CLASSIFICATION OF POSITIVE SOLUTIONS OF
SEMILINEAR LINEAR ELLIPTIC EQUATIONS
IN A RECTANGLE. TWO DIMENSIONAL CASE.

M.EFENDIEV AND S.ZELIK

INTRODUCTION.

It is well known that positive solutions of semilinear second order elliptic prob-
lems have symmetry and monotonicity properties which reflects the symmetry of the
operator and of the domain, see e.g.,[GNN81] and [BeN91] for the case of bounded
domains and [BeN90,BeN92, BCN97,BCN98] and [GNN81a,Bel.83,BuF01] for the
case of unbounded domains.

In particular, the symmetry and monotonicity results for the case of semispace
have been considered in [BCN97,BCN98] and the analogous results (including the
existence and uniqueness of a nontrivial positive solution) for the case of whole
space have been obtained in [GNN81a,BeL.83,Kwo089,BuF01], see also the references
therein.

The goal of the present paper is to give a description of all bounded nonnegative
solutions of the following elliptic boundary value problem in a two dimensional
rectangle Q = {(z,y) € R, 2 >0, y > 0}:

Aalr:,yu' = f(u)7 (Cﬂ,y) € Q-i—a
(0.1) ul =0, u(z,y) >0
BQ+ - ) 7y) — )

where we assume that u € Cp(2) and the nonlinearity f is smooth enough (f €
C'(R)) and f(0) = 0.

It is known (see [BCN97]) that, under the above assumptions, every solution
u(z,y) of (0.1) (if it exists) should be monotonic with respect to z and y and,
consequently, there exist the following limits

T —r00

Moreover functions v, and ¢, bounded solutions of one dimensional analogue of
problem (0.1)

(0.3) U = f(¥), ¥(0)=0, ¥(z)>0, z>0.
We recall, that every solution of (0.3) stabilizes as z — oo to some ¢ > 0 such that

f(e) = 0 and, for fixed ¢ there exists not greater than one solution ¥(z) = ¥.(z)
of this problem. Consequently, the functions %, and ¢, in (0.2) should coincide:
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Yu(2) = pu(z) = ¥.(2), where the constant ¢ = ¢,, > 0 satisfies f(¢) = 0. Thus, we
can rewrite (0.2) in the following form:

(0.4) lim |u(z,y) — V.(z,y)| =0, where U.(z,y):=min{¥.(z), T.(y)}.

(z,y)—o00

The aime of this notes is to verify the existence and uniqueness of a solution u(z,y)
satisfying (0.4). We estasblish this fact under the following nondegeneracy assump-
tion that

(0.5) f'(e) #0

(in a fact, the existence of a solution ¥.(z) of equation (0.3) and (0,5) imply that
f'(¢) > 0, see [BEZ01]). Thus, the main result of the paper is the following theorem.

Theorem 1. Let the nonlinearity f satisfy the above assumptions, V. be a solution
of (0.3) such that f'(c) > 0. Then, there exists a unique solution u(z,y) of (0.1)
which satisfies (0.4).

The following corollary shows that, generically, equation (0.1) has only finite
numberof different positive solutions.

Corollary 1. Let the above assumptions hold and let, in addition, inequality (0.5)
hold, for every solution ¢ > 0 of equation f(c) = 0. Then, problem (0.1) has the
finite number of different positive bounded solutions.
SKETCH OF THE PROOF OF THEOREM 1.

For the proof, we need the following lemma.
Lemma 1. Let the assumptions of Theorem 1 hold and let
¢, (z,y) € [0, M]?,
\I!C(x,y), (x,y) € Q+\[07M]27

where M is sufficiently large positive number. Then, the spectrum of the opera-
tor Ay y — f'(OM(z,y)) in Qy (with the Dirichlet boundary conditions) is strictly
negative:

(L1) T (2, y) = {

(1.2) 0(Aay — f1(TY1), L(Q4)) < —K <0.
Indeed, estimate (1.2) can be easily deduced from the standard fact that
(1.3) (02 = f'(¥e(2)), L*(Ry.)) < =K <0

z

(which is the corollary of the Perron-Frobenius theorem), the minimax principle
and the special form of the function ¥.(z,y).

