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ABSTRACT. The fractal dimension of the global attractors of porous media equations
in bounded domains is studied. The conditions which guarantee this attractor to
be finite dimensional are found and the examples of infinite-dimensional attractors
beyond of that conditions are constructed. The upper and lower bounds for the

Kolmogorov’s e-entropy of infinite-dimensional attractors are also obtained.

INTRODUCTION.

It is well-known that the long-time behaviour of many dissipative systems gen-
erated by evolution PDEs of mathematical physics can be described in terms of the
so-called attractors. By definition, a global attractor is a compact invariant set in
the phase space which attracts the images of all bounded subsets under the tempo-
ral evolution. Thus, on the one hand, the global attractor (if it exists) contains all
of the nontrivial dynamics and, on the other hand, it is usually essentially smaller

than the initial phase space.
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In particular, in the case of dissipative PDEs in bounded domains, this attractor
usually has finite Hausdorff and fractal dimension, see [2], [18], [23] and references
therein. Consequently, in spite of the infinite-dimensionality of the initial phase
space, the reduced dynamics on the attractor is (in a sense) finite-dimensional
and can be studied by the methods of the classical (finite-dimensional) theory of
dynamical systems.

In contrast to that, infinite-dimensional global /uniform attractors are typical for
dissipative PDEs in unbounded domains or/and for the nonautonomous equations.
In order to study such attractors one usually uses the concept of Kolmogorov’s
e-entropy, see [5], [7], [11], [14], [24-27] for the details.

We however note that the above results have been obtained mainly for evolution
PDEs with more or less regular structure (e.g., uniformly parabolic or uniformly
hyperbolic). In contrast to this, very little is known about the equations with
singularities or degeneration (even in the relatively simple case of scalar second order
equations, like porous media equations, elliptic-parabolic equations etc.) which also
play a significant role in modern mathematical physics, see [3], [22] and references
therein. Indeed, although the attractors for such equations have been considered in
a number of papers (see [1], [9-10], [16]), to the best of our knowledge, the questions
related to the finite or infinite-dimensionality of these attractors have been not
studied yet (as an exception, we mention the recent paper [21], where the finite
dimensionality of the attractor of a 3D Cahn-Hilliard problem with logarithmic
nonlinearity is proved).

The main aim of the present paper is to give a detailed study of the fractal di-
mension and Kolmogorov’s entropy of attractors of the following degenerate porous

media equation:
(0.1) Oru = Ay (f(u) —g(u) +h

in a bounded domain Q C R” (equipped with Dirichlet boundary conditions). Here
f(u) ~ ulu/P~! has a degeneracy at u = 0 (p > 1), the function g satisfies the

standard dissipativity assumptions and h = h(z) is a given external force (see
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Section 1 for the rigorous conditions).
The paper is organized as follows. In Section 1, we briefly recall some basic
results on the existence, uniqueness and regularity of solutions of equation (0.1).
A natural class of equations of the form (0.1) whose global attractors are finite-
dimensional is considered in Section 2. The finite-dimensionality is proved under

the additional assumption
(0.2) g'(0) >0

and strongly based on the global Hélder continuity of solutions of equation (0.1),
see Theorem 2.1 of Section 2.

A finite-dimensional exponential attractor (in the sense of [15]) for problem (0.1)
under assumption (0.2) is constructed in Section 3.

Finally, in Section 4, we show that the global attractor is usually infinite-
dimensional if condition (0.2) is violated and, thus, the sign of ¢’(0) appears to
be crucial for finite or infinite-dimensionality of the global attractor. Namely, we

consider here the particular case of (0.1) of the following form:
(0.3) Opu = Ay (uuP1) +u — g(u)

with p > 1 and g(u) vanishing near v = 0. Under these assumptions, we prove (see
Theorem 4.1) that the associated global attractor is infinite-dimensional.
Moreover, we study also the Kolmogorov’s e-entropy He (A) of this attractor
(which, by definition, is a logarithm from the minimal number of e-balls which
cover the compact set A). To be more precise, we establish the following lower

bounds for that quantity:

(0.4) H(A) > O (1)”(”_”/2

€

where C' is some positive number independent of £ > 0.
Thus, porous media equations of the form (0.3) give natural examples of dissi-
pative equations of mathematical physics in bounded domains with infinite-dimen-

sional attractors. It is also worth noting that, although the infinite-dimensional
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global attractors are typical for regular equations in unbounded domains, even in
that case the asymptotics of their Kolmogorov’s e-entropy were always logarith-
mical (like (log, 1)"*!, see [24-26]). To the best of our knowledge, it is a first
example of a global attractor whose e-entropy has polynomial (with respect to ¢~1)
asymptotics.

We also note that equation (0.3) with the nonlinearity g vanishing in the neigh-
bourhood of zero looks rather artificial. That is the reason why, we extend (in

Section 4) the above result on the following equation:

(0.5) Ou = Ap(u®) +u —u?, u 00 =0

which has analytic nonlinearities and can be considered as a natural degenerate
analogue of the Chafee-Infante equation.

We finally note that the method of the study of the dimension of global attractors
of degenerate parabolic equations developed in this paper seems to have a general
nature and can be applied for other classes of degenerate equations (e.g., for elliptic-

parabolic equations). We will return to these questions in forthcoming papers.
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§1 A PRIORI ESTIMATES AND REGULARITY OF SOLUTIONS.

In this section, we briefly recall the known results on the regularity of solutions
of porous media equations which will be systematically used in the next sections,
see e.g. [4], [6], [8] and [17] fore more details.

In a bounded domain 2 CC R™ with a sufficiently smooth boundary we consider

the porous media equation in the following form:

Ou = Apf(u) — g(u) + h,
(1.1) {

“‘asz =0, “‘t:o = Uo-

where v = u(t, z) is an unknown function, A, is the Laplacian with respect to the
variable z = (z1,---,x,), f and g are given functions and h = h(x) is a given

external force.



We assume that the function f € C?(R) has a polynomial degeneracy at u = 0

and is nondegenerate for u # 0. To be more precise, we assume that
(1.2) CuluP~" < f'(w) < ColulP™", f(0) =0,

for some positive constants C; and p > 1. It is also assumed that the function g

satisfies the following dissipativity condition
(1.3) g'(u) > —C+ klul ™1,

for some ¢ > 1, K > 0 and the external force h belongs to L>°(£2).
As usual, in order to prove the existence of a solution of problem (1.1), one

considers the nondegenerate analogue of (1.1)

Ou = Apf(u) + eAgu — g(u) + h,
(1.4) {

U‘E)Q =0, u‘t:o = Yo

which obviously has a unique solution for every ¢ > 0 and sufficiently smooth ug,
see e.g. [20] and then passes to the limit ¢ — 0. Following this scheme, we first
derive uniform with respect to ¢ estimates for equation (1.4). We start from the

standard L' — L>®-estimates.

Lemma 1.1. Let the above assumptions hold and let u be a solution of equation

(1.4). Then the following estimates hold:

(L5) { D) [lu®)[Lr @) < [w(0)llzr@e™" + C(1+ ||kl ),
1.5
2) [lu®)llL~(0) < [w(0)||z=@e™" + C(1L + [[h]1=@)

where the positive constants o and C depend only on the function g and are in-

dependent of €, t, ug and w. Moreover, the following L'-L>-smoothing property

holds:

(1.6) [u()||ze@) < QU+ [[BllL=(@)), >0

where the monotonic function () is independent of €, t and u.

Proof. Indeed, multiplying equation (1.4) scalarly in L?(£2) by the function sgnu =
sgn(f(u)+eu) and using the Kato inequality (A,v,sgnv) < 0 and the dissipativity
assumption (1.3), we deduce that

(1.7) Ocllu(®)llzr ) + cllu®) 7@ < C + Ikl @)
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Since /i||u||qu(Q) > ||u(t)||r1 (@) — C, the the Gronwall inequality applied to (1.7)
implies the first estimate of (1.5). In order to deduce the second estimate of (1.5),
we use the comparison principle for second order parabolic equations and deduce

that

(1.8) y-(t) < ult,z) <y (t)

where y (t) solve the following ODEs

(1.9) Yo (t) + g(y+(t) = £|hllL~ (), y=(0) = £luol| L~ ()

It remains to note that, due to the dissipativity assumption (1.3), the solutions y4 (¢)
satisfy the analogue of estimate (1.5)(2) which together with (1.8) finishes the proof
of estimate (1.5)(2). Finally, in order to verify (1.6), it remains to recall that, due
to our assumptions, g has a superlinear growth rate as u — oo. Consequently, the
solutions y4 (t) satisfy estimate (1.6) (see e.g., [21]) which together with estimate

(1.8) imply estimate (1.6) for the solution u and finishes the proof of the lemma.
The next Lemma gives some kind of energy estimates for equation (1.4).
Lemma 1.2. Let the above assumptions hold and let u be a solution of (1.4). Then,
for every § > 0, the following estimate holds:
(1.10)  lullwire-s2n(at11x0) + 10ef (Wl L2 (it,6417x )+
+IVaf (Wl (peet11,02 () < QU™ + [|hllL(0))

where the monotonic function Q is independent of ¢, t > 0 and u (here and below,
WP denotes the Sobolev space of distributions whose derivatives up to order s

belong to LP, see e.g. [20]).

