) + hin a bounded domain 
 � Rn (equipped with Dirihlet boundary onditions). Heref(u) � ujujp�1 has a degeneray at u = 0 (p > 1), the funtion g satis�es thestandard dissipativity assumptions and h = h(x) is a given external fore (see2



Setion 1 for the rigorous onditions).The paper is organized as follows. In Setion 1, we briey reall some basiresults on the existene, uniqueness and regularity of solutions of equation (0.1).A natural lass of equations of the form (0.1) whose global attrators are �nite-dimensional is onsidered in Setion 2. The �nite-dimensionality is proved underthe additional assumption(0.2) g0(0) > 0and strongly based on the global H�older ontinuity of solutions of equation (0.1),see Theorem 2.1 of Setion 2.A �nite-dimensional exponential attrator (in the sense of [15℄) for problem (0.1)under assumption (0.2) is onstruted in Setion 3.Finally, in Setion 4, we show that the global attrator is usually in�nite-dimensional if ondition (0.2) is violated and, thus, the sign of g0(0) appears tobe ruial for �nite or in�nite-dimensionality of the global attrator. Namely, weonsider here the partiular ase of (0.1) of the following form:(0.3) �tu = �x(ujujp�1) + u� g(u)with p > 1 and g(u) vanishing near u = 0. Under these assumptions, we prove (seeTheorem 4.1) that the assoiated global attrator is in�nite-dimensional.Moreover, we study also the Kolmogorov's "-entropy H "(A) of this attrator(whih, by de�nition, is a logarithm from the minimal number of "-balls whihover the ompat set A). To be more preise, we establish the following lowerbounds for that quantity:(0.4) H "(A) � C �1"�n(p�1)=2where C is some positive number independent of " > 0.Thus, porous media equations of the form (0.3) give natural examples of dissi-pative equations of mathematial physis in bounded domains with in�nite-dimen-sional attrators. It is also worth noting that, although the in�nite-dimensional3



global attrators are typial for regular equations in unbounded domains, even inthat ase the asymptotis of their Kolmogorov's "-entropy were always logarith-mial (like (log2 1" )n+1, see [24-26℄). To the best of our knowledge, it is a �rstexample of a global attrator whose "-entropy has polynomial (with respet to "�1)asymptotis.We also note that equation (0.3) with the nonlinearity g vanishing in the neigh-bourhood of zero looks rather arti�ial. That is the reason why, we extend (inSetion 4) the above result on the following equation:(0.5) �tu = �x(u3) + u� u3; u���
 = 0whih has analyti nonlinearities and an be onsidered as a natural degenerateanalogue of the Chafee-Infante equation.We �nally note that the method of the study of the dimension of global attratorsof degenerate paraboli equations developed in this paper seems to have a generalnature and an be applied for other lasses of degenerate equations (e.g., for ellipti-paraboli equations). We will return to these questions in forthoming papers.Aknowledgements. This researh is partially supported by the Alexander vonHumboldt foundation. The authors are also grateful to M. Otani, L. Peletier andA.Miranville for the stimulating disussions.x1 A priori estimates and regularity of solutions.In this setion, we briey reall the known results on the regularity of solutionsof porous media equations whih will be systematially used in the next setions,see e.g. [4℄, [6℄, [8℄ and [17℄ fore more details.In a bounded domain 
 �� Rn with a suÆiently smooth boundary we onsiderthe porous media equation in the following form:(1.1) ( �tu = �xf(u)� g(u) + h;u���
 = 0; u��t=0 = u0:where u = u(t; x) is an unknown funtion, �x is the Laplaian with respet to thevariable x = (x1; � � � ; xn), f and g are given funtions and h = h(x) is a givenexternal fore. 4



We assume that the funtion f 2 C2(R) has a polynomial degeneray at u = 0and is nondegenerate for u 6= 0. To be more preise, we assume that(1.2) C1jujp�1 � f 0(u) � C2jujp�1; f(0) = 0;for some positive onstants Ci and p > 1. It is also assumed that the funtion gsatis�es the following dissipativity ondition(1.3) g0(u) � �C + �jujq�1;for some q > 1, � > 0 and the external fore h belongs to L1(
).As usual, in order to prove the existene of a solution of problem (1.1), oneonsiders the nondegenerate analogue of (1.1)(1.4) ( �tu = �xf(u) + "�xu� g(u) + h;u���
 = 0; u��t=0 = u0whih obviously has a unique solution for every " > 0 and suÆiently smooth u0,see e.g. [20℄ and then passes to the limit " ! 0. Following this sheme, we �rstderive uniform with respet to " estimates for equation (1.4). We start from thestandard L1 � L1-estimates.Lemma 1.1. Let the above assumptions hold and let u be a solution of equation(1.4). Then the following estimates hold:(1.5) ( 1) ku(t)kL1(
) � ku(0)kL1(
)e��t + C(1 + khkL1(
));2) ku(t)kL1(
) � ku(0)kL1(
)e��t + C(1 + khkL1(
))where the positive onstants � and C depend only on the funtion g and are in-dependent of ", t, u0 and u. Moreover, the following L1-L1-smoothing propertyholds:(1.6) ku(t)kL1(
) � Q(t�1 + khkL1(
)); t > 0where the monotoni funtion Q is independent of ", t and u.Proof. Indeed, multiplying equation (1.4) salarly in L2(
) by the funtion sgnu =sgn(f(u)+ "u) and using the Kato inequality (�xv; sgn v) � 0 and the dissipativityassumption (1.3), we dedue that(1.7) �tku(t)kL1(
) + �ku(t)kqLq(
) � C + khkL1(
):5



Sine �kukqLq(
) � ku(t)kL1(
) � C, the the Gronwall inequality applied to (1.7)implies the �rst estimate of (1.5). In order to dedue the seond estimate of (1.5),we use the omparison priniple for seond order paraboli equations and deduethat(1.8) y�(t) � u(t; x) � y+(t)where y�(t) solve the following ODEs(1.9) y0�(t) + g(y�(t)) = �khkL1(
); y�(0) = �ku0kL1(
):It remains to note that, due to the dissipativity assumption (1.3), the solutions y�(t)satisfy the analogue of estimate (1.5)(2) whih together with (1.8) �nishes the proofof estimate (1.5)(2). Finally, in order to verify (1.6), it remains to reall that, dueto our assumptions, g has a superlinear growth rate as u!1. Consequently, thesolutions y�(t) satisfy estimate (1.6) (see e.g., [21℄) whih together with estimate(1.8) imply estimate (1.6) for the solution u and �nishes the proof of the lemma.The next Lemma gives some kind of energy estimates for equation (1.4).Lemma 1.2. Let the above assumptions hold and let u be a solution of (1.4). Then,for every Æ > 0, the following estimate holds:(1.10) kukW 1=p�Æ;2p([t;t+1℄�
) + k�tf(u)kL2([t;t+1℄�
)++ krxf(u)kL1([t;t+1℄;L2(
)) � Q(t�1 + khkL1(
))where the monotoni funtion Q is independent of ", t > 0 and u (here and below,W s;p denotes the Sobolev spae of distributions whose derivatives up to order sbelong to Lp, see e.g. [20℄).Proof. Without loss of generality we an assume that t � 1. Then, multiplyingequation (1.4) salarly in L2(
) by f"(u) := f(u) + "u, and integrating over [Æ; 2℄,Æ > 0, we get(1.11) (F"(u(2)); 1)� (F"(u(Æ)); 1) + Z 2Æ krxf"(u(t))k2L2(
) dt++ Z 2Æ (f"(u(t); g(u(t)))� (h; f"(u(t))) dt = 06



(here and below we denote by (�; �) the standard inner produt in L2(
) and F"(u) =R v0 f"(v) dv). Together with L1-estimate (1.6) this estimates give(1.12) Z 2Æ krxf"(u)k2L2(
) dt � Q(Æ�1 + khkL1(
)):Let us now multiply equation (1.4) by (t� Æ)�tf"(u) and integrate over [Æ; T ℄� 
,Æ � T � 2. Then, we have(1.13) Z 2Æ (t� ")f 0"(u(t))j�tu(t)j2 dt++ (T � Æ)(1=2krxf"(u(T ))k2L2(
) + (F";g(u(T )); 1)� (f"(u(T )); h)) == Z TÆ 1=2krxf"(u(t))k2L2(
) + (F";g(u(t)); 1)� (f"(u(t)); h) dtwhere F";g(u) := R u0 f 0"(v)g(v) dv. This estimate, together with L1-estimate (1.6)and estimate (1.22) implies that(1.14) Z 22Æ f 0(u(t))j�tu(t)j2 dt+ krxf(u)k2L1([2Æ;2℄;L2(
)) � Q(Æ�1 + khkL1(
))for the appropriate monotoni funtion Q. This estimate, together with the L1-estimate implies, in turn, that(1.15) k�tf(u)kL2([t;t+1℄�
) + krxf(u)kL1([t;t+1℄;L2(
)) � Q(t�1 + khkL1(
)):Thus, it only remains to estimate the �rst term in the left-hand side of (1.10). Tothis end we note that, aording to (1.15), we have v = f(u) 2W 1;2([t; t+1℄�
) �W 1�Æ;2([t; t+1℄�
). Then, due to Proposition A.1, see Appendix below, we havekukW 1=p�Æ;2p([t;t+1℄�
) � Cf;Ækvk1=pW 1;2([t;t+1℄�
)where the onstant Cf;Æ depends only on f and Æ > 0. Lemma 1.2 is proved.The next lemma gives the uniform Lipshitz ontinuity of solutions in L1(
).Lemma 1.3. Let the above assumptions hold and let u1(t) and u2(t) be two solu-tions of equation (1.4). Then, the following estimate holds:(1.16) ku1(t)� u2(t)kL1(
) � eKtku1(0)� u2(0)kL1(
)7



