RESEARCH INTERESTS

The most part of my scientific activity is devoted to the study of infinite-dimensional dissipative dynamical systems generated by partial differential equations of mathematical physics. The area of my scientific interests can be described as follows:

I) General theory:
 1) dissipative dynamics in large and unbounded domains:
 a) Quantitative and qualitative description of the complexity of spatio-temporal structure of trajectories;
 b) pattern formation, spatial complexity and spatial chaos;
 c) temporal evolution of spatially chaotic patterns and space-time chaos
 d) Kolmogorov’s entropy, multi-dimensional Bernoulli schemes and relations with statistics and information theory.
 2) Finite-dimensional reduction, invariant manifolds and estimates of the number of effective degrees of freedom.
 3) Dynamics in spatially non-homogeneous media: homogenization and patterning.
 4) Solitary waves, pulses, traveling fronts and other localized structures. Weak interaction in multi-pulse structures (see the research plan).

II) Applications:
 1) reaction-diffusion and reaction-diffusion-drift problems in large domains;
 2) phase-transition: various generalizations of Cahn-Hilliard and phase-field models, boundary and memory effects;
 3) Porous-media equations and other degenerate problems;
 4) Wave equations and nonlinear optics;
 5) Hydrodynamics in large and unbounded domains.