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tor tobe �nite dimensional are found and the examples of in�nite-dimensional attra
torsbeyond of that 
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Introdu
tion.It is well-known that the long-time behaviour of many dissipative systems gen-erated by evolution PDEs of mathemati
al physi
s 
an be des
ribed in terms of theso-
alled attra
tors. By de�nition, a global attra
tor is a 
ompa
t invariant set inthe phase spa
e whi
h attra
ts the images of all bounded subsets under the tempo-ral evolution. Thus, on the one hand, the global attra
tor (if it exists) 
ontains allof the nontrivial dynami
s and, on the other hand, it is usually essentially smallerthan the initial phase spa
e. Typeset by AMS-TEX1



In parti
ular, in the 
ase of dissipative PDEs in bounded domains, this attra
torusually has �nite Hausdor� and fra
tal dimension, see [2℄, [18℄, [23℄ and referen
estherein. Consequently, in spite of the in�nite-dimensionality of the initial phasespa
e, the redu
ed dynami
s on the attra
tor is (in a sense) �nite-dimensionaland 
an be studied by the methods of the 
lassi
al (�nite-dimensional) theory ofdynami
al systems.In 
ontrast to that, in�nite-dimensional global/uniform attra
tors are typi
al fordissipative PDEs in unbounded domains or/and for the nonautonomous equations.In order to study su
h attra
tors one usually uses the 
on
ept of Kolmogorov's"-entropy, see [5℄, [7℄, [11℄, [14℄, [24-27℄ for the details.We however note that the above results have been obtained mainly for evolutionPDEs with more or less regular stru
ture (e.g., uniformly paraboli
 or uniformlyhyperboli
). In 
ontrast to this, very little is known about the equations withsingularities or degeneration (even in the relatively simple 
ase of s
alar se
ond orderequations, like porous media equations, ellipti
-paraboli
 equations et
.) whi
h alsoplay a signi�
ant role in modern mathemati
al physi
s, see [3℄, [22℄ and referen
estherein. Indeed, although the attra
tors for su
h equations have been 
onsidered ina number of papers (see [1℄, [9-10℄, [16℄), to the best of our knowledge, the questionsrelated to the �nite or in�nite-dimensionality of these attra
tors have been notstudied yet (as an ex
eption, we mention the re
ent paper [21℄, where the �nitedimensionality of the attra
tor of a 3D Cahn-Hilliard problem with logarithmi
nonlinearity is proved).The main aim of the present paper is to give a detailed study of the fra
tal di-mension and Kolmogorov's entropy of attra
tors of the following degenerate porousmedia equation:(0.1) �tu = �x(f(u))� g(u) + hin a bounded domain 
 � Rn (equipped with Diri
hlet boundary 
onditions). Heref(u) � ujujp�1 has a degenera
y at u = 0 (p > 1), the fun
tion g satis�es thestandard dissipativity assumptions and h = h(x) is a given external for
e (see2



Se
tion 1 for the rigorous 
onditions).The paper is organized as follows. In Se
tion 1, we brie
y re
all some basi
results on the existen
e, uniqueness and regularity of solutions of equation (0.1).A natural 
lass of equations of the form (0.1) whose global attra
tors are �nite-dimensional is 
onsidered in Se
tion 2. The �nite-dimensionality is proved underthe additional assumption(0.2) g0(0) > 0and strongly based on the global H�older 
ontinuity of solutions of equation (0.1),see Theorem 2.1 of Se
tion 2.A �nite-dimensional exponential attra
tor (in the sense of [15℄) for problem (0.1)under assumption (0.2) is 
onstru
ted in Se
tion 3.Finally, in Se
tion 4, we show that the global attra
tor is usually in�nite-dimensional if 
ondition (0.2) is violated and, thus, the sign of g0(0) appears tobe 
ru
ial for �nite or in�nite-dimensionality of the global attra
tor. Namely, we
onsider here the parti
ular 
ase of (0.1) of the following form:(0.3) �tu = �x(ujujp�1) + u� g(u)with p > 1 and g(u) vanishing near u = 0. Under these assumptions, we prove (seeTheorem 4.1) that the asso
iated global attra
tor is in�nite-dimensional.Moreover, we study also the Kolmogorov's "-entropy H "(A) of this attra
tor(whi
h, by de�nition, is a logarithm from the minimal number of "-balls whi
h
over the 
ompa
t set A). To be more pre
ise, we establish the following lowerbounds for that quantity:(0.4) H "(A) � C �1"�n(p�1)=2where C is some positive number independent of " > 0.Thus, porous media equations of the form (0.3) give natural examples of dissi-pative equations of mathemati
al physi
s in bounded domains with in�nite-dimen-sional attra
tors. It is also worth noting that, although the in�nite-dimensional3



global attra
tors are typi
al for regular equations in unbounded domains, even inthat 
ase the asymptoti
s of their Kolmogorov's "-entropy were always logarith-mi
al (like (log2 1" )n+1, see [24-26℄). To the best of our knowledge, it is a �rstexample of a global attra
tor whose "-entropy has polynomial (with respe
t to "�1)asymptoti
s.We also note that equation (0.3) with the nonlinearity g vanishing in the neigh-bourhood of zero looks rather arti�
ial. That is the reason why, we extend (inSe
tion 4) the above result on the following equation:(0.5) �tu = �x(u3) + u� u3; u���
 = 0whi
h has analyti
 nonlinearities and 
an be 
onsidered as a natural degenerateanalogue of the Chafee-Infante equation.We �nally note that the method of the study of the dimension of global attra
torsof degenerate paraboli
 equations developed in this paper seems to have a generalnature and 
an be applied for other 
lasses of degenerate equations (e.g., for ellipti
-paraboli
 equations). We will return to these questions in forth
oming papers.A
knowledgements. This resear
h is partially supported by the Alexander vonHumboldt foundation. The authors are also grateful to M. Otani, L. Peletier andA.Miranville for the stimulating dis
ussions.x1 A priori estimates and regularity of solutions.In this se
tion, we brie
y re
all the known results on the regularity of solutionsof porous media equations whi
h will be systemati
ally used in the next se
tions,see e.g. [4℄, [6℄, [8℄ and [17℄ fore more details.In a bounded domain 
 �� Rn with a suÆ
iently smooth boundary we 
onsiderthe porous media equation in the following form:(1.1) ( �tu = �xf(u)� g(u) + h;u���
 = 0; u��t=0 = u0:where u = u(t; x) is an unknown fun
tion, �x is the Lapla
ian with respe
t to thevariable x = (x1; � � � ; xn), f and g are given fun
tions and h = h(x) is a givenexternal for
e. 4



We assume that the fun
tion f 2 C2(R) has a polynomial degenera
y at u = 0and is nondegenerate for u 6= 0. To be more pre
ise, we assume that(1.2) C1jujp�1 � f 0(u) � C2jujp�1; f(0) = 0;for some positive 
onstants Ci and p > 1. It is also assumed that the fun
tion gsatis�es the following dissipativity 
ondition(1.3) g0(u) � �C + �jujq�1;for some q > 1, � > 0 and the external for
e h belongs to L1(
).As usual, in order to prove the existen
e of a solution of problem (1.1), one
onsiders the nondegenerate analogue of (1.1)(1.4) ( �tu = �xf(u) + "�xu� g(u) + h;u���
 = 0; u��t=0 = u0whi
h obviously has a unique solution for every " > 0 and suÆ
iently smooth u0,see e.g. [20℄ and then passes to the limit " ! 0. Following this s
heme, we �rstderive uniform with respe
t to " estimates for equation (1.4). We start from thestandard L1 � L1-estimates.Lemma 1.1. Let the above assumptions hold and let u be a solution of equation(1.4). Then the following estimates hold:(1.5) ( 1) ku(t)kL1(
) � ku(0)kL1(
)e��t + C(1 + khkL1(
));2) ku(t)kL1(
) � ku(0)kL1(
)e��t + C(1 + khkL1(
))where the positive 
onstants � and C depend only on the fun
tion g and are in-dependent of ", t, u0 and u. Moreover, the following L1-L1-smoothing propertyholds:(1.6) ku(t)kL1(
) � Q(t�1 + khkL1(
)); t > 0where the monotoni
 fun
tion Q is independent of ", t and u.Proof. Indeed, multiplying equation (1.4) s
alarly in L2(
) by the fun
tion sgnu =sgn(f(u)+ "u) and using the Kato inequality (�xv; sgn v) � 0 and the dissipativityassumption (1.3), we dedu
e that(1.7) �tku(t)kL1(
) + �ku(t)kqLq(
) � C + khkL1(
):5



Sin
e �kukqLq(
) � ku(t)kL1(
) � C, the the Gronwall inequality applied to (1.7)implies the �rst estimate of (1.5). In order to dedu
e the se
ond estimate of (1.5),we use the 
omparison prin
iple for se
ond order paraboli
 equations and dedu
ethat(1.8) y�(t) � u(t; x) � y+(t)where y�(t) solve the following ODEs(1.9) y0�(t) + g(y�(t)) = �khkL1(
); y�(0) = �ku0kL1(
):It remains to note that, due to the dissipativity assumption (1.3), the solutions y�(t)satisfy the analogue of estimate (1.5)(2) whi
h together with (1.8) �nishes the proofof estimate (1.5)(2). Finally, in order to verify (1.6), it remains to re
all that, dueto our assumptions, g has a superlinear growth rate as u!1. Consequently, thesolutions y�(t) satisfy estimate (1.6) (see e.g., [21℄) whi
h together with estimate(1.8) imply estimate (1.6) for the solution u and �nishes the proof of the lemma.The next Lemma gives some kind of energy estimates for equation (1.4).Lemma 1.2. Let the above assumptions hold and let u be a solution of (1.4). Then,for every Æ > 0, the following estimate holds:(1.10) kukW 1=p�Æ;2p([t;t+1℄�
) + k�tf(u)kL2([t;t+1℄�
)++ krxf(u)kL1([t;t+1℄;L2(
)) � Q(t�1 + khkL1(
))where the monotoni
 fun
tion Q is independent of ", t > 0 and u (here and below,W s;p denotes the Sobolev spa
e of distributions whose derivatives up to order sbelong to Lp, see e.g. [20℄).Proof. Without loss of generality we 
an assume that t � 1. Then, multiplyingequation (1.4) s
alarly in L2(
) by f"(u) := f(u) + "u, and integrating over [Æ; 2℄,Æ > 0, we get(1.11) (F"(u(2)); 1)� (F"(u(Æ)); 1) + Z 2Æ krxf"(u(t))k2L2(
) dt++ Z 2Æ (f"(u(t); g(u(t)))� (h; f"(u(t))) dt = 06