where K := maxv2Rf�g0(v)g.Proof. Indeed, let v(t) := u1(t)� u2(t). Then, this funtion satis�es the followinglinear equation:(1.17) �tv = �x(l1(t)v) + "�xv � l2(t)v; v���
 = 0; v��t=0 = u1(0)� u2(0)where l1(t) := R 10 f 0(su1(t) + (1 � s)u2(t)) ds � 0, l2(t) := R 10 g0(su1(t) + (1 �s)u2(t)) ds � �K. Multiplying now equation (1.17) by sgn v = sgn((l1(t) + ")v)and using again the Kato inequality, we arrive at(1.18) �tkv(t)kL1(
) �Kkv(t)kL1(
) � 0:Applying the Gronwall inequality to this relation, we �nish the proof of Lemma1.3.We are now ready to verify the existene and uniqueness of a solution for theinitial degenerate problem (1.1). To this end, we �rst formulate the de�nition of aweak solution of that problem.De�nition 1.1. We say that a funtion u is a weak solution of (1.1) if u 2C([0; T ℄; L1(
)), u 2 L1([t; T ℄�
) and f(u) 2 L2([t; T ℄;W 1;20 (
)), for every t > 0and it satis�es (1.1) in the sense of distributions.The following theorem an be onsidered as the main result of the setionTheorem 1.1. Let the above assumptions hold. Then, for every u0 2 L1(
), thereexists a unique weak solution of problem (1.1) and this solution satis�es all of theestimates, formulated in Lemmata 1.1{1.3.Proof. We �rst establish the existene of a solution and assume additionally thatu0 is smooth enough. Let us onsider a sequene u"n(t) of solutions of the auxiliaryproblem (1.4) with "n ! 0. Then, this sequene satis�es estimates (1.5) and (1.10)uniformly with respet to n. Moreover, sine u0 is smooth, then estimate (1.10)holds for t = 0 as well. In partiular,(1.19) ku"nkW 1=p�Æ;2p([t;t+1℄�
) � C8



uniformly with respet to t and n. Thus, without loss of generality, we an assumethat u"n ! u strongly in C([0; T ℄; L1(
)) (due to the ompatness of the embeddingW 1=p�Æ;2p([0; T ℄ � 
) � C([0; T ℄; L1(
)) if Æ is small enough). Passing now in astandard way (see e.g., [2℄) to the limit n ! 1 in equations (1.4), we verify thatu0 satis�es the initial equation (1.1) (in the sense of distributions) and passingto the limit n ! 1 in the uniform estimates of Lemmata 1.1{1.3, we verify thatthe solution thus onstruted satis�es estimates (1.5), (1.6), (1.10) and (1.16). Inpartiular, these estimates show that u is a weak solution in the sense of De�nition1.1. Thus, for smooth initial data u0 the existene of a solution is veri�ed. Inorder to relax the smoothness assumption, it remains to reall that the solutionsonstruted satisfy (1.16) with the onstants whih are independent of the initialdata, onsequently, approximating in L1(
) the nonsmooth initial data u0 2 L1(
)by a sequene of the smooth ones un0 , onstruting the assoiated solutions un(t) andpassing to the limit n!1, we obtain a weak solution u(t) for every u0 2 L1(
).Obviously, this solution will also satisfy all of the estimates of Lemma 1.1.{1.3.Thus, the existene is veri�ed.Let us now prove the uniqueness. Indeed, let u1(t) and u2(t) be two weaksolutions of equation (1.1) and let v(t) := u1(t)�u2(t). Then, this funtion satis�esthe equation(1.20) �tv = �x(l1(t)v)� l2(t)vwhere li(t) are the same as in (1.17). It would be natural (analogously to the proofof Lemma 1.3) to multiply equation (1.20) by sgn(v) and use the Kato inequalitywhih would immediately give estimate (1.16) and �nish the proof of the uniqueness,but, unfortunately, in ontrast to the situation in Lemma 1.3, we do not have nowenough regularity for the expression (�x(l(t)v); sgn(v)) to have sense. Thus, weneed to proeed in a little more preise way. To this end, we assume, in addition,that ui 2 L1([0; T ℄� 
) and introdue the following \regularized" version of theonjugate equation for (1.20):(1.21) ��tw = l1(t)�xw + "�xw; w��t=T = wT ; w���
 = 0:9



whih we will onsider in the spaeW (1;2);2([0; T ℄�
) (here and below, we denote byW (1;2);q the anisotropi Sobolev spae onsisting of distributions whose t-derivativesup to order one and x-derivatives up to order two belong to Lq, see [20℄).The next Lemma gives the solvability result for that equation.Lemma 1.4. Let the above assumptions hold. Then, for every wT 2W 1;20 (
) andevery " > 0, equation (1.21) possesses a unique solution w 2 W (1;2);2([0; T ℄ � 
)and the following estimate holds:(1.22) krxw(t)k2L2(
) + 2" Z T0 k�xw(t)k2L2(
) � krxw(T )k2L2(
); t 2 [0; T ℄:Moreover, if in addition, C1 � wT (x) � C2, then(1.23) C1 � w(t; x) � C2; t 2 [0; T ℄:Proof. Indeed, aording to our assumption, li 2 L1([0; T ℄�
) and, moreover, dueto (1.2), l1(t) � 0. Therefore, equation (1.21) is non-degenerate. A priori estimate(1.22) an be obtained by multiplying (1.21) by �xw and integrating over [0; T ℄�
and the L2-estimate for the derivative follows then from (1.22) and equation (1.21).Thus, the a priori estimate in W (1;2);2([0; T ℄� 
) is obtained. The existene of asolution an be easily veri�ed by e.g. the Galerkin method, see [2℄. Finally, estimate(1.23) is just a maximum priniple for the linear seond order paraboli equation(1.21) (Being pedants, we annot apply the lassial maximum priniple diretlyto equation (1.21) sine the funtion l1(t; x) is only from L1 (and not smooth),but approximating it by the smooth ones, say, in L2([0; T ℄�
), we may apply themaximum priniple for the solutions of the assoiated smooth equations and thenpass to the limit in a standard way.) Lemma 1.4 is proved.We are now ready to �nish the proof of the uniqueness for weak solutions of (1.1).To this end, we multiply equation (1.20) by the solution w(t) of the \onjugate"equation (1.21) (with some wT ) and integrate over [Æ; T ℄ � 
. Then, after the10



integration by parts, we have(1.24) (v(T ); w(T ))� (v(0); w(0))++ " Z T0 (�xw(t); v(t)) dt+ Z T0 (l2(t)v(t); w(t)) dt = 0:We now approximate the funtion w0T := sgn(v(T )) in the L2(
) metri by wnT 2W 1;20 (
) in suh way that �1 � wnT � 1 and onstrut the appropriate solutionswn(t) of equation (1.21). Then, due to (1.23), �1 � wn(t; x) � 1 and, onsequently,(1.24) reads(1.25) (v(T ); wnT ) + " Z T0 (�xwn(t); v(t)) dt � kv(0)kL1(
) + L2 Z T0 kv(t)kL1(
) dtwhere L2 = kl2(t; x)kL1([0;T ℄�
). We are now pass to the limit "! 0 (with a �xedn) in the inequality (1.25) using (1.22) and" Z T0 (�xwn(t); v(t)) dt � "1=4("1=2k�xwnk2L2([0;T ℄�
) + kvk2L2([0;T ℄�
)):Then, we have(1.26) (v(T ); wnT ) � kv(0)kL1(
) + L2 Z T0 kv(t)kL1(
) dt:Finally, passing to the limit n!1 in (1.26), we get(1.27) kv(T )kL1(
) � kv(0)kL1(
) + L2 Z T0 kv(t)kL1(
) dt:Sine T > 0 is arbitrary, then the Gronwall inequality, applied to (1.27) impliesthat kv(t)kL1(
) � eL2tkv(0)kL1(
):Thus, we have proved that every weak solution u(t) of (1.1) is unique under theadditional assumption u 2 L1([0; T ℄�
). Therefore, every suh solution oinideswith the solution obtained by passing to the limit "! 0 in the nondegenerate equa-tions (1.4). This, implies, in turns, that all suh solutions should satisfy estimate(1.16). 11