The following two corollaries of Lemma 1.1 are of fundamental significance for
what follows.

Corollary 1.1. Let the assumptions of Theorem 1 hold and let u(x,y) be a positive
bounded solution of (0.1) which satisfies (0.4). Then:

(L4) Oess(Day — f'(ulz,y)), L*(Q) < —K < 0.

Indeed, due to (0.4) and (1.1) the operator A, , — f'(u(z,y)) is a compact
perturbation of A, , — f'(TM).
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Corollary 1.2. Let the assumptions of Corollary 1.1 hold. Then, the rate of decay-
ing in (0.4) is exponential, i.e. there exist positive constants e > 0 and C depending
on u such that

(1.5) lu(z,y) — Tolz,y)| < Ce =TV (2,y) € Q.

Indeed, estimate (1.5) is more or less standard corollary of (1.2), convergence
(0.4) and the maximum principle, so we left its rigorous proof to the reader.

We are now ready to verify the existence of a solution u(z,y). To this end,
we consider the following sequence of auxiliary problems in the domains Qn :=

{(a:,y) € Q+7y < N}:

{ Az,yuN = f(uN)a U(l‘,y) Z
u(0,y) = u(z,0) =0, wu(z,N)

)

(1.6)

U.(z).

Obviously, for every N € N, this problem has at least one solution un(x,y) satis-
fying

(1.7) 0 <un(z,y)<c

(which can be obtained using u— = 0 and u; = ¢ as sub and super solutions
respectively for problem (1.6), see e.g. [VoH85]). Moreover, this solution is also
monotonic with respect to z and y and tends exponentially as z — oo to P.(y)
(analogously to Corollary 1.2). We also note that, due to the elliptic regularity
theorem, estimate (1.7) implies that

(1.8) lunllcziay < C

where the constant C' is independent of N.

Thus, without loss of generality, we may assume that the sequence uy tends
in C7.(Q4) to a some solution u(z,y) of problem (0.1) as N — oco. As we have
explained in the intoduction, this implies that there exists 0 < ¢’ < ¢ (may be

¢’ =0) such that f(c¢') =0 and

(1.9) lim  |u(z,y) — P (z,y)| = 0.

(z,y)—o00

We need to prove that, necessarily, ¢/ = ¢. We prove this fact using the special
integral identity. In order to derive it, we multiply equation (1.6) by 0,un. Then,
we have

(1.10) 8z(|8xuN|2 - |8yuN|2 - 2F(UN)) = —28y(8xuN ' 8yuN)

where F'(u) is a potential of f(u). Integrating this formula over Qu and using the
boundary conditions and the fact that |¥.(0)]*> = —2F(c) > 0, we derive that

N
(1.11) / (TL(O) — Bsun(0,)|?) dy =
N o)
- / 2AF(e) - F(T,(y))] + [T (w)|? dy — 2 / W' (z) - Byun(z, N) da.
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Since ¥/ (z) > 0 and dyun(z,N) > 0, then

N
(1.12) / (O = 10,un(0,5)) dy < Ca.

where the constant C'y, is independent of N. Moreover, obviously, the function
0,un(0,y) is strictly increasing with respect to y and d,un (0, N) = ¥’ (0). Conse-
quently, (1.12) implies that

N
(1.13) | 100 = dsun(0.4)71dy < G
0

We now note that d;u(0,y) is monotone increasing function (since u(z,y) is mono-
tone with respect to y and u(0,y) = 0) and

(1.14) 0,u(0,y) < 0,u(0,00) = ¥, (0), Vye Ry.