(here and below we denote by (�; �) the standard inner produ
t in L2(
) and F"(u) =R v0 f"(v) dv). Together with L1-estimate (1.6) this estimates give(1.12) Z 2Æ krxf"(u)k2L2(
) dt � Q(Æ�1 + khkL1(
)):Let us now multiply equation (1.4) by (t� Æ)�tf"(u) and integrate over [Æ; T ℄� 
,Æ � T � 2. Then, we have(1.13) Z 2Æ (t� ")f 0"(u(t))j�tu(t)j2 dt++ (T � Æ)(1=2krxf"(u(T ))k2L2(
) + (F";g(u(T )); 1)� (f"(u(T )); h)) == Z TÆ 1=2krxf"(u(t))k2L2(
) + (F";g(u(t)); 1)� (f"(u(t)); h) dtwhere F";g(u) := R u0 f 0"(v)g(v) dv. This estimate, together with L1-estimate (1.6)and estimate (1.22) implies that(1.14) Z 22Æ f 0(u(t))j�tu(t)j2 dt+ krxf(u)k2L1([2Æ;2℄;L2(
)) � Q(Æ�1 + khkL1(
))for the appropriate monotoni
 fun
tion Q. This estimate, together with the L1-estimate implies, in turn, that(1.15) k�tf(u)kL2([t;t+1℄�
) + krxf(u)kL1([t;t+1℄;L2(
)) � Q(t�1 + khkL1(
)):Thus, it only remains to estimate the �rst term in the left-hand side of (1.10). Tothis end we note that, a

ording to (1.15), we have v = f(u) 2W 1;2([t; t+1℄�
) �W 1�Æ;2([t; t+1℄�
). Then, due to Proposition A.1, see Appendix below, we havekukW 1=p�Æ;2p([t;t+1℄�
) � Cf;Ækvk1=pW 1;2([t;t+1℄�
)where the 
onstant Cf;Æ depends only on f and Æ > 0. Lemma 1.2 is proved.The next lemma gives the uniform Lips
hitz 
ontinuity of solutions in L1(
).Lemma 1.3. Let the above assumptions hold and let u1(t) and u2(t) be two solu-tions of equation (1.4). Then, the following estimate holds:(1.16) ku1(t)� u2(t)kL1(
) � eKtku1(0)� u2(0)kL1(
)7



where K := maxv2Rf�g0(v)g.Proof. Indeed, let v(t) := u1(t)� u2(t). Then, this fun
tion satis�es the followinglinear equation:(1.17) �tv = �x(l1(t)v) + "�xv � l2(t)v; v���
 = 0; v��t=0 = u1(0)� u2(0)where l1(t) := R 10 f 0(su1(t) + (1 � s)u2(t)) ds � 0, l2(t) := R 10 g0(su1(t) + (1 �s)u2(t)) ds � �K. Multiplying now equation (1.17) by sgn v = sgn((l1(t) + ")v)and using again the Kato inequality, we arrive at(1.18) �tkv(t)kL1(
) �Kkv(t)kL1(
) � 0:Applying the Gronwall inequality to this relation, we �nish the proof of Lemma1.3.We are now ready to verify the existen
e and uniqueness of a solution for theinitial degenerate problem (1.1). To this end, we �rst formulate the de�nition of aweak solution of that problem.De�nition 1.1. We say that a fun
tion u is a weak solution of (1.1) if u 2C([0; T ℄; L1(
)), u 2 L1([t; T ℄�
) and f(u) 2 L2([t; T ℄;W 1;20 (
)), for every t > 0and it satis�es (1.1) in the sense of distributions.The following theorem 
an be 
onsidered as the main result of the se
tionTheorem 1.1. Let the above assumptions hold. Then, for every u0 2 L1(
), thereexists a unique weak solution of problem (1.1) and this solution satis�es all of theestimates, formulated in Lemmata 1.1{1.3.Proof. We �rst establish the existen
e of a solution and assume additionally thatu0 is smooth enough. Let us 
onsider a sequen
e u"n(t) of solutions of the auxiliaryproblem (1.4) with "n ! 0. Then, this sequen
e satis�es estimates (1.5) and (1.10)uniformly with respe
t to n. Moreover, sin
e u0 is smooth, then estimate (1.10)holds for t = 0 as well. In parti
ular,(1.19) ku"nkW 1=p�Æ;2p([t;t+1℄�
) � C8



uniformly with respe
t to t and n. Thus, without loss of generality, we 
an assumethat u"n ! u strongly in C([0; T ℄; L1(
)) (due to the 
ompa
tness of the embeddingW 1=p�Æ;2p([0; T ℄ � 
) � C([0; T ℄; L1(
)) if Æ is small enough). Passing now in astandard way (see e.g., [2℄) to the limit n ! 1 in equations (1.4), we verify thatu0 satis�es the initial equation (1.1) (in the sense of distributions) and passingto the limit n ! 1 in the uniform estimates of Lemmata 1.1{1.3, we verify thatthe solution thus 
onstru
ted satis�es estimates (1.5), (1.6), (1.10) and (1.16). Inparti
ular, these estimates show that u is a weak solution in the sense of De�nition1.1. Thus, for smooth initial data u0 the existen
e of a solution is veri�ed. Inorder to relax the smoothness assumption, it remains to re
all that the solutions
onstru
ted satisfy (1.16) with the 
onstants whi
h are independent of the initialdata, 
onsequently, approximating in L1(
) the nonsmooth initial data u0 2 L1(
)by a sequen
e of the smooth ones un0 , 
onstru
ting the asso
iated solutions un(t) andpassing to the limit n!1, we obtain a weak solution u(t) for every u0 2 L1(
).Obviously, this solution will also satisfy all of the estimates of Lemma 1.1.{1.3.Thus, the existen
e is veri�ed.Let us now prove the uniqueness. Indeed, let u1(t) and u2(t) be two weaksolutions of equation (1.1) and let v(t) := u1(t)�u2(t). Then, this fun
tion satis�esthe equation(1.20) �tv = �x(l1(t)v)� l2(t)vwhere li(t) are the same as in (1.17). It would be natural (analogously to the proofof Lemma 1.3) to multiply equation (1.20) by sgn(v) and use the Kato inequalitywhi
h would immediately give estimate (1.16) and �nish the proof of the uniqueness,but, unfortunately, in 
ontrast to the situation in Lemma 1.3, we do not have nowenough regularity for the expression (�x(l(t)v); sgn(v)) to have sense. Thus, weneed to pro
eed in a little more pre
ise way. To this end, we assume, in addition,that ui 2 L1([0; T ℄� 
) and introdu
e the following \regularized" version of the
onjugate equation for (1.20):(1.21) ��tw = l1(t)�xw + "�xw; w��t=T = wT ; w���
 = 0:9



whi
h we will 
onsider in the spa
eW (1;2);2([0; T ℄�
) (here and below, we denote byW (1;2);q the anisotropi
 Sobolev spa
e 
onsisting of distributions whose t-derivativesup to order one and x-derivatives up to order two belong to Lq, see [20℄).The next Lemma gives the solvability result for that equation.Lemma 1.4. Let the above assumptions hold. Then, for every wT 2W 1;20 (
) andevery " > 0, equation (1.21) possesses a unique solution w 2 W (1;2);2([0; T ℄ � 
)and the following estimate holds:(1.22) krxw(t)k2L2(
) + 2" Z T0 k�xw(t)k2L2(
) � krxw(T )k2L2(
); t 2 [0; T ℄:Moreover, if in addition, C1 � wT (x) � C2, then(1.23) C1 � w(t; x) � C2; t 2 [0; T ℄:Proof. Indeed, a

ording to our assumption, li 2 L1([0; T ℄�
) and, moreover, dueto (1.2), l1(t) � 0. Therefore, equation (1.21) is non-degenerate. A priori estimate(1.22) 
an be obtained by multiplying (1.21) by �xw and integrating over [0; T ℄�
and the L2-estimate for the derivative follows then from (1.22) and equation (1.21).Thus, the a priori estimate in W (1;2);2([0; T ℄� 
) is obtained. The existen
e of asolution 
an be easily veri�ed by e.g. the Galerkin method, see [2℄. Finally, estimate(1.23) is just a maximum prin
iple for the linear se
ond order paraboli
 equation(1.21) (Being pedants, we 
annot apply the 
lassi
al maximum prin
iple dire
tlyto equation (1.21) sin
e the fun
tion l1(t; x) is only from L1 (and not smooth),but approximating it by the smooth ones, say, in L2([0; T ℄�
), we may apply themaximum prin
iple for the solutions of the asso
iated smooth equations and thenpass to the limit in a standard way.) Lemma 1.4 is proved.We are now ready to �nish the proof of the uniqueness for weak solutions of (1.1).To this end, we multiply equation (1.20) by the solution w(t) of the \
onjugate"equation (1.21) (with some wT ) and integrate over [Æ; T ℄ � 
. Then, after the10



