
CLASSIFICATION OF POSITIVE SOLUTIONS OFSEMILINEAR LINEAR ELLIPTIC EQUATIONSIN A RECTANGLE. TWO DIMENSIONAL CASE.M.Efendiev and S.ZelikIntrodu
tion.It is well known that positive solutions of semilinear se
ond order ellipti
 prob-lems have symmetry and monotoni
ity properties whi
h re
e
ts the symmetry of theoperator and of the domain, see e.g.,[GNN81℄ and [BeN91℄ for the 
ase of boundeddomains and [BeN90,BeN92,BCN97,BCN98℄ and [GNN81a,BeL83,BuF01℄ for the
ase of unbounded domains.In parti
ular, the symmetry and monotoni
ity results for the 
ase of semispa
ehave been 
onsidered in [BCN97,BCN98℄ and the analogous results (in
luding theexisten
e and uniqueness of a nontrivial positive solution) for the 
ase of wholespa
e have been obtained in [GNN81a,BeL83,Kwo89,BuF01℄, see also the referen
estherein.The goal of the present paper is to give a des
ription of all bounded nonnegativesolutions of the following ellipti
 boundary value problem in a two dimensionalre
tangle 
+ := f(x; y) 2 R2 ; x � 0; y � 0g:(0.1) ( �x;yu = f(u); (x; y) 2 
+;u���
+ = 0; u(x; y) � 0;where we assume that u 2 Cb(
) and the nonlinearity f is smooth enough (f 2C1(R)) and f(0) = 0.It is known (see [BCN97℄) that, under the above assumptions, every solutionu(x; y) of (0.1) (if it exists) should be monotoni
 with respe
t to x and y and,
onsequently, there exist the following limits(0.2) limx!1u(x; y) =  u(y); limy!1u(x; y) = �u(x):Moreover fun
tions  u and �u bounded solutions of one dimensional analogue ofproblem (0.1)(0.3) 	00 = f(	); 	(0) = 0; 	(z) � 0; z � 0:We re
all, that every solution of (0.3) stabilizes as z !1 to some 
 � 0 su
h thatf(
) = 0 and, for �xed 
 there exists not greater than one solution 	(z) = 	
(z)of this problem. Consequently, the fun
tions  u and �u in (0.2) should 
oin
ide:Typeset by AMS-TEX1



 u(z) = �u(z) = 	
(z), where the 
onstant 
 = 
u > 0 satis�es f(
) = 0. Thus, we
an rewrite (0.2) in the following form:(0.4) lim(x;y)!1 ju(x; y)�	
(x; y)j = 0; where 	
(x; y) := minf	
(x);	
(y)g:The aime of this notes is to verify the existen
e and uniqueness of a solution u(x; y)satisfying (0.4). We estasblish this fa
t under the following nondegenera
y assump-tion that(0.5) f 0(
) 6= 0(in a fa
t, the existen
e of a solution 	
(z) of equation (0.3) and (0,5) imply thatf 0(
) > 0, see [BEZ01℄). Thus, the main result of the paper is the following theorem.Theorem 1. Let the nonlinearity f satisfy the above assumptions, 	
 be a solutionof (0.3) su
h that f 0(
) > 0. Then, there exists a unique solution u(x; y) of (0.1)whi
h satis�es (0.4).The following 
orollary shows that, generi
ally, equation (0.1) has only �nitenumberof di�erent positive solutions.Corollary 1. Let the above assumptions hold and let, in addition, inequality (0.5)hold, for every solution 
 > 0 of equation f(
) = 0. Then, problem (0.1) has the�nite number of di�erent positive bounded solutions.Sket
h of the proof of Theorem 1.For the proof, we need the following lemma.Lemma 1. Let the assumptions of Theorem 1 hold and let(1.1) 	M
 (x; y) := � 
; (x; y) 2 [0;M ℄2;	
(x; y); (x; y) 2 
+n[0;M ℄2;where M is suÆ
iently large positive number. Then, the spe
trum of the opera-tor �x;y � f 0(	M
 (x; y)) in 
+ (with the Diri
hlet boundary 
onditions) is stri
tlynegative:(1.2) �(�x;y � f 0(	M
 ); L2(
+)) � �K < 0:Indeed, estimate (1.2) 
an be easily dedu
ed from the standard fa
t that(1.3) �(�2z � f 0(	
(z)); L2(R+ )) � �K � 0(whi
h is the 
orollary of the Perron-Frobenius theorem), the minimax prin
ipleand the spe
ial form of the fun
tion 	
(x; y).The following two 
orollaries of Lemma 1.1 are of fundamental signi�
an
e forwhat follows.Corollary 1.1. Let the assumptions of Theorem 1 hold and let u(x; y) be a positivebounded solution of (0.1) whi
h satis�es (0.4). Then:(1.4) �ess(�x;y � f 0(u(x; y)); L2(
)) � �K < 0:Indeed, due to (0.4) and (1.1) the operator �x;y � f 0(u(x; y)) is a 
ompa
tperturbation of �x;y � f 0(	M
 ). 2