Since ¥’,(0) < ¥.(0) if ¢’ < ¢, see [BEZ01] and uy — uin C2 (04 )) then estimates
(1.13) and (1.14) imply that the limit function u(z,y) satisfies (1.9) with ¢ = ¢'.
Thus, the existence of a solution is verified.

Let us now verify the uniqueness of the constructed solution u(z,y). To this
end, we need the following lemma which is of independent interest also.

Lemma 1.2. Let u(z,y) be an arbitrary solution of (0.1) which satisfies (0.4).
Then the spectrum of the linearization of (0.1) on u(t,x) is strictly negative, i.e.

(1.15) 0(Asy — f'(u) < =Ch,

for some positive constant C,,, depending on the solution u.

Proof. Indeed, assume that (1.15) is wrong. Then, according to (1.4), there exists
a nonnegative eigenvalue Ao > 0 of this operator and the corresponding eigenvector
v € L*(Q4). Moreover, it can be deduced in a standard way, using condition (1.2)
and the exponential convergence (1.5) that

(1.16) [o(@,y)| < Coe ") (2,y) € Oy,

for some positive constant C,, depending on v. We may also assume, without
loss of generality, then the eigenvalue Ag > 0 is maximal. Then, thanks to the
Perron-Frobenius theory, function v(z,y) is strictly positive inside of Q.

We note that the function vi(z,y) := d,u(x,y) is also strictly positive and
satisfies the equation

(1.17) Ay yvi — f(u(z,y))vr = 0.

Multiplying this equation by the eigenvector v(z,y) and integrating over 2, , inte-
grating by parts and using the boundary conditions, we derive that

(1.18) / v1(0,4)0,v(0,y) dy + )\0/ v-vy dxdy = 0.
0 Q

+
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We now recall that vy (z,y) := dyu(z,y) >0, v(z,y) > 0 and 9,v(0,y) > 0 (due to
the strict maximum principle). Consequently, (1.18) implies that

(1.19) v1(0,y) := 0,u(0,y) = 0.

Since, u(0,y) = 0 due to the boundary conditions, then (1.19) implies that u(z,y) =
0 (due to the uniqueness theorem for elliptic equations). This contradiction proves
estimate (1.15) and Lemma 1.2.

Now we are ready to verify the uniqueness. Indeed, let uq(z,y) and us2(z,y) be
two solutions of problem (0.1) which satisfy (0.4). Then, without loss of generality,
we may assume that

(1.20) us(z,y) > ui(z,y).
Indeed, if (1.20) is not satisfied, then, using the sub and supersolution method

(parabolic equation method, see e.g., [VoH85]), we may construct the third solution
us(z,y) such that

(1.21) ¢ > ug(z,y) > max{u(z,y), ua(z, y)}

which is not coincide with u; and uy and for which (1.20) is satisfied.
Let us now consider the parabolic boundary value problem in Q.

(1.22) U = DayU = f(U), Ulyg, =0, Ul_,=Un

with the phase space

(123)  Woi={Us € I®(Q4), wi(m,y) < Uo(w,y) < ua(a, )}

Then, this problem generates a semiflow on the phase space Wy:

(1.24) Sy : Wo — Wy, SiUp :=U(t)

which (according to the general theory, see [BaV92], [Tem88] and [EfZ01]) possesses

a global attractor Ao C Wy. Moreover, due to (1.5) and (1.23), we have the
following Lyapunov function on Wy:

(1.25) L(Uy) := / |V (Up —u1)|? + 2Fy, (Up — uy, z,y) de dy
Q4

where Fy, (z,2,y) := [y flui(z,y) + 2) — f(ui(z,y)) dz.

Thus, the attractor Ay should consist of heteroclinic orbits to the appropriate
equilibria, belonging to Wy (see [Bav92]), but as proved in Lemma 1.2, all of these
equilibria are exponentially stable which is possible only in the case u; = wus.
Therefore, the uniqueness is also proven and Theorem 1 is proven.
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