Proof. Without loss of generality we can assume that ¢ < 1. Then, multiplying
equation (1.4) scalarly in L2(Q2) by f.(u) := f(u) + eu, and integrating over [4, 2],

0 >0, we get
(1.11)  (Fe(u(2)),1) = (Fe(u(9)),1) +/6 1V fe(u(@®) |72 0 dt+

+/ (fe(u(t), g(u(®))) = (h, fe(u(t))) di = 0
6
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(here and below we denote by (-, -) the standard inner product in L?(Q) and F. (u) =

fo fe(v) dv). Together with L*-estimate (1.6) this estimates give

2
(112 [ IVt de < QO + (o),

Let us now multiply equation (1.4) by (¢t — §)0;f-(u) and integrate over [d,T] x €,

0 < T < 2. Then, we have

(1.13) /5 (t - o) £ (ult)) |Dpult)|? di-+
(T = 6120V o fo (u(T) By + (Feg(u(T)), 1) — (fo(u(T)), 1)) =
- / L2V fo(u0) 2y + (Forg (u(£)):1) — (fo(u(t)), ) e

where F. g(u) := [}’ f.(v)g(v) dv. This estimate, together with L>-estimate (1.6)
and estimate (1.22) implies that

2
(114) [ 5 @0)/00)? d+ [V f ) e 21120 < Q™+ [lle o)

for the appropriate monotonic function ). This estimate, together with the L°°-

estimate implies, in turn, that

(1.15)  10ef (w)ll L2t e+11x9) + Ve f @l Lo (it e17,02(0)) < QU™ + [|All L= (0))-

Thus, it only remains to estimate the first term in the left-hand side of (1.10). To
this end we note that, according to (1.15), we have v = f(u) € WH2([t,t+1]x Q) C
W=92([t, t 4+ 1] x ). Then, due to Proposition A.1, see Appendix below, we have
lullwo- < Cyallolly?
wit/p=o.2p ([t t4+11xQ) =~ follVIw.2([t,t4+1]x Q)
where the constant C'f 5 depends only on f and 6 > 0. Lemma 1.2 is proved.
The next lemma gives the uniform Lipschitz continuity of solutions in L!(2).

Lemma 1.3. Let the above assumptions hold and let uy(t) and us(t) be two solu-

tions of equation (1.4). Then, the following estimate holds:

(1.16) ui(t) — ua ()| 110y < e {|ur(0) — u2(0)| 11 (0
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where K := max,er{—¢'(v)}.

Proof. Indeed, let v(t) := uy(t) — uz(t). Then, this function satisfies the following

linear equation:

(1.17) 0w = Ap(l1(t)v) + eAgv — l2(t)v, U‘aQ =0, U‘t:o = u1(0) — u2(0)

where [ (t) = fol f(sur(t) + (1 — s)ua(t))ds > 0, l2(t) = 01 g’ (sui(t) + (1 —

s)uz(t))ds > —K. Multiplying now equation (1.17) by sgnv = sgn((l1(¢) + €)v)

and using again the Kato inequality, we arrive at
(1.18) Ot||lv(t)| 11 () — Kllv()||n1 ) < 0.

Applying the Gronwall inequality to this relation, we finish the proof of Lemma
1.3.

We are now ready to verify the existence and uniqueness of a solution for the
initial degenerate problem (1.1). To this end, we first formulate the definition of a

weak solution of that problem.

Definition 1.1. We say that a function w is a weak solution of (1.1) if u €
C([0,T), L*()), u € L>®([t, T] x Q) and f(u) € L2([t, T], Wy"*(Q)), for every t > 0
and it satisfies (1.1) in the sense of distributions.

The following theorem can be considered as the main result of the section

Theorem 1.1. Let the above assumptions hold. Then, for every ug € L(Q), there
exists a unique weak solution of problem (1.1) and this solution satisfies all of the

estimates, formulated in Lemmata 1.1-1.5.

Proof. We first establish the existence of a solution and assume additionally that
ug is smooth enough. Let us consider a sequence u,. _(t) of solutions of the auxiliary
problem (1.4) with £, — 0. Then, this sequence satisfies estimates (1.5) and (1.10)
uniformly with respect to n. Moreover, since ug is smooth, then estimate (1.10)
holds for t = 0 as well. In particular,

(1.19) [ue, llwi/m-s.2n (e p11x0) < C
8



uniformly with respect to ¢ and n. Thus, without loss of generality, we can assume
that u., — ustrongly in C([0, T], L*(£2)) (due to the compactness of the embedding
Wi/p=92p([0,T] x Q) ¢ C([0,T], L*(R)) if § is small enough). Passing now in a
standard way (see e.g., [2]) to the limit n — oo in equations (1.4), we verify that
ugo satisfies the initial equation (1.1) (in the sense of distributions) and passing
to the limit n — oo in the uniform estimates of Lemmata 1.1-1.3, we verify that
the solution thus constructed satisfies estimates (1.5), (1.6), (1.10) and (1.16). In
particular, these estimates show that « is a weak solution in the sense of Definition
1.1. Thus, for smooth initial data ug the existence of a solution is verified. In
order to relax the smoothness assumption, it remains to recall that the solutions
constructed satisfy (1.16) with the constants which are independent of the initial
data, consequently, approximating in L1(€) the nonsmooth initial data uy € L'(Q)
by a sequence of the smooth ones uj, constructing the associated solutions u™ (t) and
passing to the limit n — oo, we obtain a weak solution u(t) for every ug € L1(Q).
Obviously, this solution will also satisfy all of the estimates of Lemma 1.1.-1.3.
Thus, the existence is verified.

Let us now prove the uniqueness. Indeed, let wu;(¢) and wus(t) be two weak
solutions of equation (1.1) and let v(¢) := uy(¢) — uz(t). Then, this function satisfies

the equation
(1.20) 0 = Az (l1(t)v) — la(t)v

where [;(t) are the same as in (1.17). It would be natural (analogously to the proof
of Lemma 1.3) to multiply equation (1.20) by sgn(v) and use the Kato inequality
which would immediately give estimate (1.16) and finish the proof of the uniqueness,
but, unfortunately, in contrast to the situation in Lemma 1.3, we do not have now
enough regularity for the expression (A (l(¢)v),sgn(v)) to have sense. Thus, we
need to proceed in a little more precise way. To this end, we assume, in addition,
that u; € L*°([0,T] x ) and introduce the following “regularized” version of the

conjugate equation for (1.20):

(1.21) —Ohw =11 (t) Agw + eAyw, w 0.

9
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which we will consider in the space W 1:2):2([0, T]xQ) (here and below, we denote by
W (1:2):4 the anisotropic Sobolev space consisting of distributions whose ¢-derivatives

up to order one and z-derivatives up to order two belong to LY, see [20]).

The next Lemma gives the solvability result for that equation.

Lemma 1.4. Let the above assumptions hold. Then, for every wr € Wol’z(Q) and
every € > 0, equation (1.21) possesses a unique solution w € W(12):2([0,T] x Q)

and the following estimate holds:

T
(1.22)  [[Vaw(®)||72(0 +26/0 [Azw(t)|Z2) < IVaw(T) |72y, ¢ €[0,T].
Moreover, if in addition, C; < wr(z) < Cs, then

(123) Cl S U)(t,.I‘) S Cz, t e [O,T]

Proof. Indeed, according to our assumption, [; € L*°([0,T]x ) and, moreover, due
o (1.2), I1(t) > 0. Therefore, equation (1.21) is non-degenerate. A priori estimate
(1.22) can be obtained by multiplying (1.21) by A,w and integrating over [0, 7] x £2
and the L2-estimate for the derivative follows then from (1.22) and equation (1.21).
Thus, the a priori estimate in W(12).2([0, T] x ) is obtained. The existence of a
solution can be easily verified by e.g. the Galerkin method, see [2]. Finally, estimate
(1.23) is just a maximum principle for the linear second order parabolic equation
(1.21) (Being pedants, we cannot apply the classical maximum principle directly
to equation (1.21) since the function [y (¢, x) is only from L* (and not smooth),
but approximating it by the smooth ones, say, in L2([0,T] x ), we may apply the
maximum principle for the solutions of the associated smooth equations and then

pass to the limit in a standard way.) Lemma 1.4 is proved.