integration by parts, we have(1.24) (v(T ); w(T ))� (v(0); w(0))++ " Z T0 (�xw(t); v(t)) dt+ Z T0 (l2(t)v(t); w(t)) dt = 0:We now approximate the fun
tion w0T := sgn(v(T )) in the L2(
) metri
 by wnT 2W 1;20 (
) in su
h way that �1 � wnT � 1 and 
onstru
t the appropriate solutionswn(t) of equation (1.21). Then, due to (1.23), �1 � wn(t; x) � 1 and, 
onsequently,(1.24) reads(1.25) (v(T ); wnT ) + " Z T0 (�xwn(t); v(t)) dt � kv(0)kL1(
) + L2 Z T0 kv(t)kL1(
) dtwhere L2 = kl2(t; x)kL1([0;T ℄�
). We are now pass to the limit "! 0 (with a �xedn) in the inequality (1.25) using (1.22) and" Z T0 (�xwn(t); v(t)) dt � "1=4("1=2k�xwnk2L2([0;T ℄�
) + kvk2L2([0;T ℄�
)):Then, we have(1.26) (v(T ); wnT ) � kv(0)kL1(
) + L2 Z T0 kv(t)kL1(
) dt:Finally, passing to the limit n!1 in (1.26), we get(1.27) kv(T )kL1(
) � kv(0)kL1(
) + L2 Z T0 kv(t)kL1(
) dt:Sin
e T > 0 is arbitrary, then the Gronwall inequality, applied to (1.27) impliesthat kv(t)kL1(
) � eL2tkv(0)kL1(
):Thus, we have proved that every weak solution u(t) of (1.1) is unique under theadditional assumption u 2 L1([0; T ℄�
). Therefore, every su
h solution 
oin
ideswith the solution obtained by passing to the limit "! 0 in the nondegenerate equa-tions (1.4). This, implies, in turns, that all su
h solutions should satisfy estimate(1.16). 11



Let us now 
onsider the general 
ase of two weak solutions u1 and u2 whi
hdo not belong to L1([0; T ℄ � 
). Then, due to the de�nition of a weak solution,ui 2 L1([Æ; T ℄� 
) for every Æ > 0 and, 
onsequently, due to (1.16), we have(1.28) ku1(t)� u2(t)kL1(
) � eK(t�Æ)ku1(Æ)� u2(Æ)kL1(
):Passing now to the limit Æ ! 0 in (1.28) and taking into a

ount that ui 2C([0; T ℄; L1(
)), we obtain estimate (1.16) for any two weak solutions of (1.1).Theorem 1.1 is proved.Remark 1.1. In Theorem 1.1, we have proved, in parti
ular, that every weaksolution of (1.1) 
an be approximated by smooth solutions of the nondegenerateproblem (1.4). This allows us in the sequel to use the Kato inequality for derivingmore deli
ate estimates without taking 
are about the regularity. Indeed, all thatestimates 
an be easily justi�ed by this approximating pro
edure.We also note that the rather strong dissipativity 
ondition (whi
h guarantees, inparti
ular, the superlinear growth rate of the nonlinearity g) has been posed onlyin order to avoid the te
hni
alities in proving the L1 �L1 smoothing property forthe solutions of (1.1) and 
an be relaxed to the standard dissipativity 
ondition:lim supjuj!1 g(u)u > 0:We 
on
lude this Se
tion by formulating the result on the H�older 
ontinuity ofsolutions of degenerate paraboli
 equations whi
h is 
ru
ial for our study of thedimension of the attra
tor.Theorem 1.2. Let the above assumptions hold and let u be a weak solution of(1.1). Then, there exists a positive 
onstant � su
h that(1.29) kukC�([t;t+1℄�
) � Q(t�1 + khkL1(
))where t > 0 and Q is some monotoni
 fun
tion.In the multidimensional 
ase n � 2 the H�older 
ontinuity (1.29) is a ratherdeli
ate fa
t and its proof is based on the proper modi�
ation of the De Giorgi12



te
hnique, see [6℄, [8℄ and [17℄. By 
ontrast, in the one-dimensional 
ase, it 
an beeasily derived from standard energy estimates. For the 
onvenien
e of the reader,we give the proof for the 1D 
ase.Proof: 1D 
ase. Indeed, a

ording to Lemma 1.2 and Theorem 1.1, any weak solu-tion u satis�es(1.30) kf(u)kL1([t;t+1℄;W 1;2(
))\W 1;2([t;t+1℄;L2(
)) � Q(t�1 + khkL1(
)):Moreover, by interpolation, see [20℄, we have(1.31) kvkC�([t;t+1℄;W 1�2�;2(
)) � C�kvkL1([t;t+1℄;W 1;2(
))\W 1;2([t;t+1℄;L2(
))for 0 � � < 1=2. In 1D-
ase, we have the embedding W 1�2�;2(
) � C1=2�2�(
).Taking � = 1=6, we �nally derive(1.32) kf(u)kC1=6([t;t+1℄�
) � Q(t�1 + khkL1(
))for some monotoni
 fun
tion Q. Proposition A.1 together with (1.32) imply (1.29)with � = 1=(6p). Theorem 1.2 for 1D is proved.x2 The finite-dimensional 
ase: global attra
tors.In the previous se
tion we have proved that equation (1.1) generates a uniformlyLips
hitz 
ontinuous semigroup S(t) on the phase spa
e � = L1(
) via(2.1) S(t)u0 = u(t); u0 2 L1(
); t > 0where u(t) is a unique weak solution of (1.1) (see Theorem 1.1). The present se
tionis devoted to study of the long-time behaviour of the traje
tories of that semigroupin terms of �nite-dimensional global attra
tors. The 
ase where the limit dynami
sis in�nite-dimensional will be 
onsidered in Se
tion 4.We �rst re
all that, by de�nition, the set A � � is a global attra
tor of thesemigroup S(t) if the following 
onditions are satis�ed:1) the set A is a 
ompa
t subset of the phase spa
e � = L1(
);13



2) it is stri
tly invariant, i.e. S(t)A = A, for all t � 0;3) it attra
ts the images of all bounded subsets as time tends to in�nity, i.e.,for every bounded subset B � � and every neighbourhood O(A) there exists timeT = T (B;O), su
h that(2.2) S(t)B � O(A); for all t � T:This assumption 
an be reformulated in the following equivalent form: for everybounded set B(2.3) dist(S(t)B;A)! 0 as t!1where dist(�; �) is a non-symmetri
 Hausdor� distan
e between sets in �:(2.4) dist(X;Y ) = supx2X infy2Y kx� yk�:The next lemma states the existen
e of su
h an attra
tor.Lemma 2.1. Let the assumptions of Se
tion 1 hold. Then, the semigroup S(t)asso
iated with equation (1.1) possesses a global attra
tor A in the phase spa
eL1(
) whi
h is globally bounded in C�(
) (for some suÆ
iently small �) and hasthe following stru
ture:(2.5) A = K��t=0where K is a set of all bounded solutions of (1.1) de�ned for all t. Moreover, thisset satis�es(2.6) kKkC�(R�
) � Q(khkL1(
)):for some monotone fun
tion Q.Proof. As usual, in order to verify the existen
e of a global attra
tor, one needs toverify two properties:1) the maps S(t) : �! � are 
ontinuous for every �xed t;2) the semigroup S(t) possesses a (pre)
ompa
t absorbing set in �, see [2℄, [18℄.14



In our 
ase, the �rst property is obvious, sin
e, due to Lemma 1.3, the semigroupS(t) is even globally Lips
hitz 
ontinuous in �. Moreover, the existen
e of anabsorbing set, bounded in C�(
), is an immediate 
orollary of Theorem 1.2. Thus,due to the abstra
t theorem on the attra
tor's existen
e, this semigroup possessesa global attra
tor A, bounded in C�(
). Formula (2.5) is also a 
orollary of thattheorem and (2.6) follows from Theorem 1.2. Lemma 2.1 is proved.For the further investigation of the 
onstru
ted global attra
tor we re
all thede�nition of the so-
alled Kolmogorov "-entropy, see [19℄ for the details.De�nition 2.1. Let K be a (pre)
ompa
t set in a metri
 spa
eM . Then, for every" > 0, K 
an be 
overed by the �nite number of "-balls in M . Let N"(K;M) bethe minimal number of su
h balls. Then, by de�nition, the Kolmogorov "-entropyof K is a binary logarithm of that number:(2.7) H "(K;M) := log2N"(K;M):The fra
tal dimension dimf (K) of the set K 
an be expressed in terms of thisentropy via(2.8) dimf (K;M) := H "(K;M)log2 1=" :We also re
all that the Kolmogorov entropy is �nite for every 
ompa
t set K andevery " > 0 and the fra
tal dimension 
an be in�nite (if the spa
e M is in�nite-dimensional).The next theorem whi
h establishes the �nite-dimensionality of the global at-tra
tor under the additional assumption that equation (1.1) is asymptoti
ally stablenear u = 0 
an be 
onsidered as the main result of the se
tion.Theorem 2.1. Let the assumptions of Se
tion 1 hold and let, in addition,(2.9) g0(0) > 0:Then the fra
tal dimension of A in C(
) is �nite:(2.10) dimf (A; C(
)) <1:15



