
CLASSIFICATION OF POSITIVE SOLUTIONS OFSEMILINEAR LINEAR ELLIPTIC EQUATIONSIN A RECTANGLE. TWO DIMENSIONAL CASE.M.Efendiev and S.ZelikIntrodution.It is well known that positive solutions of semilinear seond order ellipti prob-lems have symmetry and monotoniity properties whih reets the symmetry of theoperator and of the domain, see e.g.,[GNN81℄ and [BeN91℄ for the ase of boundeddomains and [BeN90,BeN92,BCN97,BCN98℄ and [GNN81a,BeL83,BuF01℄ for thease of unbounded domains.In partiular, the symmetry and monotoniity results for the ase of semispaehave been onsidered in [BCN97,BCN98℄ and the analogous results (inluding theexistene and uniqueness of a nontrivial positive solution) for the ase of wholespae have been obtained in [GNN81a,BeL83,Kwo89,BuF01℄, see also the referenestherein.The goal of the present paper is to give a desription of all bounded nonnegativesolutions of the following ellipti boundary value problem in a two dimensionalretangle 
+ := f(x; y) 2 R2 ; x � 0; y � 0g:(0.1) ( �x;yu = f(u); (x; y) 2 
+;u���
+ = 0; u(x; y) � 0;where we assume that u 2 Cb(
) and the nonlinearity f is smooth enough (f 2C1(R)) and f(0) = 0.It is known (see [BCN97℄) that, under the above assumptions, every solutionu(x; y) of (0.1) (if it exists) should be monotoni with respet to x and y and,onsequently, there exist the following limits(0.2) limx!1u(x; y) =  u(y); limy!1u(x; y) = �u(x):Moreover funtions  u and �u bounded solutions of one dimensional analogue ofproblem (0.1)(0.3) 	00 = f(	); 	(0) = 0; 	(z) � 0; z � 0:We reall, that every solution of (0.3) stabilizes as z !1 to some  � 0 suh thatf() = 0 and, for �xed  there exists not greater than one solution 	(z) = 	(z)of this problem. Consequently, the funtions  u and �u in (0.2) should oinide:Typeset by AMS-TEX1



 u(z) = �u(z) = 	(z), where the onstant  = u > 0 satis�es f() = 0. Thus, wean rewrite (0.2) in the following form:(0.4) lim(x;y)!1 ju(x; y)�	(x; y)j = 0; where 	(x; y) := minf	(x);	(y)g:The aime of this notes is to verify the existene and uniqueness of a solution u(x; y)satisfying (0.4). We estasblish this fat under the following nondegeneray assump-tion that(0.5) f 0() 6= 0(in a fat, the existene of a solution 	(z) of equation (0.3) and (0,5) imply thatf 0() > 0, see [BEZ01℄). Thus, the main result of the paper is the following theorem.Theorem 1. Let the nonlinearity f satisfy the above assumptions, 	 be a solutionof (0.3) suh that f 0() > 0. Then, there exists a unique solution u(x; y) of (0.1)whih satis�es (0.4).The following orollary shows that, generially, equation (0.1) has only �nitenumberof di�erent positive solutions.Corollary 1. Let the above assumptions hold and let, in addition, inequality (0.5)hold, for every solution  > 0 of equation f() = 0. Then, problem (0.1) has the�nite number of di�erent positive bounded solutions.Sketh of the proof of Theorem 1.For the proof, we need the following lemma.Lemma 1. Let the assumptions of Theorem 1 hold and let(1.1) 	M (x; y) := � ; (x; y) 2 [0;M ℄2;	(x; y); (x; y) 2 
+n[0;M ℄2;where M is suÆiently large positive number. Then, the spetrum of the opera-tor �x;y � f 0(	M (x; y)) in 
+ (with the Dirihlet boundary onditions) is stritlynegative:(1.2) �(�x;y � f 0(	M ); L2(