We are now ready to finish the proof of the uniqueness for weak solutions of (1.1).
To this end, we multiply equation (1.20) by the solution w(t) of the “conjugate”

equation (1.21) (with some wr) and integrate over [0,T] x €. Then, after the
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integration by parts, we have

(1.24)  (v(T), w(T)) = (v(0), w(0))+

+e/0 (Aww(t),v(t))dt-l-/o (s (H)o(t), w(t)) dt = 0.

We now approximate the function w2 := sgn(v(T)) in the L?(Q) metric by w? €
WO1 2(Q) in such way that —1 < w? < 1 and construct the appropriate solutions
w™(t) of equation (1.21). Then, due to (1.23), =1 < w™(¢,x) < 1 and, consequently,
(1.24) reads

T T
(125) (T, 03) + 2 [ (B,0"(0),000) dt < [0y + Lo [ 100220 d
where Ly = [[l2(t, z)|| L ([0,r1x ). We are now pass to the limit ¢ — 0 (with a fixed

n) in the inequality (1.25) using (1.22) and

T
8/0 (Azw"(t),v(t)) dt < 81/4(81/2“AwwnH%?([O,T]XQ) + ||v||%2([0,T]><Q))'

Then, we have

(1.26) (0(T), ) < [0l + Ta | IOl e

Finally, passing to the limit n — oo in (1.26), we get

T
(1.27) (T2 @) < [[0(0)]lz1 () +L2/O o)z () dt-

Since T' > 0 is arbitrary, then the Gronwall inequality, applied to (1.27) implies

that

lv(®)llz1 @) < " o(0)llL1(g)-

Thus, we have proved that every weak solution u(t) of (1.1) is unique under the
additional assumption u € L ([0, T] x ©2). Therefore, every such solution coincides
with the solution obtained by passing to the limit ¢ — 0 in the nondegenerate equa-
tions (1.4). This, implies, in turns, that all such solutions should satisfy estimate

(1.16).
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Let us now consider the general case of two weak solutions u; and us which
do not belong to L>([0,T] x ). Then, due to the definition of a weak solution,

u; € L>([6,T] x Q) for every § > 0 and, consequently, due to (1.16), we have
(1.28) Jus (1) = ua(®) @ < XD ]jus(6) — u2(8)] 3.

Passing now to the limit § — 0 in (1.28) and taking into account that u; €
C([0,T],LY(Q)), we obtain estimate (1.16) for any two weak solutions of (1.1).

Theorem 1.1 is proved.

Remark 1.1. In Theorem 1.1, we have proved, in particular, that every weak
solution of (1.1) can be approximated by smooth solutions of the nondegenerate
problem (1.4). This allows us in the sequel to use the Kato inequality for deriving
more delicate estimates without taking care about the regularity. Indeed, all that
estimates can be easily justified by this approximating procedure.

We also note that the rather strong dissipativity condition (which guarantees, in
particular, the superlinear growth rate of the nonlinearity ¢g) has been posed only
in order to avoid the technicalities in proving the L' — L® smoothing property for

the solutions of (1.1) and can be relaxed to the standard dissipativity condition:

g9(u)

lim sup — > 0.

lu|soo U
We conclude this Section by formulating the result on the Holder continuity of
solutions of degenerate parabolic equations which is crucial for our study of the

dimension of the attractor.

Theorem 1.2. Let the above assumptions hold and let w be a weak solution of

(1.1). Then, there exists a positive constant o such that

(1.29) ullga (i e411x0) < QE™" + [kl L (0))

where t > 0 and () is some monotonic function.

In the multidimensional case n > 2 the Holder continuity (1.29) is a rather

delicate fact and its proof is based on the proper modification of the De Giorgi
12



technique, see [6], [8] and [17]. By contrast, in the one-dimensional case, it can be
easily derived from standard energy estimates. For the convenience of the reader,

we give the proof for the 1D case.

Proof: 1D case. Indeed, according to Lemma 1.2 and Theorem 1.1, any weak solu-

tion u satisfies

(1.30) 1f (W) || poe (@t p+ 1w 2 (@) a2 (e 11,02(9)) < QETH + [[h]| Lo ())-

Moreover, by interpolation, see [20], we have

(1.31) [vll o (it t17, w1 -202()) < Callv|| oo e e411,w12 (@)W 2 ([2,6411, L2 ()

for 0 < a < 1/2. In 1D-case, we have the embedding W'—2®2(Q) c C/2-2%(Q).

Taking o = 1/6, we finally derive

(1.32) 1f (oo sriyxa) < QUET + hllLe (o))

for some monotonic function @). Proposition A.1 together with (1.32) imply (1.29)

with & = 1/(6p). Theorem 1.2 for 1D is proved.

§2 THE FINITE-DIMENSIONAL CASE: GLOBAL ATTRACTORS.

In the previous section we have proved that equation (1.1) generates a uniformly

Lipschitz continuous semigroup S(#) on the phase space ® = L1(Q) via
(2.1) S(t)yug = u(t), up € L'(Q), t>0

where u(t) is a unique weak solution of (1.1) (see Theorem 1.1). The present section
is devoted to study of the long-time behaviour of the trajectories of that semigroup
in terms of finite-dimensional global attractors. The case where the limit dynamics
is infinite-dimensional will be considered in Section 4.

We first recall that, by definition, the set A C ® is a global attractor of the
semigroup S(t) if the following conditions are satisfied:

1) the set A is a compact subset of the phase space ® = L1(Q);
13



2) it is strictly invariant, i.e. S(t)A = A, for all ¢ > 0;

3) it attracts the images of all bounded subsets as time tends to infinity, i.e.,
for every bounded subset B C ® and every neighbourhood O(A) there exists time
T =T(B,0), such that

(2.2) S(t)B cC O(A), forall ¢>T.

This assumption can be reformulated in the following equivalent form: for every

bounded set B
(2.3) dist(S(t)B, A) - 0 ast — o0
where dist(-, -) is a non-symmetric Hausdorff distance between sets in &:

(2.4) dist(X,Y) = sup inf ||z — y|s.
z€X YEY

The next lemma states the existence of such an attractor.

Lemma 2.1. Let the assumptions of Section 1 hold. Then, the semigroup S(t)
associated with equation (1.1) possesses a global attractor A in the phase space
LY(Q) which is globally bounded in C*(Q) (for some sufficiently small o) and has

the following structure:
(2.5) A=Kl

where KC is a set of all bounded solutions of (1.1) defined for all t. Moreover, this

set satisfies

(2.6) 1Ko @mxay < QUIPI L= ())-

for some monotone function Q).

Proof. As usual, in order to verify the existence of a global attractor, one needs to
verify two properties:
1) the maps S(t) : ® — @ are continuous for every fixed t;

2) the semigroup S(t) possesses a (pre)compact absorbing set in ®, see [2], [18].
14



In our case, the first property is obvious, since, due to Lemma 1.3, the semigroup
S(t) is even globally Lipschitz continuous in ®. Moreover, the existence of an
absorbing set, bounded in C*(2), is an immediate corollary of Theorem 1.2. Thus,
due to the abstract theorem on the attractor’s existence, this semigroup possesses
a global attractor A, bounded in C*(€2). Formula (2.5) is also a corollary of that

theorem and (2.6) follows from Theorem 1.2. Lemma 2.1 is proved.

For the further investigation of the constructed global attractor we recall the

definition of the so-called Kolmogorov e-entropy, see [19] for the details.

Definition 2.1. Let K be a (pre)compact set in a metric space M. Then, for every
e > 0, K can be covered by the finite number of e-balls in M. Let N (K, M) be
the minimal number of such balls. Then, by definition, the Kolmogorov e-entropy

of K is a binary logarithm of that number:
(2.7) H. (K, M) :=logy N.(K, M).

The fractal dimension dims(K) of the set K can be expressed in terms of this

entropy via

(2.8) dims(K, M) := %.
We also recall that the Kolmogorov entropy is finite for every compact set K and
every ¢ > 0 and the fractal dimension can be infinite (if the space M is infinite-
dimensional).

The next theorem which establishes the finite-dimensionality of the global at-

tractor under the additional assumption that equation (1.1) is asymptotically stable

near u = 0 can be considered as the main result of the section.

Theorem 2.1. Let the assumptions of Section 1 hold and let, in addition,
(2.9) g'(0) > 0.
Then the fractal dimension of A in C(S2) is finite:

(2.10) dims(A,C(R2)) < oo.
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Proof. As usual, see [5],[12-13],]23] in order to prove the finite-dimensionality of
the attractor, we need to consider an arbitrary finite e-net V. in A in the metric
of L1(Q) (with a sufficiently small positive €) and to construct, using this net, a

ke-net Vi (with k < 1) in A satisfying
(2.11) #Vie < L#V:

where the constants x and L are independent of € and of the initial covering V.
(here and below #S means the number of elements of the finite set S). Then,
iterating this procedure we can prove the finite dimensionality of the attractor.
Let V. = {uf}X=,, V. C A be an arbitrary e-net in A (with N. = #V.). Then, in
order to construct the required ke-net, it is sufficient to construct, for every ug € A,
the ke-net Vi.c(ug) in the the image S(T)(B(e, ug, L')N.A)) (for some positive T') of

the e-ball centered at ug intersected with the attractor (here and below we denote

by B(R,z,X) an R-ball in the space X centered at x € X) satisfying
(2.12) #Ve(uo) < L.