Proof. As usual, see [5℄,[12-13℄,[23℄ in order to prove the �nite-dimensionality ofthe attra
tor, we need to 
onsider an arbitrary �nite "-net V" in A in the metri
of L1(
) (with a suÆ
iently small positive ") and to 
onstru
t, using this net, a�"-net V�" (with � < 1) in A satisfying(2.11) #V�" � L#V"where the 
onstants � and L are independent of " and of the initial 
overing V"(here and below #S means the number of elements of the �nite set S). Then,iterating this pro
edure we 
an prove the �nite dimensionality of the attra
tor.Let V" = fui0gN"i=1, V" � A be an arbitrary "-net in A (with N" = #V"). Then, inorder to 
onstru
t the required �"-net, it is suÆ
ient to 
onstru
t, for every u0 2 A,the �"-net V�"(u0) in the the image S(T )(B("; u0; L1)\A)) (for some positive T ) ofthe "-ball 
entered at u0 interse
ted with the attra
tor (here and below we denoteby B(R; x;X) an R-ball in the spa
e X 
entered at x 2 X) satisfying(2.12) #V"(u0) � L:Then, obviously, the set V�" := [u02V"V�"(u0) gives a �"-net in S(T )A satisfying(2.11). Finally, sin
e S(T )A = A, the required �"-net in A would be 
onstru
ted.Thus, we only need to 
onstru
t the �"-net in the set S(T )(B("; u0; L1(
))\A)for all suÆ
iently small ", u0 2 A and some T > 0 satisfying (2.12) with the
onstant L independent on " and u0. So, let u0 2 A and "� 1 be �xed.Let us introdu
e, for every � > 0, the following sets:(2.13) L(�) = L(�; u0) := fx 2 
; ju0(x)j > �g;S(�) = S(�; u0) := fx 2 
; ju0(x)j < �g:Then, obviously, S(�1) � S(�2) and L(�2) � L(�1) if �1 � �2. Moreover, sin
eu0 2 C�(
) and ku0kC� �M , then these sets are open,�S(�) = �L(�) = fx 2 
; u0(x) = �g; 
 = S(�) [ L(�) [ �L(�)and, for every Æ > 0,(2.14) d[�S(� + Æ); �S(�)℄ � CÆ16



where the 
onstant CÆ depends only on Æ, � andM and is independent on � and onthe 
on
rete 
hoi
e of u0 2 A. Here and below we denote by d(X;Y ) the standardmetri
 distan
e between sets in Rn :d[X;Y ℄ := infx2X infy2Y kx� yk:Let us �x now � > 0 and � > 0 in su
h way that(2.15) g0(u) > 3� > 0; 8juj < 5�(this is possible by assumption (2.9)) and the 
ut-o� fun
tion � 2 C1(Rn), � � 0su
h that:(2.16) �(x) = ( 1; x 2 S(4�);0; x 2 L(5�):Due to (2.14), and Proposition A.2 this 
ut-o� fun
tion � 
an be 
hosen in su
h away that(2.17) k�kCk(
) � Ckwhere the 
onstants Ck depend only on M , � and k and are independent of u0.We re
all that the traje
tory u(t) := Stu0 belongs to C� with respe
t to t andx, 
onsequently, there exists time T > 0 (also depending only on M , � and �) su
hthat(2.18) g0(u(t; x)) > 2�; x 2 S(5�); t 2 [0; T ℄;ju(t; x)j > �=2; x 2 L(�); t 2 [0; T ℄:On the other hand, due to the interpolation inequality(2.19) kwkC(
) � Ckwk
L1(
)kwk1�
C�(
)(for some 0 < 
 < 1) and the H�older 
ontinuity, we obtain that(2.20) jv(t; x)� u(t; x)j � C1"
 ; x 2 
; t 2 [0; T ℄17



for every solution v(t) su
h that v(0) 2 A \ B("; u0; L1). Thus, assuming that " issmall enough (" � "0 � 1 where "0 > 0 is independent of u0 2 A), we may improve(2.18) in the following way:(2.21) g0(v(t; x)) > �; x 2 S(5�); t 2 [0; T ℄;jv(t; x)j > �=4; x 2 L(�); t 2 [0; T ℄uniformly with respe
t to v0 2 A \ B("; u0; L1).In order to 
onstru
t the required �"-net in S(T )(A \ B("; u0; L1)), we need toderive some smoothing property for di�eren
es of solutions. To this end, we 
onsiderthe di�eren
e w(t) := u1(t)� u2(t) of two solutions satisfying ui(0) 2 B("; u0; L1).Then the fun
tion w(t) solves the following equation:(2.22) �tw(t) = �x(l1(t)w)� l2(t)w; w��t=0 = u1(0)� u2(0); t 2 [0; T ℄where li(t) are the same as in (1.17).Let us �rst 
onsider the 
ase of domains L(�) where the equation (1.1) is, in asense, nondegenerate. To this end, we need the following lemma whi
h is similar tothe 
lassi
al interior regularity estimates for the linear paraboli
 equation (2.22).Lemma 2.2. Let u0 2 A be arbitrary, the sets L(�; u0) be de�ned via (2.13).Assume also that u1(t) and u2(t) are two solutions of (1.1) su
h that ui(0) 2 A \B("; u0; L1(
)). Then, the following estimate holds for every t0 2 (0; T ):(2.23) ku1 � u2kC�([t0;T ℄�L(3�)) � Ct0ku1(0)� u2(0)kL1(
)where the 
onstant Ct0 depends on t0 and is independent of ", u0, u1 and u2.Proof. We �rst prove that, for every r > 2, the fun
tions u1 and u2 satisfy thefollowing estimate:(2.24) kuikW (1;2);r([t0=2;T ℄�L(2�)) � Cr; i = 1; 2where the 
onstant Cr depends on r, but is independent of the 
on
rete 
hoi
e ofu0, " and of the traje
tories u1 and u2 (starting from A \ B("; u0; L1)). Indeed,18



let us verify it for u = u1 (for u = u2 it 
an be veri�ed analogously). To this end,we introdu
e a new dependent variable v(t; x) := f(u(t; x)). Then, sin
e f(u) isnondegenerate if juj > � > 0, one 
an easily verify that the fun
tion v solves thefollowing equation:(2.25) �tv = a�xv + hu; (t; x) 2 [0; T ℄� L(�)where a(t; x) := f 0(u(t; x)) and hu(t; x) := f 0(u(t; x))[h(x)� g(u(t; x))℄. Moreover,due to (2.6), the 
oeÆ
ient a is uniformly (with respe
t to u 2 K) H�older 
ontinuousand the fun
tion hu is uniformly bounded in L1. Furthermore, due to the se
ondinequality of (2.21) and assumption (1.2), we havea(t; x) � C1; (t; x) 2 [0; T ℄� L(�)where the 
onstant C1 is also independent of the 
hoi
e of u0 and u. Thus, we
an apply the standard Lr-interior regularity estimate for the solution of the linearnondegenerate equation (2.25), see Proposition A.4 and Corollary A.1. Due to(2.14) with Æ = �, this estimate implieskvkW (1;2);r([t0=2;T ℄�L(2�)) � Cr(khkLr([0;T ℄�L(�)) + kvkL1([0;T ℄�L(�))) � C 0r:Returning ba
k to the variable u = f�1(v) and using that f 2 C2 (and nondegen-erate outside of zero), we dedu
e estimate (2.24).We now return to equation (2.22) whi
h will be now 
onsidered in the domain[t0=2; T ℄�L(2�). To this end, we �rst need to study the regularity of the 
oeÆ
ientl1(t). Indeed, sin
e f 2 C2 and estimate (2.6) holds, then(2.26) kl1kC�([0;T ℄�
) � Cwhere the 
onstant C is independent of u1 and u2. Moreover, due to (2.24), wehave(2.27) k�tl1kLr([t0=2;T ℄�L(2�)) � C 2Xi=1 k�tuikLr([t0=2;T ℄�L(2�)) � C 00r19



and, �nally, due to the se
ond inequality of (2.21), we also have(2.28) l1(t; x) � � > 0; (t; x) 2 [t0=2; T ℄� L(2�)where the 
onstants C, C 00r and � are independent of the 
on
rete 
hoi
e of u0, u1and u2.Let us introdu
e a new dependent variable Z(t) := l1(t)w(t). Then, this fun
tionsolves(2.29) �tZ = a(t; x)�xZ + l(t; x)Z; (t; x) 2 [t0=2; T ℄� L(2�)where a(t; x) := l1(t; x) and l(t; x) := l2(t; x) � �tl1(t;x)l1(t;x) . Furthermore, estimates(2.26){(2.28) (together with the obvious fa
t that l2 is uniformly bounded in theL1-norm) allows us to apply the Lq-interior regularity estimate for equation (2.29)whi
h gives, see Proposition A.4 and Corollary A.1,(2.30) kZkW (1;2);q([t0;T ℄�L(3�)) � CqkZkL1([t0=2;T ℄�L(2�) � C 0qkwkL1([0;T ℄�
):Fixing now q large enough to have the embedding W (1;2);q � C�, returning to theinitial variable w and using (2.26), we have(2.31) kwkC�([t0;T ℄�L(3�)) � CkwkL1([0;T ℄�
):Estimating the right-hand side of (2.31) using (1.16), we dedu
e (2.23) and �nishthe proof of Lemma 2.2.Let us 
onsider now equation (2.22) on the set S(4�) where, due to the �rst
ondition of (2.21), we have, in a sense, the 
ontra
tion property for the di�eren
esof solutions. Indeed, let us multiply equation (2.22) by(2.32) �(x) sgn(w(t; x)) = �(x) sgn(�(x)l1(t; x)w(t; x))(where � is de�ned by (2.16)) and use the equation(2.33) ��x[l1(t)w℄ = �x(�(x)l1(t)w)� 2rx�:rx(l1(t)w)��x�l1(t)w:20