Let us now onsider the general ase of two weak solutions u1 and u2 whihdo not belong to L1([0; T ℄ � 
). Then, due to the de�nition of a weak solution,ui 2 L1([Æ; T ℄� 
) for every Æ > 0 and, onsequently, due to (1.16), we have(1.28) ku1(t)� u2(t)kL1(
) � eK(t�Æ)ku1(Æ)� u2(Æ)kL1(
):Passing now to the limit Æ ! 0 in (1.28) and taking into aount that ui 2C([0; T ℄; L1(
)), we obtain estimate (1.16) for any two weak solutions of (1.1).Theorem 1.1 is proved.Remark 1.1. In Theorem 1.1, we have proved, in partiular, that every weaksolution of (1.1) an be approximated by smooth solutions of the nondegenerateproblem (1.4). This allows us in the sequel to use the Kato inequality for derivingmore deliate estimates without taking are about the regularity. Indeed, all thatestimates an be easily justi�ed by this approximating proedure.We also note that the rather strong dissipativity ondition (whih guarantees, inpartiular, the superlinear growth rate of the nonlinearity g) has been posed onlyin order to avoid the tehnialities in proving the L1 �L1 smoothing property forthe solutions of (1.1) and an be relaxed to the standard dissipativity ondition:lim supjuj!1 g(u)u > 0:We onlude this Setion by formulating the result on the H�older ontinuity ofsolutions of degenerate paraboli equations whih is ruial for our study of thedimension of the attrator.Theorem 1.2. Let the above assumptions hold and let u be a weak solution of(1.1). Then, there exists a positive onstant � suh that(1.29) kukC�([t;t+1℄�
) � Q(t�1 + khkL1(
))where t > 0 and Q is some monotoni funtion.In the multidimensional ase n � 2 the H�older ontinuity (1.29) is a ratherdeliate fat and its proof is based on the proper modi�ation of the De Giorgi12



tehnique, see [6℄, [8℄ and [17℄. By ontrast, in the one-dimensional ase, it an beeasily derived from standard energy estimates. For the onveniene of the reader,we give the proof for the 1D ase.Proof: 1D ase. Indeed, aording to Lemma 1.2 and Theorem 1.1, any weak solu-tion u satis�es(1.30) kf(u)kL1([t;t+1℄;W 1;2(
))\W 1;2([t;t+1℄;L2(
)) � Q(t�1 + khkL1(
)):Moreover, by interpolation, see [20℄, we have(1.31) kvkC�([t;t+1℄;W 1�2�;2(
)) � C�kvkL1([t;t+1℄;W 1;2(
))\W 1;2([t;t+1℄;L2(
))for 0 � � < 1=2. In 1D-ase, we have the embedding W 1�2�;2(
) � C1=2�2�(
).Taking � = 1=6, we �nally derive(1.32) kf(u)kC1=6([t;t+1℄�
) � Q(t�1 + khkL1(
))for some monotoni funtion Q. Proposition A.1 together with (1.32) imply (1.29)with � = 1=(6p). Theorem 1.2 for 1D is proved.x2 The finite-dimensional ase: global attrators.In the previous setion we have proved that equation (1.1) generates a uniformlyLipshitz ontinuous semigroup S(t) on the phase spae � = L1(
) via(2.1) S(t)u0 = u(t); u0 2 L1(
); t > 0where u(t) is a unique weak solution of (1.1) (see Theorem 1.1). The present setionis devoted to study of the long-time behaviour of the trajetories of that semigroupin terms of �nite-dimensional global attrators. The ase where the limit dynamisis in�nite-dimensional will be onsidered in Setion 4.We �rst reall that, by de�nition, the set A � � is a global attrator of thesemigroup S(t) if the following onditions are satis�ed:1) the set A is a ompat subset of the phase spae � = L1(
);13



2) it is stritly invariant, i.e. S(t)A = A, for all t � 0;3) it attrats the images of all bounded subsets as time tends to in�nity, i.e.,for every bounded subset B � � and every neighbourhood O(A) there exists timeT = T (B;O), suh that(2.2) S(t)B � O(A); for all t � T:This assumption an be reformulated in the following equivalent form: for everybounded set B(2.3) dist(S(t)B;A)! 0 as t!1where dist(�; �) is a non-symmetri Hausdor� distane between sets in �:(2.4) dist(X;Y ) = supx2X infy2Y kx� yk�:The next lemma states the existene of suh an attrator.Lemma 2.1. Let the assumptions of Setion 1 hold. Then, the semigroup S(t)assoiated with equation (1.1) possesses a global attrator A in the phase spaeL1(
) whih is globally bounded in C�(
) (for some suÆiently small �) and hasthe following struture:(2.5) A = K��t=0where K is a set of all bounded solutions of (1.1) de�ned for all t. Moreover, thisset satis�es(2.6) kKkC�(R�
) � Q(khkL1(
)):for some monotone funtion Q.Proof. As usual, in order to verify the existene of a global attrator, one needs toverify two properties:1) the maps S(t) : �! � are ontinuous for every �xed t;2) the semigroup S(t) possesses a (pre)ompat absorbing set in �, see [2℄, [18℄.14



In our ase, the �rst property is obvious, sine, due to Lemma 1.3, the semigroupS(t) is even globally Lipshitz ontinuous in �. Moreover, the existene of anabsorbing set, bounded in C�(
), is an immediate orollary of Theorem 1.2. Thus,due to the abstrat theorem on the attrator's existene, this semigroup possessesa global attrator A, bounded in C�(
). Formula (2.5) is also a orollary of thattheorem and (2.6) follows from Theorem 1.2. Lemma 2.1 is proved.For the further investigation of the onstruted global attrator we reall thede�nition of the so-alled Kolmogorov "-entropy, see [19℄ for the details.De�nition 2.1. Let K be a (pre)ompat set in a metri spaeM . Then, for every" > 0, K an be overed by the �nite number of "-balls in M . Let N"(K;M) bethe minimal number of suh balls. Then, by de�nition, the Kolmogorov "-entropyof K is a binary logarithm of that number:(2.7) H "(K;M) := log2N"(K;M):The fratal dimension dimf (K) of the set K an be expressed in terms of thisentropy via(2.8) dimf (K;M) := H "(K;M)log2 1=" :We also reall that the Kolmogorov entropy is �nite for every ompat set K andevery " > 0 and the fratal dimension an be in�nite (if the spae M is in�nite-dimensional).The next theorem whih establishes the �nite-dimensionality of the global at-trator under the additional assumption that equation (1.1) is asymptotially stablenear u = 0 an be onsidered as the main result of the setion.Theorem 2.1. Let the assumptions of Setion 1 hold and let, in addition,(2.9) g0(0) > 0:Then the fratal dimension of A in C(
) is �nite:(2.10) dimf (A; C(
)) <1:15



Proof. As usual, see [5℄,[12-13℄,[23℄ in order to prove the �nite-dimensionality ofthe attrator, we need to onsider an arbitrary �nite "-net V" in A in the metriof L1(
) (with a suÆiently small positive ") and to onstrut, using this net, a�"-net V�" (with � < 1) in A satisfying(2.11) #V�" � L#V"where the onstants � and L are independent of " and of the initial overing V"(here and below #S means the number of elements of the �nite set S). Then,iterating this proedure we an prove the �nite dimensionality of the attrator.Let V" = fui0gN"i=1, V" � A be an arbitrary "-net in A (with N" = #V"). Then, inorder to onstrut the required �"-net, it is suÆient to onstrut, for every u0 2 A,the �"-net V�"(u0) in the the image S(T )(B("; u0; L1)\A)) (for some positive T ) ofthe "-ball entered at u0 interseted with the attrator (here and below we denoteby B(R; x;X) an R-ball in the spae X entered at x 2 X) satisfying(2.12) #V"(u0) � L:Then, obviously, the set V�" := [u02V"V�"(u0) gives a �"-net in S(T )A satisfying(2.11). Finally, sine S(T )A = A, the required �"-net in A would be onstruted.Thus, we only need to onstrut the �"-net in the set S(T )(B("; u0; L1(
))\A)for all suÆiently small ", u0 2 A and some T > 0 satisfying (2.12) with theonstant L independent on " and u0. So, let u0 2 A and "� 1 be �xed.Let us introdue, for every � > 0, the following sets:(2.13) L(�) = L(�; u0) := fx 2 
; ju0(x)j > �g;S(�) = S(�; u0) := fx 2 
; ju0(x)j < �g:Then, obviously, S(�1) � S(�2) and L(�2) � L(�1) if �1 � �2. Moreover, sineu0 2 C�(
) and ku0kC� �M , then these sets are open,�S(�) = �L(�) = fx 2 
; u0(x) = �g; 
 = S(�) [ L(�) [ �L(�)and, for every Æ > 0,(2.14) d[�S(� + Æ); �S(�)℄ � CÆ16