Corollary 1.2. Let the assumptions of Corollary 1.1 hold. Then, the rate of de
ay-ing in (0.4) is exponential, i.e. there exist positive 
onstants " � 0 and C dependingon u su
h that(1.5) ju(x; y)�	
(x; y)j � Ce�"(x+y); (x; y) 2 
+:Indeed, estimate (1.5) is more or less standard 
orollary of (1.2), 
onvergen
e(0.4) and the maximum prin
iple, so we left its rigorous proof to the reader.We are now ready to verify the existen
e of a solution u(x; y). To this end,we 
onsider the following sequen
e of auxiliary problems in the domains 
N :=f(x; y) 2 
+; y � Ng:(1.6) � �x;yuN = f(uN ); u(x; y) � 0;u(0; y) = u(x; 0) = 0; u(x;N) = 	
(x):Obviously, for every N 2 N, this problem has at least one solution uN(x; y) satis-fying(1.7) 0 � uN(x; y) � 
(whi
h 
an be obtained using u� = 0 and u+ = 
 as sub and super solutionsrespe
tively for problem (1.6), see e.g. [VoH85℄). Moreover, this solution is alsomonotoni
 with respe
t to x and y and tends exponentially as x ! 1 to 	
(y)(analogously to Corollary 1.2). We also note that, due to the ellipti
 regularitytheorem, estimate (1.7) implies that(1.8) kuNkC2b (
+) � Cwhere the 
onstant C is independent of N .Thus, without loss of generality, we may assume that the sequen
e uN tendsin C2lo
(
+) to a some solution u(x; y) of problem (0.1) as N ! 1. As we haveexplained in the intodu
tion, this implies that there exists 0 � 
0 � 
 (may be
0 = 0) su
h that f(
0) = 0 and(1.9) lim(x;y)!1 ju(x; y)�	
0(x; y)j = 0:We need to prove that, ne
essarily, 
0 = 
. We prove this fa
t using the spe
ialintegral identity. In order to derive it, we multiply equation (1.6) by �xuN . Then,we have(1.10) �x(j�xuN j2 � j�yuN j2 � 2F (uN)) = �2�y(�xuN � �yuN)where F (u) is a potential of f(u). Integrating this formula over 
N and using theboundary 
onditions and the fa
t that j	0
(0)j2 = �2F (
) � 0, we derive that(1.11) Z N0 (j	0
(0)j2 � j�xuN(0; y)j2) dy == Z N0 2[F (
)� F (	
(y))℄ + j	0
(y)j2 dy � 2 Z 10 	0
(x) � �yuN (x;N) dx:3



Sin
e 	0
(x) � 0 and �yuN (x;N) � 0, then(1.12) Z N0 (j	0
(0)j2 � j�xuN (0; y)j2) dy � C	
where the 
onstant C	
 is independent of N . Moreover, obviously, the fun
tion�xuN(0; y) is stri
tly in
reasing with respe
t to y and �xuN (0; N) = 	0
(0). Conse-quently, (1.12) implies that(1.13) Z N0 j	0
(0)2 � �xuN(0; y)2j dy � C	
 :We now note that �xu(0; y) is monotone in
reasing fun
tion (sin
e u(x; y) is mono-tone with respe
t to y and u(0; y) = 0) and(1.14) �xu(0; y) < �xu(0;1) = 	0
0(0); 8y 2 R+ :Sin
e 	0
0(0) < 	0
(0) if 
0 < 
, see [BEZ01℄ and uN ! u in C2lo
(
+)) then estimates(1.13) and (1.14) imply that the limit fun
tion u(x; y) satis�es (1.9) with 
 = 
0.Thus, the existen
e of a solution is veri�ed.Let us now verify the uniqueness of the 
onstru
ted solution u(x; y). To thisend, we need the following lemma whi
h is of independent interest also.Lemma 1.2. Let u(x; y) be an arbitrary solution of (0.1) whi
h satis�es (0.4).Then the spe
trum of the linearization of (0.1) on u(t; x) is stri
tly negative, i.e.(1.15) �(�x;y � f 0(u)) � �Cu;for some positive 
onstant Cu, depending on the solution u.Proof. Indeed, assume that (1.15) is wrong. Then, a