Integrating then over x 2 
 and using the Kato inequality, we derive that(2.34) �t(�; jwj) � (�x�; l1(t)jwj)� (g(u1)� g(u2); � sgn(u1 � u2)):Taking into a

ount the �rst inequality of (2.21) and the fa
t that �x�(x) = 0 forx 2 S(4�), we dedu
e from (2.34) that(2.35) �t(�; jw(t)j) + �(�; jw(t)j) � Ckw(t)kL1(L(4�))and 
onsequently, due to the Gronwall inequality and estimate (1.16), we infer(2.36) ku1(T )� u2(T )kL1(S(4�)) � eKt0��(T�t0)ku1(0)� u2(0)kL1(
)++ Ct0ku1 � u2kL1([t0;T ℄�L(4�))where t0 is an arbitrary time in the interval (0; T ).Let us now �x t0 in su
h way thateKt0��(T�t0) < 1� Æ < 1:In this 
ase (2.29) really gives a 
ontra
tion in S(4�). Moreover, using thatkwkL1(
) � kwkL1(S(4�)) + kwkL1(L(7�=2))and that kw(T )kL1(L(7�=2)) � CkwkC([t0;T ℄�L(7�=2)), we derive from (2.23) and(2.36) the following basi
 inequalities:(2.37) 8>>><>>>: ku1 � u2kC�([t0;T ℄�L(3�)) � Pku1(0)� u2(0)kL1(
);ku1(T )� u2(T )kL1(
) � (1� Æ)ku1(0)� u2(0)kL1(
)++Pku1 � u2kC([t0;T ℄�L(7�=2))whi
h is valid for all solutions ui su
h that ui(0) 2 B("; u0; L1) \ A where the
onstants T > 0, Æ > 0 and P are independent of the 
on
rete 
hoi
e of " � "0 andu0 2 A.Our next observation is the fa
t that the embedding C�([t0; T ℄ � L(3�; u0)) �C([t0; T ℄ � L(7�=2; u0)) is 
ompa
t. Moreover, sin
e L(7�=2; u0) � L(3�; u0) and21



d[�L(3�; u0); L(7�=2; u0)℄ � C� with the 
onstant C� independent of u0 2 A, thenthis embedding is uniformly (with respe
t to u0 2 A) 
ompa
t. This means thatthere exists a monotone de
reasing fun
tion M (Æ) su
h that(2.38) H Æ (B(1; 0; C�([t0; T ℄� L(3�; u0))); C([t0; T ℄� L(7�=2; u0))) � M (Æ)uniformly with respe
t to u0 2 A and Æ > 0, see Proposition A.5.We are now ready to 
onstru
t the required �"-net in the set S(T )(B("; u0; L1)\A). To this end, we �x a minimal Æ"=(4P )-net V in the ball B(P; u; C�([t0; T ℄ �L(3�))), where u(t) := S(t)u0, endowed with the metri
 of C([t0; T ℄ � L(7�=2)).Then, due to (2.38), the number of points in that net 
an be estimated via(2.39) #V = N"Æ=(4P )(B(P"; u; C�([t0; T ℄� L(3�)); C([t0; T ℄� L(7�=2))) == NÆ=(4P 2)(B(1; 0; C�([t0; T ℄� L(3�)); C([t0; T ℄� L(7�=2))) � eM (Æ=(4P 2)) := Lwhere L is independent of u0. Moreover, sin
e we only need to 
ontrol the traje
-tories v(t) starting from A\B("; u0; L1) (all these traje
tories are 
ontained in theball B(P"; u; C�([t0; T ℄�L(3�)) due to the �rst estimate of (2.37)), then in
reasingthe radii of the balls by a fa
tor of two, we may 
onstru
t the Æ"=(2P )-net �V =fu1; � � � ; uNg in the set of these traje
tories (in the metri
 of C([t0; T ℄�L(7�=2)))su
h that the fun
tions fu1; � � � ; uLg are also the traje
tories of (1.1) started fromA \B("; u0; L1) and #�V � L. We 
laim that the set(2.40) V�"(u0) := �V ��t=Tis the required �"-net in S(T )(B("; u0; L1) \ A) with � = 1� Æ=2 < 1. Indeed, letv(t) be an arbitrary traje
tory starting from the B("; u0; L1)\A. Then, due to our
onstru
tion of the net �V , there exists a solution ui 2 �V satisfying(2.41) kui � vkC([t0;T ℄�L(7�=2))) � Æ"=(2P ):Inserting this estimate into se
ond estimate of (2.37) and using that kui(0) �v(0)kL1(
) � ", we inferkui(T )� v(T )kL1(
) � (1� Æ)"+ Æ"=2 = (1� Æ=2)":22



Thus, (2.40) is indeed the required �"-net in S(T )(B("; u0; L1)\A). Sin
e an "-ballof the attra
tor has been 
hosen arbitrarily, then the re

urrent formula (2.11) isveri�ed for " � "0.We are now ready to �nish the proof of the theorem. Indeed, sin
e the attra
torA is 
ompa
t in L1(
), then(2.42) H "0 (A; L1(
)) � C"0 <1:Moreover, starting from that "0-net and using the re

urrent pro
edure des
ribedabove, we prove that(2.43) H �m"0(A; L1(
)) � C"0 +m log2 Lfor all m 2 N . Together with (2.8) this estimate gives(2.44) dimf (A; L1(
)) � log2 Llog2 1=� <1:The �nite-dimensionality in C(
) is now an immediate 
orollary of H�older 
onti-nuity (2.6) and the interpolation inequality (2.19). Theorem 2.1 is proved.x3 The finite dimensional 
ase: exponential attra
tors.In the previous se
tion, we have proved the existen
e of a �nite dimensionalglobal attra
tor A for problem (1.1). However, a

ording to the de�nition of A, weknow only that dist(S(T )B;A) tends to zero as t!1 (for every bounded subsetB) and do not have any information on the rate of 
onvergen
e in (2.3). Moreover,this rate of 
onvergen
e 
an be arbitrarily slow and, to the best of our knowledge,there is no way to 
ontrol this rate of 
onvergen
e in a more or less general situation(e.g., to express it in terms of physi
al parameters of the system 
onsidered). Thisleads to essential diÆ
ulties in numeri
al simulations of global attra
tors and evenmakes them, in a sense, unobservable.In order to over
ome this diÆ
ulty, the 
on
ept of the so-
alled exponentialattra
tor has been suggested in [15℄. By de�nition, a set M� � is an exponentialattra
tor of the semigroup S(t) if the following 
onditions are satis�ed:23



1) the set M is 
ompa
t in � = L1(
);2) it is semi-invariant, i.e. S(t)M�M;3) it attra
ts exponentially the images of all bounded sets, i.e., for every B � �bounded,(3.1) dist(S(t)B;M) � Q(kBk�)e��twhere the positive 
onstant � and the monotoni
 fun
tion Q are independent of B;4) it has �nite fra
tal dimension in �:(3.2) dimf (M;�) � C <1:We re
all that in 
ontrast to global attra
tors, an exponential attra
tor is notunique and, 
onsequently, the parti
ular 
hoi
e of the exponential attra
tor is, ina sense, arti�
ial (of 
ourse, it is natural to �nd \the simplest" 
onstru
tion ofan exponential attra
tor). An essential advantage of exponential attra
tors (in
omparison with global ones) is, however, the fa
t that the fun
tion Q and the
onstant � 
an be usually expli
itly found in terms of physi
al parameters of theequation 
onsidered. Moreover, the exponential attra
tors are mu
h more robustwith respe
t to perturbations, in parti
ular, upper and lower semi
ontinuos andeven H�older 
ontinuous in the symmetri
 Hausdor� distan
e, see [12-15℄, [21℄ andthe referen
es therein.In the present se
tion, we 
onstru
t the exponential attra
tor for the porousmedia equation (1.1). The main result of the se
tion is formulated in the followingtheorem.Theorem 3.1. Let the assumptions of Theorem 2.1 hold. Then, the semigroup(2.1) generated in � = L1(
) by equation (1.1) possesses an exponential attra
torM in the sense of the above de�nition. Moreover, this attra
tor is bounded inC�(
), for some � > 0.Proof. Let us introdu
e the set(3.3) C := � [t�1 S(t)��C�(
)24



where [�℄V is a 
losure in the spa
e V . Then, due to Theorem 1.2, we have(3.4) kCkC�(
) �Mand, due to the 
onstru
tion of C, we have also(3.5) S(t)C � C; t � 0:Thus, instead of 
onstru
ting an exponential attra
tor for S(t) on the whole phasespa
e �, it is suÆ
ient to 
onstru
t it only for the restri
tion of that semigroup on a
ompa
t invariant subset C. To this end, we will use the algorithm of 
onstru
ting"-nets, developed in the proof of Theorem 2.1. To be more pre
ise, let V"0 � C bean "0-net in the set C with suÆ
iently small "0. Then, arguing exa
tly as in theproof of Theorem 2.1, we 
an �nd positive numbers T , L and � < 1 su
h that, forevery u0 2 C, the set S(T )(B("0; u0; L1) \ C) possesses a �"0-net with L-points.Thus, starting from the "0-net V"0 of C, we 
onstru
t the �"0-net V�"0 � S(T )C ofthe set S(T )C su
h that #V�"0 � L#V"0 :Iterating this pro
edure, we 
onstru
t then, for every n 2 N , �n"0-nets V�n"0 �S(nT )C in the set S(nT )C whi
h satisfy(3.6) #V�n"0 � Ln#V"0 :These �n"0-nets in S(nT )C allow us to 
onstru
t in a standard way the exponentialattra
torMd for the dis
rete dynami
al system, generated by the map S = S(T ) :C ! C. This exponential attra
tor 
an be de�ned via the following expression:(3.7) Md := � [1n=0 [1m=0S(m)V�n"0�L1(
):Indeed, the semi-invariantness and exponential attra
tion property are obvioussin
e(3.8) dist(S(nT )C; V�n"0) � �n"0; n 2 N ; � < 1:25