where the onstant CÆ depends only on Æ, � andM and is independent on � and onthe onrete hoie of u0 2 A. Here and below we denote by d(X;Y ) the standardmetri distane between sets in Rn :d[X;Y ℄ := infx2X infy2Y kx� yk:Let us �x now � > 0 and � > 0 in suh way that(2.15) g0(u) > 3� > 0; 8juj < 5�(this is possible by assumption (2.9)) and the ut-o� funtion � 2 C1(Rn), � � 0suh that:(2.16) �(x) = ( 1; x 2 S(4�);0; x 2 L(5�):Due to (2.14), and Proposition A.2 this ut-o� funtion � an be hosen in suh away that(2.17) k�kCk(
) � Ckwhere the onstants Ck depend only on M , � and k and are independent of u0.We reall that the trajetory u(t) := Stu0 belongs to C� with respet to t andx, onsequently, there exists time T > 0 (also depending only on M , � and �) suhthat(2.18) g0(u(t; x)) > 2�; x 2 S(5�); t 2 [0; T ℄;ju(t; x)j > �=2; x 2 L(�); t 2 [0; T ℄:On the other hand, due to the interpolation inequality(2.19) kwkC(
) � CkwkL1(
)kwk1�C�(
)(for some 0 <  < 1) and the H�older ontinuity, we obtain that(2.20) jv(t; x)� u(t; x)j � C1" ; x 2 
; t 2 [0; T ℄17



for every solution v(t) suh that v(0) 2 A \ B("; u0; L1). Thus, assuming that " issmall enough (" � "0 � 1 where "0 > 0 is independent of u0 2 A), we may improve(2.18) in the following way:(2.21) g0(v(t; x)) > �; x 2 S(5�); t 2 [0; T ℄;jv(t; x)j > �=4; x 2 L(�); t 2 [0; T ℄uniformly with respet to v0 2 A \ B("; u0; L1).In order to onstrut the required �"-net in S(T )(A \ B("; u0; L1)), we need toderive some smoothing property for di�erenes of solutions. To this end, we onsiderthe di�erene w(t) := u1(t)� u2(t) of two solutions satisfying ui(0) 2 B("; u0; L1).Then the funtion w(t) solves the following equation:(2.22) �tw(t) = �x(l1(t)w)� l2(t)w; w��t=0 = u1(0)� u2(0); t 2 [0; T ℄where li(t) are the same as in (1.17).Let us �rst onsider the ase of domains L(�) where the equation (1.1) is, in asense, nondegenerate. To this end, we need the following lemma whih is similar tothe lassial interior regularity estimates for the linear paraboli equation (2.22).Lemma 2.2. Let u0 2 A be arbitrary, the sets L(�; u0) be de�ned via (2.13).Assume also that u1(t) and u2(t) are two solutions of (1.1) suh that ui(0) 2 A \B("; u0; L1(
)). Then, the following estimate holds for every t0 2 (0; T ):(2.23) ku1 � u2kC�([t0;T ℄�L(3�)) � Ct0ku1(0)� u2(0)kL1(
)where the onstant Ct0 depends on t0 and is independent of ", u0, u1 and u2.Proof. We �rst prove that, for every r > 2, the funtions u1 and u2 satisfy thefollowing estimate:(2.24) kuikW (1;2);r([t0=2;T ℄�L(2�)) � Cr; i = 1; 2where the onstant Cr depends on r, but is independent of the onrete hoie ofu0, " and of the trajetories u1 and u2 (starting from A \ B("; u0; L1)). Indeed,18



let us verify it for u = u1 (for u = u2 it an be veri�ed analogously). To this end,we introdue a new dependent variable v(t; x) := f(u(t; x)). Then, sine f(u) isnondegenerate if juj > � > 0, one an easily verify that the funtion v solves thefollowing equation:(2.25) �tv = a�xv + hu; (t; x) 2 [0; T ℄� L(�)where a(t; x) := f 0(u(t; x)) and hu(t; x) := f 0(u(t; x))[h(x)� g(u(t; x))℄. Moreover,due to (2.6), the oeÆient a is uniformly (with respet to u 2 K) H�older ontinuousand the funtion hu is uniformly bounded in L1. Furthermore, due to the seondinequality of (2.21) and assumption (1.2), we havea(t; x) � C1; (t; x) 2 [0; T ℄� L(�)where the onstant C1 is also independent of the hoie of u0 and u. Thus, wean apply the standard Lr-interior regularity estimate for the solution of the linearnondegenerate equation (2.25), see Proposition A.4 and Corollary A.1. Due to(2.14) with Æ = �, this estimate implieskvkW (1;2);r([t0=2;T ℄�L(2�)) � Cr(khkLr([0;T ℄�L(�)) + kvkL1([0;T ℄�L(�))) � C 0r:Returning bak to the variable u = f�1(v) and using that f 2 C2 (and nondegen-erate outside of zero), we dedue estimate (2.24).We now return to equation (2.22) whih will be now onsidered in the domain[t0=2; T ℄�L(2�). To this end, we �rst need to study the regularity of the oeÆientl1(t). Indeed, sine f 2 C2 and estimate (2.6) holds, then(2.26) kl1kC�([0;T ℄�
) � Cwhere the onstant C is independent of u1 and u2. Moreover, due to (2.24), wehave(2.27) k�tl1kLr([t0=2;T ℄�L(2�)) � C 2Xi=1 k�tuikLr([t0=2;T ℄�L(2�)) � C 00r19



and, �nally, due to the seond inequality of (2.21), we also have(2.28) l1(t; x) � � > 0; (t; x) 2 [t0=2; T ℄� L(2�)where the onstants C, C 00r and � are independent of the onrete hoie of u0, u1and u2.Let us introdue a new dependent variable Z(t) := l1(t)w(t). Then, this funtionsolves(2.29) �tZ = a(t; x)�xZ + l(t; x)Z; (t; x) 2 [t0=2; T ℄� L(2�)where a(t; x) := l1(t; x) and l(t; x) := l2(t; x) � �tl1(t;x)l1(t;x) . Furthermore, estimates(2.26){(2.28) (together with the obvious fat that l2 is uniformly bounded in theL1-norm) allows us to apply the Lq-interior regularity estimate for equation (2.29)whih gives, see Proposition A.4 and Corollary A.1,(2.30) kZkW (1;2);q([t0;T ℄�L(3�)) � CqkZkL1([t0=2;T ℄�L(2�) � C 0qkwkL1([0;T ℄�
):Fixing now q large enough to have the embedding W (1;2);q � C�, returning to theinitial variable w and using (2.26), we have(2.31) kwkC�([t0;T ℄�L(3�)) � CkwkL1([0;T ℄�
):Estimating the right-hand side of (2.31) using (1.16), we dedue (2.23) and �nishthe proof of Lemma 2.2.Let us onsider now equation (2.22) on the set S(4�) where, due to the �rstondition of (2.21), we have, in a sense, the ontration property for the di�erenesof solutions. Indeed, let us multiply equation (2.22) by(2.32) �(x) sgn(w(t; x)) = �(x) sgn(�(x)l1(t; x)w(t; x))(where � is de�ned by (2.16)) and use the equation(2.33) ��x[l1(t)w℄ = �x(�(x)l1(t)w)� 2rx�:rx(l1(t)w)��x�l1(t)w:20



Integrating then over x 2 
 and using the Kato inequality, we derive that(2.34) �t(�; jwj) � (�x�; l1(t)jwj)� (g(u1)� g(u2); � sgn(u1 � u2)):Taking into aount the �rst inequality of (2.21) and the fat that �x�(x) = 0 forx 2 S(4�), we dedue from (2.34) that(2.35) �t(�; jw(t)j) + �(�; jw(t)j) � Ckw(t)kL1(L(4�))and onsequently, due to the Gronwall inequality and estimate (1.16), we infer(2.36) ku1(T )� u2(T )kL1(S(4�)) � eKt0��(T�t0)ku1(0)� u2(0)kL1(
)++ Ct0ku1 � u2kL1([t0;T ℄�L(4�))where t0 is an arbitrary time in the interval (0; T ).Let us now �x t0 in suh way thateKt0��(T�t0) < 1� Æ < 1:In this ase (2.29) really gives a ontration in S(4�). Moreover, using thatkwkL1(
) � kwkL1(S(4�)) + kwkL1(L(7�=2))and that kw(T )kL1(L(7�=2)) � CkwkC([t0;T ℄�L(7�=2)), we derive from (2.23) and(2.36) the following basi inequalities:(2.37) 8>>><>>>: ku1 � u2kC�([t0;T ℄�L(3�)) � Pku1(0)� u2(0)kL1(
);ku1(T )� u2(T )kL1(
) � (1� Æ)ku1(0)� u2(0)kL1(
)++Pku1 � u2kC([t0;T ℄�L(7�=2))whih is valid for all solutions ui suh that ui(0) 2 B("; u0; L1) \ A where theonstants T > 0, Æ > 0 and P are independent of the onrete hoie of " � "0 andu0 2 A.Our next observation is the fat that the embedding C�([t0; T ℄ � L(3�; u0)) �C([t0; T ℄ � L(7�=2; u0)) is ompat. Moreover, sine L(7�=2; u0) � L(3�; u0) and21