Then, obviously, the set V. 1= Uy, ev. Vie(uo) gives a se-net in S(T').A satisfying
(2.11). Finally, since S(T)A = A, the required ke-net in A would be constructed.

Thus, we only need to construct the ke-net in the set S(T)(B(e, ug, L1(2)) N A)
for all sufficiently small ¢, ug € A and some T > 0 satisfying (2.12) with the
constant I independent on € and ug. So, let ug € A and € < 1 be fixed.

Let us introduce, for every 6 > 0, the following sets:

L(6) = L(0,up) :={x € Q, |up(x)| > 0},
(2.13)
S(0) = S(0,up) :={x € Q, |up(zx)| <8b}.
Then, obviously, S(61) C S(03) and L(03) C L(60,) if 6; < 03. Moreover, since

up € C*(Q) and ||ug||ce < M, then these sets are open,
0S(0) = 0L(0) = {z € Q, up(z) =0}, Q= S5(0)U L(O)UIL(H)
and, for every § > 0,

(2.14) d[0S(0 + 6),05(0)] > Cs
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where the constant Cs depends only on 9, a and M and is independent on # and on
the concrete choice of uy € A. Here and below we denote by d(X,Y) the standard

metric distance between sets in R™:
dX,Y]:= inf inf ||z — y||.
(X, Y] = inf inf ||z —y]
Let us fix now 6 > 0 and 8 > 0 in such way that

(2.15) g'(u) >38>0, Vul <50

(this is possible by assumption (2.9)) and the cut-off function ¢ € C*°(R™), ¢ > 0

such that:
1, =€ S(40),
(2.16) o) = {
0, =€ L(50).
Due to (2.14), and Proposition A.2 this cut-off function ¢ can be chosen in such a
way that
(2.17) 9llex @) < Ck

where the constants C depend only on M, o and k and are independent of uy.
We recall that the trajectory u(t) := Siug belongs to C* with respect to ¢ and
x, consequently, there exists time 7" > 0 (also depending only on M, 8 and 0) such

that

g (u(t,z)) > 2B, =€ S(50), tel0,T],
(2.18)

lu(t,z)| > 6/2, x € L), tel0,T].

On the other hand, due to the interpolation inequality
1—
(2.19) lwllew < CllwllLyg)llwlicalay
(for some 0 < v < 1) and the Hélder continuity, we obtain that

(2.20) lo(t,x) —u(t,x)| < Cie?, 2 €Q, t€]0,T]
17



for every solution v(t) such that v(0) € AN B(e, ug, L'). Thus, assuming that ¢ is
small enough (¢ < g9 < 1 where gy > 0 is independent of up € A), we may improve
(2.18) in the following way:

g (v(t,z)) > B, e S(h), tel0,T],
(2.21)

lv(t,z)| > 0/4, xe€ L), tel0,T]
uniformly with respect to vy € AN B(e, ug, L').
In order to construct the required xe-net in S(T)(AN B(e, ug, L)), we need to
derive some smoothing property for differences of solutions. To this end, we consider
the difference w(t) := uy(t) — ua(t) of two solutions satisfying u;(0) € B(e, ug, L1).

Then the function w(t) solves the following equation:
(2.22) Ohw(t) = Ap(l1(t)w) — l2(t)w, w‘t:o =u1(0) —u2(0), t€0,T]

where [;(t) are the same as in (1.17).
Let us first consider the case of domains L(f) where the equation (1.1) is, in a
sense, nondegenerate. To this end, we need the following lemma which is similar to

the classical interior regularity estimates for the linear parabolic equation (2.22).

Lemma 2.2. Let ug € A be arbitrary, the sets L(0,ug) be defined via (2.13).
Assume also that ui(t) and us(t) are two solutions of (1.1) such that u;(0) € AN

B(e,ug, L*(2)). Then, the following estimate holds for every ty € (0,T):

(2.23) w1 — w2 ||ca ((to, Tx L(30)) < Cto |11 (0) — u2(0)[| L1 (0)

where the constant Cy, depends on ty and is independent of €, up, w1 and us.

Proof. We first prove that, for every r» > 2, the functions u; and us satisfy the

following estimate:

(2.24) willwa.2.rto/2,mxL(20)) < Cry 1=1,2

where the constant C,. depends on r, but is independent of the concrete choice of

ug, € and of the trajectories u; and us (starting from A N B(e,ug, L')). Indeed,
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let us verify it for u = u; (for u = us it can be verified analogously). To this end,
we introduce a new dependent variable v(t,z) := f(u(t,z)). Then, since f(u) is
nondegenerate if |u| > 6 > 0, one can easily verify that the function v solves the

following equation:
(2.25) 0t = algv + hy, (t,x) €[0,T] x L(0)

where a(t,z) := f'(u(t,z)) and hy(t, ) := f'(u(t,x))[h(x) — g(u(t, x))]. Moreover,
due to (2.6), the coefficient a is uniformly (with respect to u € K) Holder continuous
and the function h, is uniformly bounded in L*°. Furthermore, due to the second

inequality of (2.21) and assumption (1.2), we have
alt,) > Oy, (t.2) € [0.T] x L(0)

where the constant C4 is also independent of the choice of uy and u. Thus, we
can apply the standard L"-interior regularity estimate for the solution of the linear
nondegenerate equation (2.25), see Proposition A.4 and Corollary A.1. Due to

(2.14) with § = 0, this estimate implies

o]l a2t /2,715 L20)) < Cr(IRllzr 0, 71x (8)) + [V llLr0,71x L(9))) < Cr.-

Returning back to the variable v = f~1(v) and using that f € C? (and nondegen-
erate outside of zero), we deduce estimate (2.24).

We now return to equation (2.22) which will be now considered in the domain
[to/2,T] x L(260). To this end, we first need to study the regularity of the coefficient

[1(t). Indeed, since f € C? and estimate (2.6) holds, then

(2.26) |11l qo,m1x0) < C

where the constant C' is independent of w; and us. Moreover, due to (2.24), we
have

2
(2.27) |01 || 27 (80 /2,1 x L(20)) < CZ 10¢will Lr (0 /2, 11x L(20)) < Cy
im1
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and, finally, due to the second inequality of (2.21), we also have
(2.28) Ii(t,x) > k>0, (t,x) € [to/2,T] x L(20)

where the constants C, C)/ and «k are independent of the concrete choice of ug, uq
and us.
Let us introduce a new dependent variable Z(t) := 1 (t)w(t). Then, this function

solves

(2.29) 07 = at,x) A Z +1(t,2)Z, (t,7) € [to/2,T] x L(26)

atll (t,{E)
ll (t,il)) )

(2.26)—(2.28) (together with the obvious fact that o is uniformly bounded in the

where a(t,z) := l1(t,x) and I(¢t,z) = ly(t,x) — Furthermore, estimates

L*°-norm) allows us to apply the L%-interior regularity estimate for equation (2.29)

which gives, see Proposition A.4 and Corollary A.1,

. W (L2 ([to, T]x L(30)) = Call 4L ([to/2,TIxL(20) = ollwll Lo, 1% 0)-
(2.30)  |IZ]] < Gyl Z]] <C

Fixing now ¢ large enough to have the embedding W (124 ¢ C®, returning to the

initial variable w and using (2.26), we have

(2.31) |lwl| e (it, 15 L(30)) < Cllwlln1([0,71x2)-

Estimating the right-hand side of (2.31) using (1.16), we deduce (2.23) and finish

the proof of Lemma 2.2.

Let us consider now equation (2.22) on the set S(46) where, due to the first
condition of (2.21), we have, in a sense, the contraction property for the differences

of solutions. Indeed, let us multiply equation (2.22) by

(2.32) ¢(z)sgn(w(t, z)) = ¢(z) sgn(p () (t, x)w(t, )
(where ¢ is defined by (2.16)) and use the equation

(2.33) AL [ (D)w] = Ay (@)1 (H)w) — 2V Va(l1 ()W) — Apdly (t)w.
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Integrating then over x € {2 and using the Kato inequality, we derive that

(2.34) O (s [w]) < (Azg, () |w]) = (9(u1) — g(u2), psgn(ur — uz)).