The �nitness of the fra
tal dimension ofMd 
an be easily veri�ed using (3.6), (3.8)and the fa
t that V�n"0 � S(nT )C, see [12℄ for details. Thus, sin
e Md is 
losed,it is indeed an exponential attra
tor for the map S = S(T ) : C ! C. As usual, therequired exponential attra
torM for the semigroup S(t) with 
ontinuous time 
anbe de�ned via(3.9) M = [t2[T;2T ℄S(t)Md:Indeed, the semi-invariantness and exponential attra
tion property follow immedi-ately from the analogous properties of the dis
rete attra
torMd and the �nitenessof a fra
tal dimension in L1(
) 
an be easily veri�ed using that the dimension ofMd is �nite and that the map S(t) is uniformly H�older 
ontinuous on Md, see[12-15℄ for the details. Thus, M is indeed the required exponential attra
tor andTheorem 3.1 is proved.Remark 3.1. There exists a rather important ex
eptional 
lass of dynami
al sys-tems whose global attra
tors are simultaneously the exponential ones. These arethe so-
alled regular attra
tors whi
h appear in smooth dynami
al systems with theglobal Lyapunov fun
tion under the additional assumption that all of the equilibriaare hyperboli
, see [2℄. In our 
ase of the porous media equation (1.1), we obviouslyhave the global Lyapunov fun
tion. Indeed, arguing as in Lemma 1.2, we 
an easilyverify that the fun
tional(3.10) G(u) := Zx2
 12 jrxf(u(x))j2 + F0;g(u(x))� h(x)F0(u(x)) dxwhere F0;g and F0 are the same as in Lemma 1.2, satis�es(3.11) G(u(t))� G(u(0)) = � Z T0 Zx2
 f 0(u(t; x))j�tu(t; x)j2 dx dtand, 
onsequently, gives a global Lyapunov fun
tion for (1.1).Nevertheless, the regular attra
tor's theory seems to be not appli
able here, sin
eequation (1.1) is degenerate and we 
annot obtain the di�erentiability of semigroupS(t) with respe
t to the initial data and the hyperboli
ity of the equilibria.26



Remark 3.2. As we have already mentioned, the appropriate smoothing prop-erties for di�eren
es of solutions play a 
ru
ial role in the modern theory of ex-ponential attra
tors, see [12-15℄, [21℄. The simplest abstra
t version (whi
h givesexisten
e of an exponential attra
tor for the map S) of su
h a smoothing propertyis the following one:(3.12) kSu1 � Su2kH1 � Kku1 � u2kHwhere the 
onstant K is independent of ui belonging to a bounded invariant subsetand H1 and H are two Bana
h spa
es su
h that H1 is 
ompa
tly embedded in H,see [13℄.Our proof of the existen
e of an exponential attra
tor 
an also be embedded inan abstra
t s
heme, but, in 
ontrast to (3.12), in our situation, the spa
es H1 andH should depend on u1 and u0.To be more pre
ise, let S be an abstra
t map a
ting on some Bana
h spa
e Xand let C be a 
ompa
t subset of X su
h that(3.13) SC � C:Let us assume also that, for every u0 2 C and for every " � "0, there exist a pair ofBana
h spa
es H1(u0; ") and H(u0; ") su
h that H1 is 
ompa
tly embedded in Hand this embedding is uniformly (with respe
t to " and u0) 
ompa
t in the sense ofKolmogorov's "-entropy, 
ompare with (2.38) and a map Tu0;" : B("; u0; X) \ C !H1(u0; ") su
h that, for every u1; u2 2 B("; u0; X) \ C(3.14) ( kTu0;"u1 � Tu0;"u2kH1 � Pku1 � u2kX ;kSu1 � Su2kX � (1� Æ)ku1 � u2kX + PkTu0;"u1 � Tu0;"u2kH ;
ompare with (2.37). Then, arguing exa
tly as in the proof of Theorems 2.1 and3.1, we 
an verify the existen
e of an exponential attra
tor for the abstra
t map S.Remark 3.3. It would be very interesting to develop the perturbation theoryfor the exponential attra
tor M of degenerate porous media equation (1.1). In27



parti
ular, it would be interesting to 
onstru
t exponential attra
tors M" for thenon-degenerate approximations (1.4) in su
h way that(3.15) distsymm(M";M0) � C"�;for some positive 
onstants C and �. We shall return to that problem elsewhere.x4 The global attra
tor: the 
ase of infinite dimension.We now show that the attra
tor A 
an be in�nite-dimensional if 
ondition (2.9)is violated. To be more pre
ise, we 
onsider the following equation of the form(1.1):(4.1) �tu = �x(ujujp�1) + u� g(u); u���
 = 0where p > 1 and the fun
tion g vanishes near zero and satis�es assumption (1.3)at in�nity. As we will show below the asso
iated attra
tor has in�nite dimension.That is why we will study below its Kolmogorov "-entropy. The following theoremwhi
h gives a natural lower bound for the entropy of the attra
tor 
an be 
onsideredto be the main result of this se
tion.Theorem 4.1. Let the above assumptions hold. Then the global attra
tor A as-so
iated with equation (4.1) is in�nite-dimensional and its "-entropy possesses thefollowing estimate:(4.2) H "(A; L1) � C �1"�n(p�1)=2 ;for some positive 
onstant C independent of ".Proof. In order to prove the theorem, we will study as usual the so-
alled unstableset M+(0) of the equilibrium u � 0 of equation (4.1). By de�nition,(4.3) M+(0) = fu0 2 L1(
); 9u 2 K; limt!�1 ku(t)kL1 = 0; u(0) = u0g:Obviously M+(0) � A. On the other hand, sin
e the nonlinearity g vanishes atthe origin, it is suÆ
ient to 
onsider only the ba
kward solutions of the following\linearized" problem:(4.4) �tu = �x(ujujp�1) + u; u(0) = u0; t � 028



tending to zero as t ! �1 (all su
h solutions belonging to the suÆ
iently smallball in L1 will satisfy also equation (4.1)). In order to solve equation (4.4), we
hange to the unknown v(t) := e�tu(t). Then we arrive at(4.5) �tv = e(p�1)t�x(vjvjp�1); v(0) = u0; t 2 (�1; 0):Finally, making one more variable 
hange s := e(p�1)t, we obtain(4.6) �s~v = (p� 1)�x(~vj~vjp�1); ~v(1) = u0; s 2 (0; 1℄:Let St : L1(
)! L1(
) be the solution operator of the following problem:(4.7) �tw = (p� 1)�x(wjwjp�1); w��t=0 = w0; t � 0:Then, we have shown that the unstable set M+(0) 
ontains the image of a suÆ-
iently small ball B(r0) := B(r0; 0; L1):(4.8) S1B(r0) �M+(0) � A:Thus, it is suÆ
ient to estimate the "-entropy of the set S1B(r0). To this end, were
all that in 
ontrast to the nondegenerate 
ase, equation (4.7) possesses spatiallylo
alized solutions, i.e. there exists a nonzero solutionW (t; x) � 0 of equation (4.7)su
h that W (0) 2 B(r0) and(4.9) suppW (s; �) � K �� 
;for all s 2 [0; 1℄. For simpli
ity, we assume that kW (1)kL1 = 1. On the one hand,if W (s; x) solves (4.7) then the s
aled fun
tion(4.10) W"(s; x) := "W (s; "(1�p)=2x)also solves (4.7) for every " 6= 0 and(4.11) suppW"(s; x) � K" := "(p�1)=2K:29



Therefore, for every suÆ
iently small ", there exists a �nite set R" := fxig � 
su
h that
(4.12) 1) (x+K") \ (y +K") = ?; 8x; y 2 R"; x 6= y;2) #R" � C �1"�n(p�1)=2 ;3) x+K" �� 
; 8x 2 R":Consequently, for every m 2 f0; 1gR" the fun
tion(4.13) Wm;"(s; x) := #R"Xi=1 miW"(s; x� xi)solves (4.7) in 
. On the other hand, obviously we have(4.14) kWm1;"(1; �)�Wm2;"(1; �)kL1 � "for m1 6= m2. Sin
e we have 2#R" di�erent fun
tions of that form, then(4.15) H "(A; L1) � H "(S1B(r0); L1) � #R" � C �1"�n(p�1)=2 :Theorem 4.1 is provedRemark 4.1. It is worth re
alling the usual method of obtaining lower bounds forthe attra
tor dimension based on unstable manifolds theory. Namely, if we are ableto �nd a (hyperboli
) equilibrium with large/in�nite instability index then, due tothis theory, the attra
tor 
ontains a manifold of large/in�nite dimension (whi
his equal to the instability index, see [2℄). But this method is not appli
able fordegenerate equations sin
e the asso
iated semigroups are usually not di�erentiable.Indeed, under the assumptions of Theorem 4.1 the formal linearization near thezero equilibrium reads �tw = wwhi
h, of 
ourse, has in�nite instability index. But, in 
ontrast to the nondegen-erate 
ase the ba
kward solutions of that equation are not asso
iated with theba
kward solutions of the whole nonlinear equation (due to the la
k of regularity)30



and, 
onsequently, do not give the in�nite-dimensionality of the asso
iated unstableset. That is the reason why we needed to develop above the alternative methodbased on the existen
e of a lo
alized solution and s
aling te
hnique whi
h is 
loselyrelated with the degenerate nature of the problem 
onsidered.Remark 4.2. It is also worth noting that, for nondegenerate paraboli
 equations,the asymptoti
s for the image of a ball under the evolution operator is usuallylogarithmi
:C�1 �log2 1"�1+n=2 � H "(S1B(r0);�) � C �log2 1"�1+n=2where n is the spa
e dimension, see [28℄. The proof of Theorem 4.1 shows that thedegenera
y 
hanges drasti
ally type of these asymptoti
s.The next 
orollary gives the lower bounds for the "-entropy in the initial phasespa
e L1(
).Corollary 4.1. Let the assumptions of Theorem 4.1 hold. Then, the Kolmogorov"-entropy of the attra
tor A in L1(
) possesses the following estimate:(4.16) H "(A; L1(
)) � C �1"� n(p�1)2+n(p�1)where the 
onstant C is independent of ".Proof. Indeed, a

ording to (4.10),(4.17) kW"(1; x)kL1(
) = C"1+n(p�1)=2and, 
onsequently, instead of (4.14), we now have(4.18) kWm1;"(1; �)�Wm2;"(1; �)kL1 � C"1+n(p�1)=2:Therefore, the distan
e between any two fun
tions of the form (4.13) is not less thanC"1+n(p�1)=2. Sin
e we have 2#R" of su
h fun
tions, estimate (4.16) is veri�ed andCorollary 4.1 is proved.We note that, in 
ontrast to the lower bounds for the entropy in L1-metri
given in Theorem 4.1, estimate (4.16) seems to be very rough (in parti
ular, the31