d[�L(3�; u0); L(7�=2; u0)℄ � C� with the onstant C� independent of u0 2 A, thenthis embedding is uniformly (with respet to u0 2 A) ompat. This means thatthere exists a monotone dereasing funtion M (Æ) suh that(2.38) H Æ (B(1; 0; C�([t0; T ℄� L(3�; u0))); C([t0; T ℄� L(7�=2; u0))) � M (Æ)uniformly with respet to u0 2 A and Æ > 0, see Proposition A.5.We are now ready to onstrut the required �"-net in the set S(T )(B("; u0; L1)\A). To this end, we �x a minimal Æ"=(4P )-net V in the ball B(P; u; C�([t0; T ℄ �L(3�))), where u(t) := S(t)u0, endowed with the metri of C([t0; T ℄ � L(7�=2)).Then, due to (2.38), the number of points in that net an be estimated via(2.39) #V = N"Æ=(4P )(B(P"; u; C�([t0; T ℄� L(3�)); C([t0; T ℄� L(7�=2))) == NÆ=(4P 2)(B(1; 0; C�([t0; T ℄� L(3�)); C([t0; T ℄� L(7�=2))) � eM (Æ=(4P 2)) := Lwhere L is independent of u0. Moreover, sine we only need to ontrol the traje-tories v(t) starting from A\B("; u0; L1) (all these trajetories are ontained in theball B(P"; u; C�([t0; T ℄�L(3�)) due to the �rst estimate of (2.37)), then inreasingthe radii of the balls by a fator of two, we may onstrut the Æ"=(2P )-net �V =fu1; � � � ; uNg in the set of these trajetories (in the metri of C([t0; T ℄�L(7�=2)))suh that the funtions fu1; � � � ; uLg are also the trajetories of (1.1) started fromA \B("; u0; L1) and #�V � L. We laim that the set(2.40) V�"(u0) := �V ��t=Tis the required �"-net in S(T )(B("; u0; L1) \ A) with � = 1� Æ=2 < 1. Indeed, letv(t) be an arbitrary trajetory starting from the B("; u0; L1)\A. Then, due to ouronstrution of the net �V , there exists a solution ui 2 �V satisfying(2.41) kui � vkC([t0;T ℄�L(7�=2))) � Æ"=(2P ):Inserting this estimate into seond estimate of (2.37) and using that kui(0) �v(0)kL1(
) � ", we inferkui(T )� v(T )kL1(
) � (1� Æ)"+ Æ"=2 = (1� Æ=2)":22



Thus, (2.40) is indeed the required �"-net in S(T )(B("; u0; L1)\A). Sine an "-ballof the attrator has been hosen arbitrarily, then the reurrent formula (2.11) isveri�ed for " � "0.We are now ready to �nish the proof of the theorem. Indeed, sine the attratorA is ompat in L1(
), then(2.42) H "0 (A; L1(
)) � C"0 <1:Moreover, starting from that "0-net and using the reurrent proedure desribedabove, we prove that(2.43) H �m"0(A; L1(
)) � C"0 +m log2 Lfor all m 2 N . Together with (2.8) this estimate gives(2.44) dimf (A; L1(
)) � log2 Llog2 1=� <1:The �nite-dimensionality in C(
) is now an immediate orollary of H�older onti-nuity (2.6) and the interpolation inequality (2.19). Theorem 2.1 is proved.x3 The finite dimensional ase: exponential attrators.In the previous setion, we have proved the existene of a �nite dimensionalglobal attrator A for problem (1.1). However, aording to the de�nition of A, weknow only that dist(S(T )B;A) tends to zero as t!1 (for every bounded subsetB) and do not have any information on the rate of onvergene in (2.3). Moreover,this rate of onvergene an be arbitrarily slow and, to the best of our knowledge,there is no way to ontrol this rate of onvergene in a more or less general situation(e.g., to express it in terms of physial parameters of the system onsidered). Thisleads to essential diÆulties in numerial simulations of global attrators and evenmakes them, in a sense, unobservable.In order to overome this diÆulty, the onept of the so-alled exponentialattrator has been suggested in [15℄. By de�nition, a set M� � is an exponentialattrator of the semigroup S(t) if the following onditions are satis�ed:23



1) the set M is ompat in � = L1(
);2) it is semi-invariant, i.e. S(t)M�M;3) it attrats exponentially the images of all bounded sets, i.e., for every B � �bounded,(3.1) dist(S(t)B;M) � Q(kBk�)e��twhere the positive onstant � and the monotoni funtion Q are independent of B;4) it has �nite fratal dimension in �:(3.2) dimf (M;�) � C <1:We reall that in ontrast to global attrators, an exponential attrator is notunique and, onsequently, the partiular hoie of the exponential attrator is, ina sense, arti�ial (of ourse, it is natural to �nd \the simplest" onstrution ofan exponential attrator). An essential advantage of exponential attrators (inomparison with global ones) is, however, the fat that the funtion Q and theonstant � an be usually expliitly found in terms of physial parameters of theequation onsidered. Moreover, the exponential attrators are muh more robustwith respet to perturbations, in partiular, upper and lower semiontinuos andeven H�older ontinuous in the symmetri Hausdor� distane, see [12-15℄, [21℄ andthe referenes therein.In the present setion, we onstrut the exponential attrator for the porousmedia equation (1.1). The main result of the setion is formulated in the followingtheorem.Theorem 3.1. Let the assumptions of Theorem 2.1 hold. Then, the semigroup(2.1) generated in � = L1(
) by equation (1.1) possesses an exponential attratorM in the sense of the above de�nition. Moreover, this attrator is bounded inC�(
), for some � > 0.Proof. Let us introdue the set(3.3) C := � [t�1 S(t)��C�(
)24



where [�℄V is a losure in the spae V . Then, due to Theorem 1.2, we have(3.4) kCkC�(
) �Mand, due to the onstrution of C, we have also(3.5) S(t)C � C; t � 0:Thus, instead of onstruting an exponential attrator for S(t) on the whole phasespae �, it is suÆient to onstrut it only for the restrition of that semigroup on aompat invariant subset C. To this end, we will use the algorithm of onstruting"-nets, developed in the proof of Theorem 2.1. To be more preise, let V"0 � C bean "0-net in the set C with suÆiently small "0. Then, arguing exatly as in theproof of Theorem 2.1, we an �nd positive numbers T , L and � < 1 suh that, forevery u0 2 C, the set S(T )(B("0; u0; L1) \ C) possesses a �"0-net with L-points.Thus, starting from the "0-net V"0 of C, we onstrut the �"0-net V�"0 � S(T )C ofthe set S(T )C suh that #V�"0 � L#V"0 :Iterating this proedure, we onstrut then, for every n 2 N , �n"0-nets V�n"0 �S(nT )C in the set S(nT )C whih satisfy(3.6) #V�n"0 � Ln#V"0 :These �n"0-nets in S(nT )C allow us to onstrut in a standard way the exponentialattratorMd for the disrete dynamial system, generated by the map S = S(T ) :C ! C. This exponential attrator an be de�ned via the following expression:(3.7) Md := � [1n=0 [1m=0S(m)V�n"0�L1(
):Indeed, the semi-invariantness and exponential attration property are obvioussine(3.8) dist(S(nT )C; V�n"0) � �n"0; n 2 N ; � < 1:25



The �nitness of the fratal dimension ofMd an be easily veri�ed using (3.6), (3.8)and the fat that V�n"0 � S(nT )C, see [12℄ for details. Thus, sine Md is losed,it is indeed an exponential attrator for the map S = S(T ) : C ! C. As usual, therequired exponential attratorM for the semigroup S(t) with ontinuous time anbe de�ned via(3.9) M = [t2[T;2T ℄S(t)Md:Indeed, the semi-invariantness and exponential attration property follow immedi-ately from the analogous properties of the disrete attratorMd and the �nitenessof a fratal dimension in L1(
) an be easily veri�ed using that the dimension ofMd is �nite and that the map S(t) is uniformly H�older ontinuous on Md, see[12-15℄ for the details. Thus, M is indeed the required exponential attrator andTheorem 3.1 is proved.Remark 3.1. There exists a rather important exeptional lass of dynamial sys-tems whose global attrators are simultaneously the exponential ones. These arethe so-alled regular attrators whih appear in smooth dynamial systems with theglobal Lyapunov funtion under the additional assumption that all of the equilibriaare hyperboli, see [2℄. In our ase of the porous media equation (1.1), we obviouslyhave the global Lyapunov funtion. Indeed, arguing as in Lemma 1.2, we an easilyverify that the funtional(3.10) G(u) := Zx2
 12 jrxf(u(x))j2 + F0;g(u(x))� h(x)F0(u(x)) dxwhere F0;g and F0 are the same as in Lemma 1.2, satis�es(3.11) G(u(t))� G(u(0)) = � Z T0 Zx2
 f 0(u(t; x))j�tu(t; x)j2 dx dtand, onsequently, gives a global Lyapunov funtion for (1.1).Nevertheless, the regular attrator's theory seems to be not appliable here, sineequation (1.1) is degenerate and we annot obtain the di�erentiability of semigroupS(t) with respet to the initial data and the hyperboliity of the equilibria.26