ording to (1.4), there existsa nonnegative eigenvalue �0 � 0 of this operator and the 
orresponding eigenve
torv 2 L2(
+). Moreover, it 
an be dedu
ed in a standard way, using 
ondition (1.2)and the exponential 
onvergen
e (1.5) that(1.16) jv(x; y)j � Cve�"(x+y); (x; y) 2 
+;for some positive 
onstant Cv , depending on v. We may also assume, withoutloss of generality, then the eigenvalue �0 � 0 is maximal. Then, thanks to thePerron-Frobenius theory, fun
tion v(x; y) is stri
tly positive inside of 
+.We note that the fun
tion v1(x; y) := �xu(x; y) is also stri
tly positive andsatis�es the equation(1.17) �x;yv1 � f 0(u(x; y))v1 = 0:Multiplying this equation by the eigenve
tor v(x; y) and integrating over 
+, inte-grating by parts and using the boundary 
onditions, we derive that(1.18) Z 10 v1(0; y)�xv(0; y) dy + �0 Z
+ v � v1 dx dy = 0:4



We now re
all that v1(x; y) := �xu(x; y) � 0, v(x; y) � 0 and �xv(0; y) > 0 (due tothe stri
t maximum prin
iple). Consequently, (1.18) implies that(1.19) v1(0; y) := �xu(0; y) � 0:Sin
e, u(0; y) � 0 due to the boundary 
onditions, then (1.19) implies that u(x; y) �0 (due to the uniqueness theorem for ellipti
 equations). This 
ontradi
tion provesestimate (1.15) and Lemma 1.2.Now we are ready to verify the uniqueness. Indeed, let u1(x; y) and u2(x; y) betwo solutions of problem (0.1) whi
h satisfy (0.4). Then, without loss of generality,we may assume that(1.20) u2(x; y) � u1(x; y):Indeed, if (1.20) is not satis�ed, then, using the sub and supersolution method(paraboli
 equation method, see e.g., [VoH85℄), we may 
onstru
t the third solutionu3(x; y) su
h that(1.21) 
 � u3(x; y) � maxfu1(x; y); u2(x; y)gwhi
h is not 
oin
ide with u1 and u2 and for whi
h (1.20) is satis�ed.Let us now 
onsider the paraboli
 boundary value problem in 
+(1.22) �tU = �x;yU � f(U); U ���
+ = 0; U ��t=0 = U0with the phase spa
e(1.23) W0 := fU0 2 L1(
+); u1(x; y) � U0(x; y) � u2(x; y)g:Then, this problem generates a semi
ow on the phase spa
e W0:(1.24) St :W0 !W0; StU0 := U(t)whi
h (a

ording to the general theory, see [BaV92℄, [Tem88℄ and [EfZ01℄) possessesa global attra
tor A0 � W0. Moreover, due to (1.5) and (1.23), we have thefollowing Lyapunov fun
tion on W0:(1.25) L(U0) := Z
+ jr(U0 � u1)j2 + 2Fu1(U0 � u1; x; y) dx dywhere Fu1(z; x; y) := R z0 f(u1(x; y) + z)� f(u1(x; y)) dz.Thus, the attra
tor A0 should 
onsist of hetero
lini
 orbits to the appropriateequilibria, belonging to W0 (see [Bav92℄), but as proved in Lemma 1.2, all of theseequilibria are exponentially stable whi
h is possible only in the 
ase u1 � u2.Therefore, the uniqueness is also proven and Theorem 1 is proven.5
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