exponent in the right-hand side of it remains bounded as p ! 1 or n ! 1).Nevertheless, it allows us to establish the in�nite-dimensionality of global attra
torsfor an essentially more general 
lass of porous media equations. We illustrate thison the following example of the degenerate Chafee-Infante equation:(4.19) �tu = �x(u3) + u� u3; u���
 = 0:Corollary 4.2. Let A be the attra
tor of equation (4.19). Then, its Kolmogorov"-entropy satis�es:(4.20) H "(A; L1(
)) � C( "�1=2; n = 1;"�2=(n+1); n � 2;for some C > 0 independent of ".Proof. Indeed, analogously to the proof of Theorem 4.1, repla
ing the dependentvariable u(t) = etv(t) in equation (4.19) and s
aling time s = e2t, we arrive at(4.21) �sv = 2�x(v3)� v3; s 2 [0; 1℄:Let now W"(s; x) := "W (s; "�1x), "� 1 be the solutions of equation(4.22) �sw = 2�x(w3)
onstru
ted in the proof of Theorem 4.1 and de�ne, for every m 2 f0; 1gR", thefun
tions Wm;"(s; x) via (4.13). We also re
all that the L1-norm of every solutionof (4.22) with 
ompa
t support is preserved, 
onsequently,(4.23) kWm;"(s; �)kL1(
) = C"1+njmjwhere jmj =Pmi. Let us now de�ne the asso
iated solutions �Wm;"(s; x) of (4.21)with �Wm;"(0; x) = Wm;"(0; x). Then, the di�eren
e Z(s) = �Wm;"(s) � Wm;"(s)satis�es(4.24) �sZ = 2�x( �W 3m;" �W 3m;")� ( �W 3m;" �W 3m;")�W 3m;":32



Multiplying (4.24) by sgnZ integrating and using the Kato inequality together with(4.23), we obtain(4.25) k �Wm;"(1; �)�Wm;"(1; �)kL1(
) � Z 10 (Wm;"(s))3 ds � C"3+njmj:Thus, due to (4.18) with p = 3,(4.26) k �Wm1;"(1)� �Wm2;"(1)kL1(
) � kWm1;"(1)�Wm2;"(1)kL1(
)�� C"3+n(jm1j+ jm2j) � C"1+n(1� "2(jm1j+ jm2j))and, 
onsequently, the fun
tions �Wmi;" are "1+n=(2C)-separated if(4.27) jmij � 1=4"�2:We re
all that #R" � "�n. Then, for n = 1, (4.27) is automati
ally satis�ed forsmall " and so, the number N of 1=2C"2 separated fun
tions is equal to 2#R" �2C"�1 . In the 
ase of n � 2 this number N , obviously satis�es N � 21=4"�2. Theseestimates immediately imply (4.20). This �nishes the proof of Corollary 4.2.To 
on
lude, we dis
uss also the upper bounds for the Kolmogorov's "-entropy ofthe attra
tors of porous media equations of the form of (4.1). To this end, we re
allthat the polynomial asymptoti
s of the Kolmogorov entropy (like "�k) are typi
alfor the embeddings of Sobolev spa
es, and, 
onsequently, the upper bounds of theentropy in the same form 
an be obtained by studying the maximal smoothness ofthe attra
tor. In parti
ular, Theorem 1.2 together with the standard asymptoti
sfor the Kolmogorov entropy of the embedding C� � C, see [19℄, gives(4.28) H "(A; L1) � C �1"�n=� :In parti
ular, for n = 1 under the assumptions of Theorem 4.1, we have(4.29) C�1 �1"�(p�1)=2 � H "(A; L1) � C �1"�6p :In turns, estimate (4.2) (and the s
aling method, introdu
ed in Theorem 4.1) givethe natural upper bounds for the smoothness of the attra
tor.33



Corollary 4.3. The H�older 
onstant � in (1.29) satis�es � � 2=(p�1). Moreover,if the inequality(4.30) ku0kW 1;1(
) � Cholds uniformly with respe
t u0 belonging to the attra
tor A of (4.1) then, ne
essar-ily, p � 3.Proof. Indeed, analogously to the proof of Theorem 4.1, all fun
tions W"(1; x) ="W (1; "(1�p)=2x) belong to the attra
tor. On the other hand,(4.31) kW"(1)kC�(
) = "1��(p�1)=2kW (1)kC�(
):Sin
e the left-hand side of (4.31) should be bounded as " ! 0, then, ne
essarily,� � 2=(p� 1).Analogously,(4.32) kW"(1)kW 1;1(
) = "(3�p)=2"n(p�1)=2kW (1)kW 1;1(
):Let us now 
onsider the fun
tion W~1;"(1; x) asso
iated with (4.13) with all mi = 1.Then, sin
e #R" � "n(1�p)=2, (4.32) implies thatkW~1;"(1)kW 1;1(
) = C"(3�p)=2kW (1)kW 1;1(
):Thus, (4.30) implies indeed that p � 3 and Corollary 4.3 is proved.Appendix. Some te
hni
alities.In this 
on
luding se
tion, we give, for the 
onvenien
e of the reader, a moredetailed exposition of several known te
hni
al issues used above. We start with thesmoothness relations between u and f(u).Proposition A.1. Let the fun
tion f 2 C2(R;R) satisfy (1.2). Then, for everys 2 (0; 1) and 1 < q � 1, we have(A.1) kukW s=p;pq(
) � Cpkf(u)k1=pW s;q(
)34



where the 
onstant Cp is independent of u.Proof. Indeed, let f�1 be the inverse fun
tion to f . Then, due to 
onditions (1.2),the fun
tion G(v) := sgn vjf�1(v)jp is nondegenerate and satis�es(A.2) C2 � G0(v) � C1;for some positive 
onstants C1 and C2. Therefore, we have(A.3) jf�1(v1)� f�1(v2)jp � CpjG(v1)�G(v2)j � C 0pjv1 � v2j;for all v1; v2 2 R. Finally, a

ording to the de�nition of the fra
tional Sobolevspa
es (see e.g. [20℄),kf�1(v)kpqW s=p;qp(
) := kf�1(v)kpqLpq(
) + Z
 Z
 jf�1(v(x))� f�1(v(y)jpqjx� yjn+sq dx dy �� CkvkqLq(
) + C 0p Z
 Z
 jv(x)� v(y)jqjx� yjn+sq dx dy = C 00p kvkqW s;q(
);where we have impli
itly used that f�1(v) � sgn vjvj1=p. Proposition A.1 is proved.We are now going to dis
uss the interior regularity estimates for linear paraboli
equations. To this end, we �rst 
onstru
t spe
ial 
ut{o� fun
tions.Proposition A.2. Let V � B(R; 0;Rl) be a bounded set in Rl and let VÆ := OÆ(V )be its Æ-neighbourhood. Then, there exists a 
ut-o� fun
tion � 2 C1(R), �(x) 2[0; 1℄, su
h that, for every � 2 (0; 1) and every k 2 Z+,(A.4) ( 1: �(x) = 1; for x 2 V and �(x) = 0 for x =2 VÆ;2: jDkx�(x)j � Ck;� [�(x)℄1��; x 2 Rl ;where the 
onstant Ck;� = C(k; �; Æ; R) is independent of x and the 
on
rete 
hoi
eof V and Dkx means the 
olle
tion of all x-derivatives of order k.Proof. Indeed, let us introdu
e the standard bump fun
tion in Rl :(A.5)  r(x) := ( e� 1r2�jxj2 ; jxj < r;0; jxj � r:Then, this fun
tion obviously satis�es estimate (A.4)(2).35



Let us �x now a 
overing of the Rl by the balls of radius Æ=2 and letWÆ := Æ=2Zlbe 
enters of that 
overing. Let us now 
onstru
t also partition of unity asso
iatedwith that 
overing and (A.5) via(A.6) �q(x) :=  Æ=2(x� q)Pp2WÆ  Æ=2(x� p) ; q 2WÆ:Obviously, f�q(x)gq2WÆ is a partition of unity asso
iated with the above 
overingand, moreover, these fun
tions satisfy (A.4)(2) uniformly with respe
t to q 2WÆ.Let us de�ne now the required 
ut-o� fun
tion �(x) = �V (x) by the followingexpression:(A.7) �V (x) := Xq2WÆ=2\VÆ=2 �q(x):Indeed, sin
e supp �q � B(Æ=2; q;Rl ) and the sum of all su
h fun
tions equals oneidenti
ally, the fun
tion �V thus de�ned satis�es (A.4)(1). Moreover, sin
e thenumber of points#(WÆ=2 \ VÆ=2) � #(WÆ=2 \ B(R+ Æ; 0;Rl )) � N(Æ; R)is �nite and uniformly bounded with respe
t to V � B(R; 0;Rl) and the fun
tions�q(x) satisfy (A.4)(2) uniformly with respe
t to q 2WÆ=2, then the fun
tion �V (x)also satis�es this inequality uniformly with respe
t to V � B(R; 0;Rl ). PropositionA.2 is proved.We now re
all the 
lassi
al Lq-regularity estimate for se
ond order paraboli
equations on the following model example:(A.8) ( �tw = a(t; x)�xw + b(t; x)w + h;w���
 = 0; w��t=0 = 0:Proposition A.3. Let 
 be a smooth domain and let a 2 C�(
T ) (with � > 0and 
T := [0; T ℄� 
) satisfy(A.9) 0 < C1 � a(t; x) � C2; (t; x) 2 
T ;36