Remark 3.2. As we have already mentioned, the appropriate smoothing prop-erties for di�erenes of solutions play a ruial role in the modern theory of ex-ponential attrators, see [12-15℄, [21℄. The simplest abstrat version (whih givesexistene of an exponential attrator for the map S) of suh a smoothing propertyis the following one:(3.12) kSu1 � Su2kH1 � Kku1 � u2kHwhere the onstant K is independent of ui belonging to a bounded invariant subsetand H1 and H are two Banah spaes suh that H1 is ompatly embedded in H,see [13℄.Our proof of the existene of an exponential attrator an also be embedded inan abstrat sheme, but, in ontrast to (3.12), in our situation, the spaes H1 andH should depend on u1 and u0.To be more preise, let S be an abstrat map ating on some Banah spae Xand let C be a ompat subset of X suh that(3.13) SC � C:Let us assume also that, for every u0 2 C and for every " � "0, there exist a pair ofBanah spaes H1(u0; ") and H(u0; ") suh that H1 is ompatly embedded in Hand this embedding is uniformly (with respet to " and u0) ompat in the sense ofKolmogorov's "-entropy, ompare with (2.38) and a map Tu0;" : B("; u0; X) \ C !H1(u0; ") suh that, for every u1; u2 2 B("; u0; X) \ C(3.14) ( kTu0;"u1 � Tu0;"u2kH1 � Pku1 � u2kX ;kSu1 � Su2kX � (1� Æ)ku1 � u2kX + PkTu0;"u1 � Tu0;"u2kH ;ompare with (2.37). Then, arguing exatly as in the proof of Theorems 2.1 and3.1, we an verify the existene of an exponential attrator for the abstrat map S.Remark 3.3. It would be very interesting to develop the perturbation theoryfor the exponential attrator M of degenerate porous media equation (1.1). In27



partiular, it would be interesting to onstrut exponential attrators M" for thenon-degenerate approximations (1.4) in suh way that(3.15) distsymm(M";M0) � C"�;for some positive onstants C and �. We shall return to that problem elsewhere.x4 The global attrator: the ase of infinite dimension.We now show that the attrator A an be in�nite-dimensional if ondition (2.9)is violated. To be more preise, we onsider the following equation of the form(1.1):(4.1) �tu = �x(ujujp�1) + u� g(u); u���
 = 0where p > 1 and the funtion g vanishes near zero and satis�es assumption (1.3)at in�nity. As we will show below the assoiated attrator has in�nite dimension.That is why we will study below its Kolmogorov "-entropy. The following theoremwhih gives a natural lower bound for the entropy of the attrator an be onsideredto be the main result of this setion.Theorem 4.1. Let the above assumptions hold. Then the global attrator A as-soiated with equation (4.1) is in�nite-dimensional and its "-entropy possesses thefollowing estimate:(4.2) H "(A; L1) � C �1"�n(p�1)=2 ;for some positive onstant C independent of ".Proof. In order to prove the theorem, we will study as usual the so-alled unstableset M+(0) of the equilibrium u � 0 of equation (4.1). By de�nition,(4.3) M+(0) = fu0 2 L1(
); 9u 2 K; limt!�1 ku(t)kL1 = 0; u(0) = u0g:Obviously M+(0) � A. On the other hand, sine the nonlinearity g vanishes atthe origin, it is suÆient to onsider only the bakward solutions of the following\linearized" problem:(4.4) �tu = �x(ujujp�1) + u; u(0) = u0; t � 028



tending to zero as t ! �1 (all suh solutions belonging to the suÆiently smallball in L1 will satisfy also equation (4.1)). In order to solve equation (4.4), wehange to the unknown v(t) := e�tu(t). Then we arrive at(4.5) �tv = e(p�1)t�x(vjvjp�1); v(0) = u0; t 2 (�1; 0):Finally, making one more variable hange s := e(p�1)t, we obtain(4.6) �s~v = (p� 1)�x(~vj~vjp�1); ~v(1) = u0; s 2 (0; 1℄:Let St : L1(
)! L1(
) be the solution operator of the following problem:(4.7) �tw = (p� 1)�x(wjwjp�1); w��t=0 = w0; t � 0:Then, we have shown that the unstable set M+(0) ontains the image of a suÆ-iently small ball B(r0) := B(r0; 0; L1):(4.8) S1B(r0) �M+(0) � A:Thus, it is suÆient to estimate the "-entropy of the set S1B(r0). To this end, wereall that in ontrast to the nondegenerate ase, equation (4.7) possesses spatiallyloalized solutions, i.e. there exists a nonzero solutionW (t; x) � 0 of equation (4.7)suh that W (0) 2 B(r0) and(4.9) suppW (s; �) � K �� 
;for all s 2 [0; 1℄. For simpliity, we assume that kW (1)kL1 = 1. On the one hand,if W (s; x) solves (4.7) then the saled funtion(4.10) W"(s; x) := "W (s; "(1�p)=2x)also solves (4.7) for every " 6= 0 and(4.11) suppW"(s; x) � K" := "(p�1)=2K:29



Therefore, for every suÆiently small ", there exists a �nite set R" := fxig � 
suh that
(4.12) 1) (x+K") \ (y +K") = ?; 8x; y 2 R"; x 6= y;2) #R" � C �1"�n(p�1)=2 ;3) x+K" �� 
; 8x 2 R":Consequently, for every m 2 f0; 1gR" the funtion(4.13) Wm;"(s; x) := #R"Xi=1 miW"(s; x� xi)solves (4.7) in 
. On the other hand, obviously we have(4.14) kWm1;"(1; �)�Wm2;"(1; �)kL1 � "for m1 6= m2. Sine we have 2#R" di�erent funtions of that form, then(4.15) H "(A; L1) � H "(S1B(r0); L1) � #R" � C �1"�n(p�1)=2 :Theorem 4.1 is provedRemark 4.1. It is worth realling the usual method of obtaining lower bounds forthe attrator dimension based on unstable manifolds theory. Namely, if we are ableto �nd a (hyperboli) equilibrium with large/in�nite instability index then, due tothis theory, the attrator ontains a manifold of large/in�nite dimension (whihis equal to the instability index, see [2℄). But this method is not appliable fordegenerate equations sine the assoiated semigroups are usually not di�erentiable.Indeed, under the assumptions of Theorem 4.1 the formal linearization near thezero equilibrium reads �tw = wwhih, of ourse, has in�nite instability index. But, in ontrast to the nondegen-erate ase the bakward solutions of that equation are not assoiated with thebakward solutions of the whole nonlinear equation (due to the lak of regularity)30



and, onsequently, do not give the in�nite-dimensionality of the assoiated unstableset. That is the reason why we needed to develop above the alternative methodbased on the existene of a loalized solution and saling tehnique whih is loselyrelated with the degenerate nature of the problem onsidered.Remark 4.2. It is also worth noting that, for nondegenerate paraboli equations,the asymptotis for the image of a ball under the evolution operator is usuallylogarithmi:C�1 �log2 1"�1+n=2 � H "(S1B(r0);�) � C �log2 1"�1+n=2where n is the spae dimension, see [28℄. The proof of Theorem 4.1 shows that thedegeneray hanges drastially type of these asymptotis.The next orollary gives the lower bounds for the "-entropy in the initial phasespae L1(
).Corollary 4.1. Let the assumptions of Theorem 4.1 hold. Then, the Kolmogorov"-entropy of the attrator A in L1(
) possesses the following estimate:(4.16) H "(A; L1(
)) � C �1"� n(p�1)2+n(p�1)where the onstant C is independent of ".Proof. Indeed, aording to (4.10),(4.17) kW"(1; x)kL1(
) = C"1+n(p�1)=2and, onsequently, instead of (4.14), we now have(4.18) kWm1;"(1; �)�Wm2;"(1; �)kL1 � C"1+n(p�1)=2:Therefore, the distane between any two funtions of the form (4.13) is not less thanC"1+n(p�1)=2. Sine we have 2#R" of suh funtions, estimate (4.16) is veri�ed andCorollary 4.1 is proved.We note that, in ontrast to the lower bounds for the entropy in L1-metrigiven in Theorem 4.1, estimate (4.16) seems to be very rough (in partiular, the31



exponent in the right-hand side of it remains bounded as p ! 1 or n ! 1).Nevertheless, it allows us to establish the in�nite-dimensionality of global attratorsfor an essentially more general lass of porous media equations. We illustrate thison the following example of the degenerate Chafee-Infante equation:(4.19) �tu = �x(u3) + u� u3; u���
 = 0:Corollary 4.2. Let A be the attrator of equation (4.19). Then, its Kolmogorov"-entropy satis�es:(4.20) H "(A; L1(
)) � C( "�1=2; n = 1;"�2=(n+1); n � 2;for some C > 0 independent of ".Proof. Indeed, analogously to the proof of Theorem 4.1, replaing the dependentvariable u(t) = etv(t) in equation (4.19) and saling time s = e2t, we arrive at(4.21) �sv = 2�x(v3)� v3; s 2 [0; 1℄:Let now W"(s; x) := "W (s; "�1x), "� 1 be the solutions of equation(4.22) �sw = 2�x(w3)onstruted in the proof of Theorem 4.1 and de�ne, for every m 2 f0; 1gR", thefuntions Wm;"(s; x) via (4.13). We also reall that the L1-norm of every solutionof (4.22) with ompat support is preserved, onsequently,(4.23) kWm;"(s; �)kL1(
) = C"1+njmjwhere jmj =Pmi. Let us now de�ne the assoiated solutions �Wm;"(s; x) of (4.21)with �Wm;"(0; x) = Wm;"(0; x). Then, the di�erene Z(s) = �Wm;"(s) � Wm;"(s)satis�es(4.24) �sZ = 2�x( �W 3m;" �W 3m;")� ( �W 3m;" �W 3m;")�W 3m;":32