Taking into account the first inequality of (2.21) and the fact that A,¢(z) = 0 for

x € S(40), we deduce from (2.34) that

(2.35) (s [w()]) + B, [w(®)]) < Cllw(®)l| L1 (z(a))

and consequently, due to the Gronwall inequality and estimate (1.16), we infer

(2:36) ua(T) — un(T) 21 samy < X0 FT=0) g (0) — wa(0) | 1 oy +

+ Cio llur — ua|| L1 (fto, 7% L(46))

where to is an arbitrary time in the interval (0, 7).

Let us now fix ¢y in such way that
efto=B(T=to) <1 —§ < 1.
In this case (2.29) really gives a contraction in S(460). Moreover, using that

lwl|lz@) < lwllzr(suey) + lwllzr(zrey2))

and that ||w(T)||L1(L(79/2)) < C||w||C([to,T]><L(79/2)), we derive from (2.23) and

(2.36) the following basic inequalities:
w1 — uallca(to, myx(30)) < Pllua(0) — u2(0)[|r1 (0,
(2.37) [ur(T) = uz(T) |1 () < (1= 6)[lur(0) — u2(0) || L1 (o) +
+Pllur — uz|l e (o, T1x L(76/2))
which is valid for all solutions w; such that u;(0) € B(e,ug, L') N A where the
constants T' > 0, § > 0 and P are independent of the concrete choice of ¢ < g¢ and
ug € A.
Our next observation is the fact that the embedding C%([to, T] x L(360,uq)) C

C([to, T] x L(76/2,u0)) is compact. Moreover, since L(70/2,uy) C L(36,uy) and
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d[OL(30,ug), L(70/2,uy)] > Cp with the constant Cy independent of uy € A, then
this embedding is uniformly (with respect to ug € A) compact. This means that

there exists a monotone decreasing function M(4) such that
(2.38) Hs (B(1,0,C%([to, T] x L(30,up))), C([to, T] x L(70/2,u0))) < M(J)

uniformly with respect to uy € A and 6 > 0, see Proposition A.5.

We are now ready to construct the required xe-net in the set S(T)(B (e, ug, L')N
A). To this end, we fix a minimal de/(4P)-net V in the ball B(P,u, C*([to, T] X
L(30))), where u(t) := S(t)ug, endowed with the metric of C([to,T] x L(76/2)).

Then, due to (2.38), the number of points in that net can be estimated via

(2.39)  #V = Nesjap)(B(Pe,u, C*([to, T] x L(30)), C([to, T] x L(760/2))) =

— Ny ap>)(B(1,0,C%([to, T) x L(30)), C([to, T] x L(76/2))) < MO/ .— [,

where L is independent of ug. Moreover, since we only need to control the trajec-
tories v(t) starting from AN B(e, ug, L') (all these trajectories are contained in the
ball B(Pe,u, C*([to, T| x L(360)) due to the first estimate of (2.37)), then increasing
the radii of the balls by a factor of two, we may construct the dc/(2P)-net V =
{ul, -, uN} in the set of these trajectories (in the metric of C'([ty, T] x L(76/2)))
such that the functions {u',---,u’} are also the trajectories of (1.1) started from

AN B(e,ug, L') and #V < L. We claim that the set
(2.40) Vie(uo) :==V|,_,

is the required xe-net in S(T)(B(e,ug, L') N A) with kK =1 — §/2 < 1. Indeed, let
v(t) be an arbitrary trajectory starting from the B(e, ug, L') N.A. Then, due to our

construction of the net V, there exists a solution u’ € V satisfying

(2.41) [u' = v||o(to, T1x L. (70/2))) < 02/ (2P).

Inserting this estimate into second estimate of (2.37) and using that [|u’(0) —

v(0)|[z1 (@) < €, we infer

[ (T) = o(T) |20y < (1= 8)e +6e/2 = (1 - 6/2)e.
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Thus, (2.40) is indeed the required ke-net in S(T)(B(e, ug, L')N.A). Since an e-ball
of the attractor has been chosen arbitrarily, then the reccurrent formula (2.11) is
verified for ¢ < gg.

We are now ready to finish the proof of the theorem. Indeed, since the attractor

A is compact in L*(€2), then
(2.42) H., (A, L}(Q)) < C,, < oo.

Moreover, starting from that eg-net and using the reccurrent procedure described

above, we prove that
(2.43) Hyeme, (A, L1(Q)) < C., +mlog, L

for all m € N. Together with (2.8) this estimate gives

log, L
2.44 di LY(O) < —=2— )
(2.44) im (A, LH(9)) < {507 < o0

The finite-dimensionality in C(€2) is now an immediate corollary of Holder conti-

nuity (2.6) and the interpolation inequality (2.19). Theorem 2.1 is proved.

§3 THE FINITE DIMENSIONAL CASE: EXPONENTIAL ATTRACTORS.

In the previous section, we have proved the existence of a finite dimensional
global attractor A for problem (1.1). However, according to the definition of A, we
know only that dist(S(T")B,.A) tends to zero as t — oo (for every bounded subset
B) and do not have any information on the rate of convergence in (2.3). Moreover,
this rate of convergence can be arbitrarily slow and, to the best of our knowledge,
there is no way to control this rate of convergence in a more or less general situation
(e.g., to express it in terms of physical parameters of the system considered). This
leads to essential difficulties in numerical simulations of global attractors and even
makes them, in a sense, unobservable.

In order to overcome this difficulty, the concept of the so-called exponential
attractor has been suggested in [15]. By definition, a set M C & is an exponential

attractor of the semigroup S(t) if the following conditions are satisfied:
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1) the set M is compact in & = L(Q);
2) it is semi-invariant, i.e. S(t)M C M;
3) it attracts exponentially the images of all bounded sets, i.e., for every B C ®

bounded,
(3.1) dist(S(t)B, M) < Q(||B||s)e*

where the positive constant o and the monotonic function () are independent of B;

4) it has finite fractal dimension in ®:
(3.2) dims(M, ®) < C < 0.

We recall that in contrast to global attractors, an exponential attractor is not
unique and, consequently, the particular choice of the exponential attractor is, in
a sense, artificial (of course, it is natural to find “the simplest” construction of
an exponential attractor). An essential advantage of exponential attractors (in
comparison with global ones) is, however, the fact that the function @ and the
constant « can be usually explicitly found in terms of physical parameters of the
equation considered. Moreover, the exponential attractors are much more robust
with respect to perturbations, in particular, upper and lower semicontinuos and
even Holder continuous in the symmetric Hausdorff distance, see [12-15], [21] and
the references therein.

In the present section, we construct the exponential attractor for the porous
media equation (1.1). The main result of the section is formulated in the following

theorem.

Theorem 3.1. Let the assumptions of Theorem 2.1 hold. Then, the semigroup
(2.1) generated in ® = L'(Q)) by equation (1.1) possesses an exponential attractor

M in the sense of the above definition. Moreover, this attractor is bounded in

C*(Q2), for some a > 0.

Proof. Let us introduce the set

(3.3) C:=[Up>1 S(t)@]
24
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where [-]y is a closure in the space V. Then, due to Theorem 1.2, we have
(3.4) [Clloa(@) <M

and, due to the construction of C, we have also

(3.5) St)ccc, t>o.

Thus, instead of constructing an exponential attractor for S(¢) on the whole phase
space ®, it is sufficient to construct it only for the restriction of that semigroup on a
compact invariant subset C. To this end, we will use the algorithm of constructing
e-nets, developed in the proof of Theorem 2.1. To be more precise, let V., C C be
an go-net in the set C with sufficiently small ¢g. Then, arguing exactly as in the
proof of Theorem 2.1, we can find positive numbers 7', L and x < 1 such that, for
every ug € C, the set S(T)(B(go,uo, L) N C) possesses a kep-net with L-points.
Thus, starting from the ep-net V., of C, we construct the keg-net Vo, C S(T)C of

the set S(T)C such that

#VI{EO S L#‘/Eo .

Iterating this procedure, we construct then, for every n € N, s"ep-nets Vin., C

S(nT)C in the set S(nT)C which satisfy
(3.6) #HVine, < L"#V,,.

These k™ep-nets in S(nT)C allow us to construct in a standard way the exponential
attractor M for the discrete dynamical system, generated by the map S = S(T) :

C — C. This exponential attractor can be defined via the following expression:

(3.7) Mg = |:U$7,O=O Unm=0 (m)VN"EO]Ll(Q)'

Indeed, the semi-invariantness and exponential attraction property are obvious

since

(3.8) dist(S(nT)C, Vine,) < K"ep, €N, k< 1.
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The finitness of the fractal dimension of M4 can be easily verified using (3.6), (3.8)
and the fact that Vine, C S(nT)C, see [12] for details. Thus, since My is closed,
it is indeed an exponential attractor for the map S = S(T') : C — C. As usual, the
required exponential attractor M for the semigroup S(¢) with continuous time can

be defined via
(3.9) M = Ute[T,QT]S(t)Md-

Indeed, the semi-invariantness and exponential attraction property follow immedi-
ately from the analogous properties of the discrete attractor My and the finiteness
of a fractal dimension in L!(Q) can be easily verified using that the dimension of
My is finite and that the map S(¢) is uniformly Hdolder continuous on My, see
[12-15] for the details. Thus, M is indeed the required exponential attractor and

Theorem 3.1 is proved.