for some positive Ci. Let also h 2 Lq(
T ) for some 1 < q <1, q 6= 3=2. Assume�nally that(A.10) b 2 Lr(
T )for a suÆ
iently large r depending on q (r > maxfq; n+22 g). Then, problem (A.8)possesses a unique solution w 2W (1;2);q(
T ) and the following estimate holds:(A.11) kwkW (1;2);q(
T ) � CkhkLq(
T );where the 
onstant C depends on q, 
, kakC� , kbkLr and on the 
onstants Ci from(A.9), but is independent of the 
on
rete 
hoi
e of a, b and h.The proof of this proposition (in more general setting) 
an be found in [20℄, seeChapter IV, x9 Th. 9.1. In parti
ular, the assertion of the proposition is provedthere without the assumption on H�older 
ontinuity of a and the 
onstant C in(A.11) depends on the modulus of 
ontinuity of the fun
tion a. However, for ourpurposes it is more 
onvenient to 
ontrol this modulus of 
ontinuity by the H�oldernorm.We are now able to verify the Lq-interior regularity estimate for equation (A.8)(whi
h is analogous to estimate (10.12) of [20℄, see Chapter IV, x10, page 355).Proposition A.4. Let the above assumptions hold and let V be an arbitrary openset in 
. Then, for every 0 < t0 < T , Æ > 0 and q > 2, the solution w satis�es(A.12) kwkW (1;2);q([t0;T ℄�V ) � C(khkLq([0;T ℄�VÆ) + kwkL1([0;T ℄�VÆ));where VÆ := OÆ(V )\
 and the 
onstant C is independent of w and of the 
on
rete
hoi
e of a, b and h.Proof. A

ording to Proposition A.2 there exists a 
ut-o� fun
tion � 2 C1(Rn+1)su
h that(A.13) 8>>><>>>: 1: �(t; x) � 1; for (t; x) 2 [t0; T ℄� V ;2: �(t; x) � 0; for (t; x) =2 [3t0=4; T ℄� VÆ=2;3: jDk(t;x)�(t; x)j � Ck;Æ;� [�(t; x)℄1��;37



where � > 0 is arbitrary and the 
onstant Ck;Æ;� is independent of V . Let us nowintrodu
e a fun
tion w�(t; x) := w(t; x)�(t; x) whi
h obviously satis�es the followingequation:(A.14) �tw� = a�xw� + bw� + h�; w���t=0 = 0; w����
 = 0where(A.15) h� := h�+ w�t�� 2rx�rxw � w�x�:Applying now the Lq-regularity estimate (see Proposition A.3) to equation (A.14)and using (A.13), we infer(A.16) kw�kqW (1;2);q(
T ) � Ckh�kqLq(
T � C1(khkqLq([0;T ℄�VÆ)++ Z
T [�(t; x)℄q(1��)(jw(t; x)jq + jrxw(t; x)jq) dx dt):Let us assume for the moment that we have proved the following interpolationinequality:(A.17) Z
T �q(1��)(jwjq + jrxwjq) dx dt �� "kw�kqW (1;2);q(
T ) + C"kwkqL1([0;T ℄�VÆ)whi
h holds for every " > 0. Then, inserting it into the right-hand side of (A.16)and �xing " to be small enough, we have(A.18) kw�kqW (1;2);q(
T ) � C(khkqLq([0;T ℄�VÆ) + kwkqL1([0;T ℄�VÆ))whi
h together with (A.13)(1) implies (A.12) and �nishes the proof of the proposi-tion.Thus, we only need to verify inequality (A.17). Indeed, due to H�older's inequal-ity,(A.19) Z
T �q(1��)jwjq dx dt = Z
T (�VÆ (x)jwj)�qjw�j(1��)q dx dt� Ckwk�qL1([0;T ℄�VÆ)kw�k(1��)qLs(
T ) � "kw�kqLs(
T ) + C"kwkqL1([0;T ℄�VÆ)38



where �VÆ (x) is the 
hara
teristi
 fun
tion of the set VÆ and s = s(�) := q(1��)1�q� .Fixing now � so small that the Sobolev embedding W (1;2);q(
T ) � Ls(
T ) holds,we verify inequality (A.17) for the term �q(1��)jwjq.Thus, it now remains to verify (A.17) for the term 
ontaining rxw. To this end,we transform this term as follows,(A.20) Z
T �q(1��)jrxwjq dx dt � C Z
T �1�q�rxw:rxw�jrxw�jq�2 dx dt+ C Z
T (�1�� jrxwj)(�1�2�jwj)q�1 dx dt:The last integral on the right-hand side 
an be, in turn, estimated via H�older'sinequality(A.21) I1 � " Z
T �q(1��)jrxwjq dx dt+ C" Z
T �q(1�2�)jwjq dx dt:The last term on the right-hand of (1.21) 
an be estimated exa
tly as (A.19) andthe �rst one 
oin
ides with the left-hand side of (A.20), but with arbitrarily small
oeÆ
ient. This implies(A.22) Z
T �q(1��)jrxwjq dx � C Z
T �1�q�rxw:rxw�jrxw�jq�2 dx dt+ "kw�kqW (1;2);q(
T ) + C"kwkqL1([0;T ℄�VÆ):So, one only needs to estimate the �rst term on the right-hand side of (A.22).Integrating by parts in that term and using again (A.13)(3), we infer(A.23) I2 � C Z
T �1�q�jwj � j�xw�j � jrxw�jq�2 dx dt++ C Z
T �1�(q+1)�jwj � jrxw�jq�1 dx dt(here we have impli
itly used that w���
 = 0 and that q > 2). Applying now on
emore the H�older inequality to both integrals in the right-hand side of (A.23), we�nally arrive at(A.24) I2 � " Z
T j�x(w�)jq + jrxw�jq dx dt+ C" Z
T �q(1�(q+1)�)jwjq dx dt �� C"kw�kqW (1;2);q(
T ) + C" Z
T �q(1�(q+1)�jwjq dx dt:39



Estimating now the last term on the right-hand side of (1.24) analogously to (A.19),we dedu
e the analogue of estimate (A.17) for the term I2. Inserting then thisestimate to (A.20){(A.22) and using (A.19), we �nish the proof of estimate (A.17).Thus, Proposition A.4 is proved.Corollary A.1. Let the solution w(t; x) of equation (A.8) be de�ned only for(t; x) 2 [t0=2; T ℄ � VÆ and the 
oeÆ
ients a, b and the external for
e h be alsode�ned only in [t0=2; T ℄�VÆ and satisfy the assumptions of Proposition A.4 in thisdomain. Then, the solution w satisfy the interior regularity estimate (A.12) withthe 
onstant C independent of the 
on
rete 
hoi
e of V , a, b, h and w.Proof. Indeed, the fun
tion w�(t; x) := w(t; x)�(t; x) introdu
ed in the proof ofProposition A.4 equals zero identi
ally for (t; x) outside of [3t0=4; T ℄�VÆ=2. There-fore, we 
an 
onstru
t an extension ~a and ~b of the 
oeÆ
ients a and b from theinitial domain of de�nition [t0=2; T ℄� VÆ to the whole domain [0; T ℄� 
 in su
h away that(A.25) 8>>><>>>: 1: ~a(t; x) = a(t; x); ~b(t; x) = b(t; x); (t; x) 2 [t0=2; T ℄� VÆ2: k~akC�(
T ) � CkakC�([t0=2;T ℄�VÆ); k~bkLr(
T ) � CkbkLr([t0=2;T ℄�VÆ)3: C1 � ~a � C2;where the 
onstant C is independent of a, b and V and the 
onstants Ci are thesame as in (A.9). Su
h an extension 
an be 
onstru
ted e.g. via(A.26) ~a(t; x) := C1(1�  (t; x)) +  (t; x)a(t; x); ~b(t; x) :=  (t; x)b(t; x)where the 
ut-o� fun
tion  equals one for (t; x) 2 [3t0=4; T ℄ � VÆ=2 and zero for(t; x) outside of [t0=2; T ℄� VÆ (this 
ut-o� fun
tion exists due to Proposition A.2).Thus, due to (A.25)(1), the fun
tion w� satis�es the equation(A.27) �tw� = ~a�xw� +~bw� + h�in the whole domain [0; T ℄�
 and, due to (A.25)(2) and (A.25)(3), the Lq-regularityestimate is appli
able to (A.27) in 
T and gives (A.16). The rest of the proof of40



Corollary A.1 repeats word by word the proof of Proposition A.4. Corollary A.1 isproved.We 
on
lude by verifying the uniform 
ompa
tness of the embedding C�(VÆ) �C(V ) whi
h is 
ru
ial for our proof of the �nite-dimensionality given in Se
tion 2.Proposition A.5. Let V � 
 be an open bounded set and Æ > 0 some positivenumber. Let us also 
onsider a unit ball B� := B(0; 1; C�([t0; T ℄ � VÆ)) and itsrestri
tion �V B � to the domain [t0; T ℄� V for some t0 < T and positive �. Then,the embedding �V B� � C([t0; T ℄�V ) is uniformly 
ompa
t with respe
t to V � 
 inthe following sense: there exists a monotone de
reasing fun
tion "! M (") (whi
hdepends on �, t0, T and Æ, but is independent of V � 
) su
h that(A.28) H "(�V B� ; C([t0; T ℄� V )) � M (")holds for every " > 0.Proof. Let us �x a 
ut-o� fun
tion �(x) su
h that �(x) = 1 for x 2 V and �(x) = 0for x =2 VÆ=2 (see Proposition A.2). Then, sin
e the norms of derivatives of � areuniformly bounded (with respe
t to V ), we have the following embedding:(A.29) �B � � B(0; r; C�([t0; T ℄� 
))where the radius r depends on � and Æ, but is independent of V .Let us now �x an arbitrary " > 0 and �nd a �nite "-netW" of B(0; r; C�([t0; T ℄�
)) relative to the metri
 of C([t0; T ℄ � 
) (su
h net exists sin
e the embeddingC� � C is 
ompa
t). Then, embedding (A.29) guarantees that the �nite set �VW"will be the required "-net in the set �V B � . As usual, in
reasing the radiii of theballs by the fa
tor of two, we 
an 
onstru
t a 2"-net with the 
enters belonging to�V B� . Proposition A.5 is proved. Referen
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