Multiplying (4.24) by sgnZ integrating and using the Kato inequality together with(4.23), we obtain(4.25) k �Wm;"(1; �)�Wm;"(1; �)kL1(
) � Z 10 (Wm;"(s))3 ds � C"3+njmj:Thus, due to (4.18) with p = 3,(4.26) k �Wm1;"(1)� �Wm2;"(1)kL1(
) � kWm1;"(1)�Wm2;"(1)kL1(
)�� C"3+n(jm1j+ jm2j) � C"1+n(1� "2(jm1j+ jm2j))and, onsequently, the funtions �Wmi;" are "1+n=(2C)-separated if(4.27) jmij � 1=4"�2:We reall that #R" � "�n. Then, for n = 1, (4.27) is automatially satis�ed forsmall " and so, the number N of 1=2C"2 separated funtions is equal to 2#R" �2C"�1 . In the ase of n � 2 this number N , obviously satis�es N � 21=4"�2. Theseestimates immediately imply (4.20). This �nishes the proof of Corollary 4.2.To onlude, we disuss also the upper bounds for the Kolmogorov's "-entropy ofthe attrators of porous media equations of the form of (4.1). To this end, we reallthat the polynomial asymptotis of the Kolmogorov entropy (like "�k) are typialfor the embeddings of Sobolev spaes, and, onsequently, the upper bounds of theentropy in the same form an be obtained by studying the maximal smoothness ofthe attrator. In partiular, Theorem 1.2 together with the standard asymptotisfor the Kolmogorov entropy of the embedding C� � C, see [19℄, gives(4.28) H "(A; L1) � C �1"�n=� :In partiular, for n = 1 under the assumptions of Theorem 4.1, we have(4.29) C�1 �1"�(p�1)=2 � H "(A; L1) � C �1"�6p :In turns, estimate (4.2) (and the saling method, introdued in Theorem 4.1) givethe natural upper bounds for the smoothness of the attrator.33



Corollary 4.3. The H�older onstant � in (1.29) satis�es � � 2=(p�1). Moreover,if the inequality(4.30) ku0kW 1;1(
) � Cholds uniformly with respet u0 belonging to the attrator A of (4.1) then, neessar-ily, p � 3.Proof. Indeed, analogously to the proof of Theorem 4.1, all funtions W"(1; x) ="W (1; "(1�p)=2x) belong to the attrator. On the other hand,(4.31) kW"(1)kC�(
) = "1��(p�1)=2kW (1)kC�(
):Sine the left-hand side of (4.31) should be bounded as " ! 0, then, neessarily,� � 2=(p� 1).Analogously,(4.32) kW"(1)kW 1;1(
) = "(3�p)=2"n(p�1)=2kW (1)kW 1;1(
):Let us now onsider the funtion W~1;"(1; x) assoiated with (4.13) with all mi = 1.Then, sine #R" � "n(1�p)=2, (4.32) implies thatkW~1;"(1)kW 1;1(
) = C"(3�p)=2kW (1)kW 1;1(
):Thus, (4.30) implies indeed that p � 3 and Corollary 4.3 is proved.Appendix. Some tehnialities.In this onluding setion, we give, for the onveniene of the reader, a moredetailed exposition of several known tehnial issues used above. We start with thesmoothness relations between u and f(u).Proposition A.1. Let the funtion f 2 C2(R;R) satisfy (1.2). Then, for everys 2 (0; 1) and 1 < q � 1, we have(A.1) kukW s=p;pq(
) � Cpkf(u)k1=pW s;q(
)34



where the onstant Cp is independent of u.Proof. Indeed, let f�1 be the inverse funtion to f . Then, due to onditions (1.2),the funtion G(v) := sgn vjf�1(v)jp is nondegenerate and satis�es(A.2) C2 � G0(v) � C1;for some positive onstants C1 and C2. Therefore, we have(A.3) jf�1(v1)� f�1(v2)jp � CpjG(v1)�G(v2)j � C 0pjv1 � v2j;for all v1; v2 2 R. Finally, aording to the de�nition of the frational Sobolevspaes (see e.g. [20℄),kf�1(v)kpqW s=p;qp(
) := kf�1(v)kpqLpq(
) + Z
 Z
 jf�1(v(x))� f�1(v(y)jpqjx� yjn+sq dx dy �� CkvkqLq(
) + C 0p Z
 Z
 jv(x)� v(y)jqjx� yjn+sq dx dy = C 00p kvkqW s;q(
);where we have impliitly used that f�1(v) � sgn vjvj1=p. Proposition A.1 is proved.We are now going to disuss the interior regularity estimates for linear paraboliequations. To this end, we �rst onstrut speial ut{o� funtions.Proposition A.2. Let V � B(R; 0;Rl) be a bounded set in Rl and let VÆ := OÆ(V )be its Æ-neighbourhood. Then, there exists a ut-o� funtion � 2 C1(R), �(x) 2[0; 1℄, suh that, for every � 2 (0; 1) and every k 2 Z+,(A.4) ( 1: �(x) = 1; for x 2 V and �(x) = 0 for x =2 VÆ;2: jDkx�(x)j � Ck;� [�(x)℄1��; x 2 Rl ;where the onstant Ck;� = C(k; �; Æ; R) is independent of x and the onrete hoieof V and Dkx means the olletion of all x-derivatives of order k.Proof. Indeed, let us introdue the standard bump funtion in Rl :(A.5)  r(x) := ( e� 1r2�jxj2 ; jxj < r;0; jxj � r:Then, this funtion obviously satis�es estimate (A.4)(2).35



Let us �x now a overing of the Rl by the balls of radius Æ=2 and letWÆ := Æ=2Zlbe enters of that overing. Let us now onstrut also partition of unity assoiatedwith that overing and (A.5) via(A.6) �q(x) :=  Æ=2(x� q)Pp2WÆ  Æ=2(x� p) ; q 2WÆ:Obviously, f�q(x)gq2WÆ is a partition of unity assoiated with the above overingand, moreover, these funtions satisfy (A.4)(2) uniformly with respet to q 2WÆ.Let us de�ne now the required ut-o� funtion �(x) = �V (x) by the followingexpression:(A.7) �V (x) := Xq2WÆ=2\VÆ=2 �q(x):Indeed, sine supp �q � B(Æ=2; q;Rl ) and the sum of all suh funtions equals oneidentially, the funtion �V thus de�ned satis�es (A.4)(1). Moreover, sine thenumber of points#(WÆ=2 \ VÆ=2) � #(WÆ=2 \ B(R+ Æ; 0;Rl )) � N(Æ; R)is �nite and uniformly bounded with respet to V � B(R; 0;Rl) and the funtions�q(x) satisfy (A.4)(2) uniformly with respet to q 2WÆ=2, then the funtion �V (x)also satis�es this inequality uniformly with respet to V � B(R; 0;Rl ). PropositionA.2 is proved.We now reall the lassial Lq-regularity estimate for seond order paraboliequations on the following model example:(A.8) ( �tw = a(t; x)�xw + b(t; x)w + h;w���
 = 0; w��t=0 = 0:Proposition A.3. Let 
 be a smooth domain and let a 2 C�(
T ) (with � > 0and 
T := [0; T ℄� 
) satisfy(A.9) 0 < C1 � a(t; x) � C2; (t; x) 2 
T ;36



for some positive Ci. Let also h 2 Lq(
T ) for some 1 < q <1, q 6= 3=2. Assume�nally that(A.10) b 2 Lr(
T )for a suÆiently large r depending on q (r > maxfq; n+22 g). Then, problem (A.8)possesses a unique solution w 2W (1;2);q(
T ) and the following estimate holds:(A.11) kwkW (1;2);q(
T ) � CkhkLq(
T );where the onstant C depends on q, 
, kakC� , kbkLr and on the onstants Ci from(A.9), but is independent of the onrete hoie of a, b and h.The proof of this proposition (in more general setting) an be found in [20℄, seeChapter IV, x9 Th. 9.1. In partiular, the assertion of the proposition is provedthere without the assumption on H�older ontinuity of a and the onstant C in(A.11) depends on the modulus of ontinuity of the funtion a. However, for ourpurposes it is more onvenient to ontrol this modulus of ontinuity by the H�oldernorm.We are now able to verify the Lq-interior regularity estimate for equation (A.8)(whih is analogous to estimate (10.12) of [20℄, see Chapter IV, x10, page 355).Proposition A.4. Let the above assumptions hold and let V be an arbitrary openset in 
. Then, for every 0 < t0 < T , Æ > 0 and q > 2, the solution w satis�es(A.12) kwkW (1;2);q([t0;T ℄�V ) � C(khkLq([0;T ℄�VÆ) + kwkL1([0;T ℄�VÆ));where VÆ := OÆ(V )\
 and the onstant C is independent of w and of the onretehoie of a, b and h.Proof. Aording to Proposition A.2 there exists a ut-o� funtion � 2 C1(Rn+1)suh that(A.13) 8>>><>>>: 1: �(t; x) � 1; for (t; x) 2 [t0; T ℄� V ;2: �(t; x) � 0; for (t; x) =2 [3t0=4; T ℄� VÆ=2;3: jDk(t;x)�(t; x)j � Ck;Æ;� [�(t; x)℄1��;37