+)) � �K < 0:Indeed, estimate (1.2) an be easily dedued from the standard fat that(1.3) �(�2z � f 0(	(z)); L2(R+ )) � �K � 0(whih is the orollary of the Perron-Frobenius theorem), the minimax prinipleand the speial form of the funtion 	(x; y).The following two orollaries of Lemma 1.1 are of fundamental signi�ane forwhat follows.Corollary 1.1. Let the assumptions of Theorem 1 hold and let u(x; y) be a positivebounded solution of (0.1) whih satis�es (0.4). Then:(1.4) �ess(�x;y � f 0(u(x; y)); L2(
)) � �K < 0:Indeed, due to (0.4) and (1.1) the operator �x;y � f 0(u(x; y)) is a ompatperturbation of �x;y � f 0(	M ). 2



Corollary 1.2. Let the assumptions of Corollary 1.1 hold. Then, the rate of deay-ing in (0.4) is exponential, i.e. there exist positive onstants " � 0 and C dependingon u suh that(1.5) ju(x; y)�	(x; y)j � Ce�"(x+y); (x; y) 2 
+:Indeed, estimate (1.5) is more or less standard orollary of (1.2), onvergene(0.4) and the maximum priniple, so we left its rigorous proof to the reader.We are now ready to verify the existene of a solution u(x; y). To this end,we onsider the following sequene of auxiliary problems in the domains 
N :=f(x; y) 2 
+; y � Ng:(1.6) � �x;yuN = f(uN ); u(x; y) � 0;u(0; y) = u(x; 0) = 0; u(x;N) = 	(x):Obviously, for every N 2 N, this problem has at least one solution uN(x; y) satis-fying(1.7) 0 � uN(x; y) � (whih an be obtained using u� = 0 and u+ =  as sub and super solutionsrespetively for problem (1.6), see e.g. [VoH85℄). Moreover, this solution is alsomonotoni with respet to x and y and tends exponentially as x ! 1 to 	(y)(analogously to Corollary 1.2). We also note that, due to the ellipti regularitytheorem, estimate (1.7) implies that(1.8) kuNkC2b (
+) � Cwhere the onstant C is independent of N .Thus, without loss of generality, we may assume that the sequene uN tendsin C2lo(
+) to a some solution u(x; y) of problem (0.1) as N ! 1. As we haveexplained in the intodution, this implies that there exists 0 � 0 �  (may be0 = 0) suh that f(0) = 0 and(1.9) lim(x;y)!1 ju(x; y)�	0(x; y)j = 0:We need to prove that, neessarily, 0 = . We prove this fat using the speialintegral identity. In order to derive it, we multiply equation (1.6) by �xuN . Then,we have(1.10) �x(j�xuN j2 � j�yuN j2 � 2F (uN)) = �2�y(�xuN � �yuN)where F (u) is a potential of f(u). Integrating this formula over 
N and using theboundary onditions and the fat that j	0(0)j2 = �2F () � 0, we derive that(1.11) Z N0 (j	0(0)j2 � j�xuN(0; y)j2) dy == Z N0 2[F ()� F (	(y))℄ + j	0(y)j2 dy � 2 Z 10 	0(x) � �yuN (x;N) dx:3



Sine 	0(x) � 0 and �yuN (x;N) � 0, then(1.12) Z N0 (j	0(0)j2 � j�xuN (0; y)j2) dy � C	where the onstant C	 is independent of N . Moreover, obviously, the funtion�xuN(0; y) is stritly inreasing with respet to y and �xuN (0; N) = 	0(0). Conse-quently, (1.12) implies that(1.13) Z N0 j	0(0)2 � �xuN(0; y)2j dy � C	 :We now note that �xu(0; y) is monotone inreasing funtion (sine u(x; y) is mono-tone with respet to y and u(0; y) = 0) and(1.14) �xu(0; y) < �xu(0;1) = 	00(0); 8y 2 R+ :Sine 	00(0) < 	0(0) if 0 < , see [BEZ01℄ and uN ! u in C2lo(