Remark 3.1. There exists a rather important exceptional class of dynamical sys-
tems whose global attractors are simultaneously the exponential ones. These are
the so-called regular attractors which appear in smooth dynamical systems with the
global Lyapunov function under the additional assumption that all of the equilibria
are hyperbolic, see [2]. In our case of the porous media equation (1.1), we obviously
have the global Lyapunov function. Indeed, arguing as in Lemma 1.2, we can easily
verify that the functional

€Q %|me(u(x))|2 + Fo,g(u(z)) — h(z)Fo(u(z)) dx

(3.10) G(u) = /w

where Fy 4, and Fp are the same as in Lemma 1.2, satisfies

311 G(ut)) — G(u(0)) = —/0 /EQ F(ult, 7)) Dpu(t, ) |2 da dt

and, consequently, gives a global Lyapunov function for (1.1).
Nevertheless, the regular attractor’s theory seems to be not applicable here, since
equation (1.1) is degenerate and we cannot obtain the differentiability of semigroup

S(t) with respect to the initial data and the hyperbolicity of the equilibria.
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Remark 3.2. As we have already mentioned, the appropriate smoothing prop-
erties for differences of solutions play a crucial role in the modern theory of ex-
ponential attractors, see [12-15], [21]. The simplest abstract version (which gives
existence of an exponential attractor for the map S) of such a smoothing property

is the following one:
(3.12) [Sur — Suslla, < Klur — uslln

where the constant K is independent of u; belonging to a bounded invariant subset
and H, and H are two Banach spaces such that H; is compactly embedded in H,
see [13].

Our proof of the existence of an exponential attractor can also be embedded in
an abstract scheme, but, in contrast to (3.12), in our situation, the spaces H; and
H should depend on uq and uyg.

To be more precise, let S be an abstract map acting on some Banach space X

and let C be a compact subset of X such that
(3.13) SC cC.

Let us assume also that, for every ug € C and for every € < g, there exist a pair of
Banach spaces Hi(ug,e) and H(ug,e) such that H; is compactly embedded in H
and this embedding is uniformly (with respect to € and ug) compact in the sense of
Kolmogorov’s e-entropy, compare with (2.38) and a map Ty, . : B(e,uo, X)NC —

Hi(ug, ) such that, for every uy,us € B(e,ug, X)NC
| Tuo,etur = Tug ctizllm, < Pllur — uzllx,
(3.14)
[Sur — Susl[x < (1= 0)[Jur — uzl|x + Pl[Tug,ctis — Tug cti2||,

compare with (2.37). Then, arguing exactly as in the proof of Theorems 2.1 and

3.1, we can verify the existence of an exponential attractor for the abstract map S.

Remark 3.3. It would be very interesting to develop the perturbation theory

for the exponential attractor M of degenerate porous media equation (1.1). In
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particular, it would be interesting to construct exponential attractors M. for the

non-degenerate approximations (1.4) in such way that
(3.15) dist®¥™™ (Mg, M) < Ce",

for some positive constants C' and k. We shall return to that problem elsewhere.

§4 THE GLOBAL ATTRACTOR: THE CASE OF INFINITE DIMENSION.

We now show that the attractor A can be infinite-dimensional if condition (2.9)

is violated. To be more precise, we consider the following equation of the form
(1.1):

(4.1) Opu = Ag(ululP™Y) +u — g(u), 0

ulgq =
where p > 1 and the function g vanishes near zero and satisfies assumption (1.3)
at infinity. As we will show below the associated attractor has infinite dimension.
That is why we will study below its Kolmogorov e-entropy. The following theorem
which gives a natural lower bound for the entropy of the attractor can be considered

to be the main result of this section.

Theorem 4.1. Let the above assumptions hold. Then the global attractor A as-
sociated with equation (4.1) is infinite-dimensional and its e-entropy possesses the

following estimate:

n(p—1)/2
(12) mAL)zo(l)

€

for some positive constant C' independent of .

Proof. In order to prove the theorem, we will study as usual the so-called unstable

set M, (0) of the equilibrium u = 0 of equation (4.1). By definition,
(4.3) M (0) = {up € L=(Q), JueKk, t_lél}l |lu(t)||Le =0, u(0)=up}.

Obviously M, (0) € A. On the other hand, since the nonlinearity g vanishes at
the origin, it is sufficient to consider only the backward solutions of the following
“linearized” problem:

(4.4) O = Ay (ululP~Y) +u, u(0) =wug, t<0
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tending to zero as t — —oo (all such solutions belonging to the sufficiently small
ball in L> will satisfy also equation (4.1)). In order to solve equation (4.4), we

change to the unknown v(t) := e~ *u(t). Then we arrive at

(4.5) Byv = ePTVEA, (v]v[P7Y), ©v(0) = ug, t € (—o0,0).

Finally, making one more variable change s := eVt we obtain

(4.6) s = (p— 1)AL(®|5[P~Y), &(1) = ug, s € (0,1].

Let S; : L>°(Q) — L*°(£2) be the solution operator of the following problem:
(4.7) Oow = (p — 1) Ay (w|w|P™1), w‘t:o =wp, t>0.

Then, we have shown that the unstable set M, (0) contains the image of a suffi-

ciently small ball B(rq) := B(rg,0, L>):
(48) 813(’/‘0) C M+(0) C A

Thus, it is sufficient to estimate the e-entropy of the set Sy B(rg). To this end, we
recall that in contrast to the nondegenerate case, equation (4.7) possesses spatially
localized solutions, i.e. there exists a nonzero solution W (¢, z) > 0 of equation (4.7)

such that W (0) € B(rp) and
(4.9) supp W(s,-) C K CC Q,

for all s € [0,1]. For simplicity, we assume that ||[W(1)||L~ = 1. On the one hand,

if W(s,z) solves (4.7) then the scaled function
(4.10) We(s,z) = eW(s,e(17P)/2y)
also solves (4.7) for every ¢ # 0 and

(4.11) supp We(s,z) C K. := P D/2K.
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Therefore, for every sufficiently small e, there exists a finite set R. := {z;} C Q

such that
1) (I‘—FKE)PI(@/—FKE):@, Vz,y € Re, x#y,

n(p—1)/2
(4.12 ) #rzc(L)

3) x4+ K. CCQ, VreR..

Consequently, for every m € {0, 1} the function
#R
(4.13) Wine(s,x) = Z m;We(s,z — x;)
i=1
solves (4.7) in €. On the other hand, obviously we have
(4.14) Wit e(1,:) = Wiz (1,)||ze > €
for m' # m?2. Since we have 2#%< different functions of that form, then

n(p—1)/2
(4.15) H. (A, L) > H.(S1B(rp), L) > #R. > C <g> .

Theorem 4.1 is proved

Remark 4.1. It is worth recalling the usual method of obtaining lower bounds for
the attractor dimension based on unstable manifolds theory. Namely, if we are able
to find a (hyperbolic) equilibrium with large/infinite instability index then, due to
this theory, the attractor contains a manifold of large/infinite dimension (which
is equal to the instability index, see [2]). But this method is not applicable for
degenerate equations since the associated semigroups are usually not differentiable.
Indeed, under the assumptions of Theorem 4.1 the formal linearization near the
zero equilibrium reads

dyw = w

which, of course, has infinite instability index. But, in contrast to the nondegen-
erate case the backward solutions of that equation are not associated with the

backward solutions of the whole nonlinear equation (due to the lack of regularity)
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and, consequently, do not give the infinite-dimensionality of the associated unstable
set. That is the reason why we needed to develop above the alternative method
based on the existence of a localized solution and scaling technique which is closely

related with the degenerate nature of the problem considered.

Remark 4.2. It is also worth noting that, for nondegenerate parabolic equations,
the asymptotics for the image of a ball under the evolution operator is usually

logarithmic:
14+n/2 14+n/2
ct <1og2 —> < H.(S1B(ro),®) < C <log2 —>
€ €
where n is the space dimension, see [28]. The proof of Theorem 4.1 shows that the
degeneracy changes drastically type of these asymptotics.

The next corollary gives the lower bounds for the e-entropy in the initial phase

space L1(Q).

Corollary 4.1. Let the assumptions of Theorem 4.1 hold. Then, the Kolmogorov

e-entropy of the attractor A in L'(Q) possesses the following estimate:

(4.16) H. (A, L}(Q)) > C (%) S
where the constant C' is independent of €.