where � > 0 is arbitrary and the onstant Ck;Æ;� is independent of V . Let us nowintrodue a funtion w�(t; x) := w(t; x)�(t; x) whih obviously satis�es the followingequation:(A.14) �tw� = a�xw� + bw� + h�; w���t=0 = 0; w����
 = 0where(A.15) h� := h�+ w�t�� 2rx�rxw � w�x�:Applying now the Lq-regularity estimate (see Proposition A.3) to equation (A.14)and using (A.13), we infer(A.16) kw�kqW (1;2);q(
T ) � Ckh�kqLq(
T � C1(khkqLq([0;T ℄�VÆ)++ Z
T [�(t; x)℄q(1��)(jw(t; x)jq + jrxw(t; x)jq) dx dt):Let us assume for the moment that we have proved the following interpolationinequality:(A.17) Z
T �q(1��)(jwjq + jrxwjq) dx dt �� "kw�kqW (1;2);q(
T ) + C"kwkqL1([0;T ℄�VÆ)whih holds for every " > 0. Then, inserting it into the right-hand side of (A.16)and �xing " to be small enough, we have(A.18) kw�kqW (1;2);q(
T ) � C(khkqLq([0;T ℄�VÆ) + kwkqL1([0;T ℄�VÆ))whih together with (A.13)(1) implies (A.12) and �nishes the proof of the proposi-tion.Thus, we only need to verify inequality (A.17). Indeed, due to H�older's inequal-ity,(A.19) Z
T �q(1��)jwjq dx dt = Z
T (�VÆ (x)jwj)�qjw�j(1��)q dx dt� Ckwk�qL1([0;T ℄�VÆ)kw�k(1��)qLs(
T ) � "kw�kqLs(
T ) + C"kwkqL1([0;T ℄�VÆ)38



where �VÆ (x) is the harateristi funtion of the set VÆ and s = s(�) := q(1��)1�q� .Fixing now � so small that the Sobolev embedding W (1;2);q(
T ) � Ls(
T ) holds,we verify inequality (A.17) for the term �q(1��)jwjq.Thus, it now remains to verify (A.17) for the term ontaining rxw. To this end,we transform this term as follows,(A.20) Z
T �q(1��)jrxwjq dx dt � C Z
T �1�q�rxw:rxw�jrxw�jq�2 dx dt+ C Z
T (�1�� jrxwj)(�1�2�jwj)q�1 dx dt:The last integral on the right-hand side an be, in turn, estimated via H�older'sinequality(A.21) I1 � " Z
T �q(1��)jrxwjq dx dt+ C" Z
T �q(1�2�)jwjq dx dt:The last term on the right-hand of (1.21) an be estimated exatly as (A.19) andthe �rst one oinides with the left-hand side of (A.20), but with arbitrarily smalloeÆient. This implies(A.22) Z
T �q(1��)jrxwjq dx � C Z
T �1�q�rxw:rxw�jrxw�jq�2 dx dt+ "kw�kqW (1;2);q(
T ) + C"kwkqL1([0;T ℄�VÆ):So, one only needs to estimate the �rst term on the right-hand side of (A.22).Integrating by parts in that term and using again (A.13)(3), we infer(A.23) I2 � C Z
T �1�q�jwj � j�xw�j � jrxw�jq�2 dx dt++ C Z
T �1�(q+1)�jwj � jrxw�jq�1 dx dt(here we have impliitly used that w���
 = 0 and that q > 2). Applying now onemore the H�older inequality to both integrals in the right-hand side of (A.23), we�nally arrive at(A.24) I2 � " Z
T j�x(w�)jq + jrxw�jq dx dt+ C" Z
T �q(1�(q+1)�)jwjq dx dt �� C"kw�kqW (1;2);q(
T ) + C" Z
T �q(1�(q+1)�jwjq dx dt:39



Estimating now the last term on the right-hand side of (1.24) analogously to (A.19),we dedue the analogue of estimate (A.17) for the term I2. Inserting then thisestimate to (A.20){(A.22) and using (A.19), we �nish the proof of estimate (A.17).Thus, Proposition A.4 is proved.Corollary A.1. Let the solution w(t; x) of equation (A.8) be de�ned only for(t; x) 2 [t0=2; T ℄ � VÆ and the oeÆients a, b and the external fore h be alsode�ned only in [t0=2; T ℄�VÆ and satisfy the assumptions of Proposition A.4 in thisdomain. Then, the solution w satisfy the interior regularity estimate (A.12) withthe onstant C independent of the onrete hoie of V , a, b, h and w.Proof. Indeed, the funtion w�(t; x) := w(t; x)�(t; x) introdued in the proof ofProposition A.4 equals zero identially for (t; x) outside of [3t0=4; T ℄�VÆ=2. There-fore, we an onstrut an extension ~a and ~b of the oeÆients a and b from theinitial domain of de�nition [t0=2; T ℄� VÆ to the whole domain [0; T ℄� 
 in suh away that(A.25) 8>>><>>>: 1: ~a(t; x) = a(t; x); ~b(t; x) = b(t; x); (t; x) 2 [t0=2; T ℄� VÆ2: k~akC�(
T ) � CkakC�([t0=2;T ℄�VÆ); k~bkLr(
T ) � CkbkLr([t0=2;T ℄�VÆ)3: C1 � ~a � C2;where the onstant C is independent of a, b and V and the onstants Ci are thesame as in (A.9). Suh an extension an be onstruted e.g. via(A.26) ~a(t; x) := C1(1�  (t; x)) +  (t; x)a(t; x); ~b(t; x) :=  (t; x)b(t; x)where the ut-o� funtion  equals one for (t; x) 2 [3t0=4; T ℄ � VÆ=2 and zero for(t; x) outside of [t0=2; T ℄� VÆ (this ut-o� funtion exists due to Proposition A.2).Thus, due to (A.25)(1), the funtion w� satis�es the equation(A.27) �tw� = ~a�xw� +~bw� + h�in the whole domain [0; T ℄�
 and, due to (A.25)(2) and (A.25)(3), the Lq-regularityestimate is appliable to (A.27) in 
T and gives (A.16). The rest of the proof of40



Corollary A.1 repeats word by word the proof of Proposition A.4. Corollary A.1 isproved.We onlude by verifying the uniform ompatness of the embedding C�(VÆ) �C(V ) whih is ruial for our proof of the �nite-dimensionality given in Setion 2.Proposition A.5. Let V � 
 be an open bounded set and Æ > 0 some positivenumber. Let us also onsider a unit ball B� := B(0; 1; C�([t0; T ℄ � VÆ)) and itsrestrition �V B � to the domain [t0; T ℄� V for some t0 < T and positive �. Then,the embedding �V B� � C([t0; T ℄�V ) is uniformly ompat with respet to V � 
 inthe following sense: there exists a monotone dereasing funtion "! M (") (whihdepends on �, t0, T and Æ, but is independent of V � 
) suh that(A.28) H "(�V B� ; C([t0; T ℄� V )) � M (")holds for every " > 0.Proof. Let us �x a ut-o� funtion �(x) suh that �(x) = 1 for x 2 V and �(x) = 0for x =2 VÆ=2 (see Proposition A.2). Then, sine the norms of derivatives of � areuniformly bounded (with respet to V ), we have the following embedding:(A.29) �B � � B(0; r; C�([t0; T ℄� 
))where the radius r depends on � and Æ, but is independent of V .Let us now �x an arbitrary " > 0 and �nd a �nite "-netW" of B(0; r; C�([t0; T ℄�
)) relative to the metri of C([t0; T ℄ � 
) (suh net exists sine the embeddingC� � C is ompat). Then, embedding (A.29) guarantees that the �nite set �VW"will be the required "-net in the set �V B � . As usual, inreasing the radiii of theballs by the fator of two, we an onstrut a 2"-net with the enters belonging to�V B� . Proposition A.5 is proved. Referenes1. Andreu F., Mazon, J., Simondon F. and Toledo, J., Attrator for a degenerate nonlineardi�usion problem with nonlinear boundary ondition, J. Dynam. Di�erential Equations 10(1998), no. 3, 347{377. 41
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