+)) then estimates(1.13) and (1.14) imply that the limit funtion u(x; y) satis�es (1.9) with  = 0.Thus, the existene of a solution is veri�ed.Let us now verify the uniqueness of the onstruted solution u(x; y). To thisend, we need the following lemma whih is of independent interest also.Lemma 1.2. Let u(x; y) be an arbitrary solution of (0.1) whih satis�es (0.4).Then the spetrum of the linearization of (0.1) on u(t; x) is stritly negative, i.e.(1.15) �(�x;y � f 0(u)) � �Cu;for some positive onstant Cu, depending on the solution u.Proof. Indeed, assume that (1.15) is wrong. Then, aording to (1.4), there existsa nonnegative eigenvalue �0 � 0 of this operator and the orresponding eigenvetorv 2 L2(
+). Moreover, it an be dedued in a standard way, using ondition (1.2)and the exponential onvergene (1.5) that(1.16) jv(x; y)j � Cve�"(x+y); (x; y) 2 
+;for some positive onstant Cv , depending on v. We may also assume, withoutloss of generality, then the eigenvalue �0 � 0 is maximal. Then, thanks to thePerron-Frobenius theory, funtion v(x; y) is stritly positive inside of 
+.We note that the funtion v1(x; y) := �xu(x; y) is also stritly positive andsatis�es the equation(1.17) �x;yv1 � f 0(u(x; y))v1 = 0:Multiplying this equation by the eigenvetor v(x; y) and integrating over 
+, inte-grating by parts and using the boundary onditions, we derive that(1.18) Z 10 v1(0; y)�xv(0; y) dy + �0 Z
+ v � v1 dx dy = 0:4



We now reall that v1(x; y) := �xu(x; y) � 0, v(x; y) � 0 and �xv(0; y) > 0 (due tothe strit maximum priniple). Consequently, (1.18) implies that(1.19) v1(0; y) := �xu(0; y) � 0:Sine, u(0; y) � 0 due to the boundary onditions, then (1.19) implies that u(x; y) �0 (due to the uniqueness theorem for ellipti equations). This ontradition provesestimate (1.15) and Lemma 1.2.Now we are ready to verify the uniqueness. Indeed, let u1(x; y) and u2(x; y) betwo solutions of problem (0.1) whih satisfy (0.4). Then, without loss of generality,we may assume that(1.20) u2(x; y) � u1(x; y):Indeed, if (1.20) is not satis�ed, then, using the sub and supersolution method(paraboli equation method, see e.g., [VoH85℄), we may onstrut the third solutionu3(x; y) suh that(1.21)  � u3(x; y) � maxfu1(x; y); u2(x; y)gwhih is not oinide with u1 and u2 and for whih (1.20) is satis�ed.Let us now onsider the paraboli boundary value problem in 
+(1.22) �tU = �x;yU � f(U); U ���
+ = 0; U ��t=0 = U0with the phase spae(1.23) W0 := fU0 2 L1(
+); u1(x; y) � U0(x; y) � u2(x; y)g:Then, this problem generates a semiow on the phase spae W0:(1.24) St :W0 !W0; StU0 := U(t)whih (aording to the general theory, see [BaV92℄, [Tem88℄ and [EfZ01℄) possessesa global attrator A0 � W0. Moreover, due to (1.5) and (1.23), we have thefollowing Lyapunov funtion on W0:(1.25) L(U0) := Z
+ jr(U0 � u1)j2 + 2Fu1(U0 � u1; x; y) dx dywhere Fu1(z; x; y) := R z0 f(u1(x; y) + z)� f(u1(x; y)) dz.Thus, the attrator A0 should onsist of heterolini orbits to the appropriateequilibria, belonging to W0 (see [Bav92℄), but as proved in Lemma 1.2, all of theseequilibria are exponentially stable whih is possible only in the ase u1 � u2.Therefore, the uniqueness is also proven and Theorem 1 is proven.5
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