Proof. Indeed, according to (4.10),

(4.17) [We(1, )| gy = CetTnp=1/2

and, consequently, instead of (4.14), we now have
(4.18) (Wit (1, -) = Wiz o(1,) || g1 > Cettne=172,

Therefore, the distance between any two functions of the form (4.13) is not less than
Cel+nP=1)/2_ Since we have 2#%= of such functions, estimate (4.16) is verified and

Corollary 4.1 is proved.

We note that, in contrast to the lower bounds for the entropy in L°°-metric

given in Theorem 4.1, estimate (4.16) seems to be very rough (in particular, the
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exponent in the right-hand side of it remains bounded as p — oo or n — o0).
Nevertheless, it allows us to establish the infinite-dimensionality of global attractors
for an essentially more general class of porous media equations. We illustrate this

on the following example of the degenerate Chafee-Infante equation:

(4.19) Oy = Ay (u®) + u — u3, 0.

“‘39 -

Corollary 4.2. Let A be the attractor of equation (4.19). Then, its Kolmogorov

e-entropy satisfies:

8_1/2, n=1,
(4.20) H. (A, LY(Q)) > C
6—2/(n+1), n>2,

for some C' > 0 independent of €.

Proof. Indeed, analogously to the proof of Theorem 4.1, replacing the dependent

variable u(t) = efv(t) in equation (4.19) and scaling time s = e2*

, we arrive at
(4.21) dsv = 28, (v?) — v, s€]0,1].
Let now W.(s, ) := W (s,e~'x), e < 1 be the solutions of equation

(4.22) Dsw = 20, (w?)

constructed in the proof of Theorem 4.1 and define, for every m € {0,1}%-, the
functions W,, (s, ) via (4.13). We also recall that the L'-norm of every solution

of (4.22) with compact support is preserved, consequently,
(4.23) (Wi e (s, )|y = Ce'*|m

where |m| = Y m;. Let us now define the associated solutions W,, (s, z) of (4.21)

with W, £(0,2) = Wi, o(0,2). Then, the difference Z(s) = Wy, (5) — Wi (5)

satisfies

(424) 8SZ = 2A$(W7132,5 - WS‘L,E) - (WS‘L,E - W')‘:Bz,a) - WS‘L,E'
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Multiplying (4.24) by sgn Z integrating and using the Kato inequality together with

(4.23), we obtain
B 1
(4.25) Wine(1,2) = Wi e (1)1 (0) < / (Win.e(5))?ds < Ce>T™|ml.
0
Thus, due to (4.18) with p = 3,

(4.26) ||Wm1,6(1) - Wm2,6(1)”L1(Q) > ||Wm1,6(1) - Wm2,e(1)”L1(Q)_

(| + fm?]) > CM7(1 — (| + )
and, consequently, the functions Wmi,a are 17" /(2C)-separated if
(4.27) Im?| < 1/4e72.

We recall that #R. ~ e~™. Then, for n = 1, (4.27) is automatically satisfied for
small € and so, the number N of 1/2Ce? separated functions is equal to 2#F= ~
207" In the case of n > 2 this number N, obviously satisfies N > 21/45°  These

estimates immediately imply (4.20). This finishes the proof of Corollary 4.2.

To conclude, we discuss also the upper bounds for the Kolmogorov’s e-entropy of
the attractors of porous media equations of the form of (4.1). To this end, we recall
that the polynomial asymptotics of the Kolmogorov entropy (like e~*) are typical
for the embeddings of Sobolev spaces, and, consequently, the upper bounds of the
entropy in the same form can be obtained by studying the maximal smoothness of
the attractor. In particular, Theorem 1.2 together with the standard asymptotics

for the Kolmogorov entropy of the embedding C* C C, see [19], gives

3

(4.28) H.(A, 1) < C <1>n/a.

In particular, for n = 1 under the assumptions of Theorem 4.1, we have

1 (p—1)/2 1 6p
(4.29) ct (—) <H. (A L>®)<C (—) :

9 9

In turns, estimate (4.2) (and the scaling method, introduced in Theorem 4.1) give

the natural upper bounds for the smoothness of the attractor.
33



Corollary 4.3. The Holder constant o in (1.29) satisfies o < 2/(p—1). Moreover,

iof the inequality

holds uniformly with respect ug belonging to the attractor A of (4.1) then, necessar-

ily, p < 3.

Proof. Indeed, analogously to the proof of Theorem 4.1, all functions W.(1,z) =

eW (1,e(1=P)/2g) belong to the attractor. On the other hand,
(4.31) IWeWllea (@) = @D 2[W (1)l ge ()

Since the left-hand side of (4.31) should be bounded as ¢ — 0, then, necessarily,

a<?2/(p—1).
Analogously,
(4.32) W (D)|[waqy = eBP/2e@=D2 W (1)]|y1(q).-

Let us now consider the function W3 _(1,x) associated with (4.13) with all m; = 1.

Then, since #R, ~ e"(1=P)/2 (4.32) implies that
Wi .(Dllwra) = CeBP2 W (1) w1 ().
Thus, (4.30) implies indeed that p < 3 and Corollary 4.3 is proved.

APPENDIX. SOME TECHNICALITIES.

In this concluding section, we give, for the convenience of the reader, a more
detailed exposition of several known technical issues used above. We start with the

smoothness relations between u and f(u).

Proposition A.1. Let the function f € C?*(R,R) satisfy (1.2). Then, for every

s € (0,1) and 1 < q¢ < 00, we have

(A1) llye/maqery < Coll FEIE (e
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where the constant C, is independent of u.

Proof. Indeed, let f~! be the inverse function to f. Then, due to conditions (1.2),

the function G(v) := sgnv|f~1(v)|P is nondegenerate and satisfies
(A.2) Cy < G'(v) < Ch,

for some positive constants C'y and C3. Therefore, we have

(A.3) [f7H (1) = F7H(w) [P < Gyl Gv1) = G(v2)] < Cplvr — vel,

for all v1,v2 € R. Finally, according to the definition of the fractional Sobolev

spaces (see e.g. [20]),

1 Pq
1 OB oy = 1 )2 + / / L |x_ |n+sq< VI Gy <

o(z) = v(y)|®
§C||U||qu(Q)+C// de zdy = CP||v[[5..q(q):

where we have implicitly used that f~'(v) ~ sgnwv|v|'/P. Proposition A.1 is proved.

We are now going to discuss the interior regularity estimates for linear parabolic

equations. To this end, we first construct special cut—off functions.

Proposition A.2. LetV C B(R,0,R') be a bounded set in R' and let Vs := Os(V)
be its d-neighbourhood. Then, there erists a cut-off function ¢ € C*(R), ¢(x) €

[0,1], such that, for every B € (0,1) and every k € Z .,

1. ¢(x)=1, forxz eV and ¢(x)=0 forx ¢ Vj,

(A.4) {
|DEp(x)| < Crple(z)]' P, z e R,

where the constant Cy g = C(k, 3,9, R) is independent of x and the concrete choice

of V and D¥ means the collection of all z-derivatives of order k.

Proof. Indeed, let us introduce the standard bump function in R!:
1
e -lkIP x| <,
(A.5) P () = {
0, |z|>r.

Then, this function obviously satisfies estimate (A.4)(2).
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Let us fix now a covering of the R! by the balls of radius §/2 and let W := §/27!
be centers of that covering. Let us now construct also partition of unity associated
with that covering and (A.5) via

Vs/2(r —q)
ZPEW& ¢5/2($ o p)

(A.6) bqlx) = , g€ Ws.

Obviously, {¢4(z)}qew, is a partition of unity associated with the above covering
and, moreover, these functions satisfy (A.4)(2) uniformly with respect to ¢ € W.
Let us define now the required cut-off function ¢(z) = ¢v () by the following

expression:

(A.7) pv(z)i= Y. ).

q€EW5/2NVs /2

Indeed, since supp ¢, C B(d/2,q,R') and the sum of all such functions equals one
identically, the function ¢y thus defined satisfies (A.4)(1). Moreover, since the

number of points
#(Wss2 N V) < #(Ws2 N B(R+6,0,R')) < N(6,R)

is finite and uniformly bounded with respect to V C B(R,0,R') and the functions
¢q(x) satisfy (A.4)(2) uniformly with respect to ¢ € W/, then the function ¢y ()
also satisfies this inequality uniformly with respect to V' C B(R,0,R'). Proposition

A.2 is proved.

We now recall the classical L-regularity estimate for second order parabolic

equations on the following model example:

Ow = a(t, ) Azw + b(t, z)w + h,
(A8) {

w‘asz =0, w‘t:o =0.

Proposition A.3. Let Q be a smooth domain and let a € C*(Qr) (with « > 0

and Qp :=[0,T] x Q) satisfy

(Ag) 0<C; < a(t,x) < Cz, (t,.’l?) € QT,
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for some positive C;. Let also h € L1(Qr) for some 1 < ¢ < 00, q # 3/2. Assume

finally that
(A.10) be L"(Qr)

for a sufficiently large r depending on q (r > max{q, ”74'2}) Then, problem (A.8)

possesses a unique solution w € W(I’Q)’q(QT) and the following estimate holds:

(A.11) lwllwa 2.0y < CllbllLa@ry,

where the constant C' depends on q, Q, |lal|ca, ||b||zr and on the constants C; from

(A.9), but is independent of the concrete choice of a, b and h.

The proof of this proposition (in more general setting) can be found in [20], see
Chapter TV, §9 Th. 9.1. In particular, the assertion of the proposition is proved
there without the assumption on Holder continuity of a and the constant C' in
(A.11) depends on the modulus of continuity of the function a. However, for our
purposes it is more convenient, to control this modulus of continuity by the Holder
norm.

We are now able to verify the L-interior regularity estimate for equation (A.8)

(which is analogous to estimate (10.12) of [20], see Chapter IV, §10, page 355).

Proposition A.4. Let the above assumptions hold and let V' be an arbitrary open

set in Q. Then, for every 0 <ty < T, 0 > 0 and q > 2, the solution w satisfies

(A.12) lwllw a2, m1xvy < CURI Lao, T vs) + 1wl Lo, 11 vs))s

where Vs := Os(V)NQ and the constant C is independent of w and of the concrete

choice of a, b and h.

Proof. According to Proposition A.2 there exists a cut-off function ¢ € C°(R"*1)

such that
1. ¢(t,z) =1, for (t,z) € [to, T] x V,

(A.13) 2. ¢(t,x) =0, for (t,x) ¢ [3to/4,T] x Vy/a,

3. D, ,yo(t,o)| < Crsple(t, )] 7,
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where 3 > 0 is arbitrary and the constant C}, 5 is independent of V. Let us now

introduce a function wy(t, z) := w(t, x)$(t, ) which obviously satisfies the following

equation:

(A.14) (9tUJ¢ = aAmw¢ + bw¢ + h¢, We|,_o = 0, wy 90 — 0
where

(A.15) hg := h¢ + woip — 2V, ¢Vw — wA 4.

Applying now the Li-regularity estimate (see Proposition A.3) to equation (A.14)

and using (A.13), we infer

(A16) ||w¢||W(1 2).0(Qp) = C||h¢||Lq(Q < Cl(“hH ([o,T ><V5)+

+/ [B(t, o) 7P (Jw(t, 2)| + |Vaw(t, z)|?) du dt).
Qr

Let us assume for the moment that we have proved the following interpolation

inequality:

(A.17) 1) (|w|? 4 |V,w|?) da dt <
Qr

< 5||w¢||€v(1,2>,q(QT) + CE||w||qL1([0,T]xV5)

which holds for every £ > 0. Then, inserting it into the right-hand side of (A.16)

and fixing € to be small enough, we have

(A18) ||w¢||%v(1,2),q(QT) (Hh“ 0 T]><V5) + ||w||L1 0 T]><V5))

which together with (A.13)(1) implies (A.12) and finishes the proof of the proposi-
tion.

Thus, we only need to verify inequality (A.17). Indeed, due to Hélder’s inequal-

ity,
(a19) [ 0Pl o e = / (Ocvs (@) ]y | =97 s i
QT QT

< Ol Lo <
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where v, (7) is the characteristic function of the set Vs and s = s(3) := 7(11(1_;?-

Fixing now 8 so small that the Sobolev embedding W(12):9(Qz) ¢ L*(Q7) holds,
we verify inequality (A.17) for the term ¢2('=#)|w]|9.
Thus, it now remains to verify (A.17) for the term containing V,w. To this end,

we transform this term as follows,
(A.20) / p1I=P)V w9 da dt < C’/ P IV .V ywy |V pwg |92 d dt
QT QT

+C [ (" P|Vew|) (¢ 2P |w|)? " da dt.
Qr

The last integral on the right-hand side can be, in turn, estimated via Holder’s
inequality
(A.21) L<e | ¢ AWV w|lidedt+C. [ ¢TI |w|9 dz dt.
QT QT

The last term on the right-hand of (1.21) can be estimated exactly as (A.19) and
the first one coincides with the left-hand side of (A.20), but with arbitrarily small
coefficient. This implies
(A.22) / 1AV w|7dx < C IV .V w g |V pwe |72 da di

QT QT

+ 8||w¢||?/v(1,2),q(QT) + CE“w“%%[O,T]ng)'

So, one only needs to estimate the first term on the right-hand side of (A.22).
Integrating by parts in that term and using again (A.13)(3), we infer
(A.23) Ib<C P w| - |Agwy| - [ Vawy|T? do di+

Qr

+C | @By |V wy |1 da dt
Qr

(here we have implicitly used that w‘asz = 0 and that ¢ > 2). Applying now once
more the Holder inequality to both integrals in the right-hand side of (A.23), we
finally arrive at
(A24) Ip< g/ A (we)|? + [Vows|? dadi+ C | 700080y g dt <
QT QT
< 08”“’45”%(1,2%«1(%) +C. P10 = (@18 4|9 da: .

Qr
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Estimating now the last term on the right-hand side of (1.24) analogously to (A.19),
we deduce the analogue of estimate (A.17) for the term I. Inserting then this
estimate to (A.20)—(A.22) and using (A.19), we finish the proof of estimate (A.17).

Thus, Proposition A.4 is proved.

Corollary A.1l. Let the solution w(t,z) of equation (A.8) be defined only for
(t,z) € [to/2,T] x V5 and the coefficients a, b and the external force h be also
defined only in [to/2,T] x V5 and satisfy the assumptions of Proposition A.4 in this
domain. Then, the solution w satisfy the interior reqularity estimate (A.12) with

the constant C' independent of the concrete choice of V, a, b, h and w.

Proof. Indeed, the function wy(t,z) = w(t,z)¢(t, x) introduced in the proof of
Proposition A.4 equals zero identically for (¢, ) outside of [3to/4,T] x V5/9. There-
fore, we can construct an extension a and b of the coefficients a and b from the
initial domain of definition [to/2,T] x Vs to the whole domain [0, 7] x 2 in such a

way that

1. a(t,x) =a(t,z), b(t,z)=>b(t,x), (t,z)€ [to/2,T] % Vs
(A.25) < 2. |ldllcar) < Cllallos toy2,mxvs)s 10z @z < ClBlILr (02,715 vs)
3. C11 S a S 027

where the constant C' is independent of a, b and V' and the constants C; are the

same as in (A.9). Such an extension can be constructed e.g. via

(A.26) a(t,z) == CL(1 — (t,z)) + p(t, x)a(t,z), bt,z) = h(t, )b(t, x)
where the cut-off function ¢ equals one for (t,z) € [3to/4,T] x V5,2 and zero for
(t,z) outside of [ty/2,T] x Vs (this cut-off function exists due to Proposition A.2).

Thus, due to (A.25)(1), the function w, satisfies the equation
(A27) 0tw¢ = &Amw(p + IN)’w¢ + h¢
in the whole domain [0, T'] X2 and, due to (A.25)(2) and (A.25)(3), the L9-regularity

estimate is applicable to (A.27) in Qp and gives (A.16). The rest of the proof of
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Corollary A.1 repeats word by word the proof of Proposition A.4. Corollary A.1 is

proved.

We conclude by verifying the uniform compactness of the embedding C*(Vs) C

C(V') which is crucial for our proof of the finite-dimensionality given in Section 2.

Proposition A.5. Let V C Q be an open bounded set and § > 0 some positive
number. Let us also consider a unit ball B, := B(0,1,C%([to, T] x Vs)) and its
restriction Iy By, to the domain [to, T] X V' for some to < T and positive . Then,
the embedding Iy B, C C([to, T|x V') is uniformly compact with respect to V-C Q in
the following sense: there erists a monotone decreasing function ¢ — M(e) (which

depends on «, to, T and 0, but is independent of V' C Q) such that
(A.28) H. (TTy B, , C([to, T] x V)) < M(e)

holds for every e > 0.

Proof. Let us fix a cut-off function ¢(z) such that ¢(x) =1 for x € V and ¢(z) =0
for z ¢ Vj/o (see Proposition A.2). Then, since the norms of derivatives of ¢ are

uniformly bounded (with respect to V'), we have the following embedding;:
(A.29) ¢B, C B(0,7,C([to, T] x Q))

where the radius r» depends on « and 9, but is independent of V.

Let us now fix an arbitrary e > 0 and find a finite e-net W, of B(0,r, C*([to, T] %
Q)) relative to the metric of C([tp, T] x Q) (such net exists since the embedding
C® C C is compact). Then, embedding (A.29) guarantees that the finite set Iy W,
will be the required e-net in the set IIyB,. As usual, increasing the radiii of the
balls by the factor of two, we can construct a 2e-net with the centers belonging to

[Ty B, . Proposition A.5 is proved.
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