 Profiles
 Curriculum Vitae (2017).
 Research interests:
Fluid dynamics. Geophysical and astrophysical sciences. Singular limit problems in nonlinear PDEs. Numerical analysis and scientific computing. Kinetic formulation. Mathematical Physics in connection with these areas.
 Job Opening
 Events
 Workshop. "Coupling moist convection and large scale dynamics in numerical weather prediction models".
 Publications (move mouse over [...] to show abstract)
 [12] B. Cheng, P. Qu and C. Xie, Singularity Formation and Global Existence of Classical Solutions for
One Dimensional Rotating Shallow Water System. submitted (2017)
 [11] B. Cheng, C. Tronci and E. Süli, Existence of Global Weak Solutions to a Hybrid VlasovMHD Model for Magnetized Plasmas. to appear in Proceedings of London Mathematical Society (2017). doi:10.1112/plms.12053
 [10] B. Cheng and A. Mahalov, Timeaverages of Fast Oscillatory Systems in Threedimensional Geophysical Fluid Dynamics and Electromagnetic Effects. to appear in ZONAL JETS: Phenomenology, Genesis, Physics, eds. Boris Galperin and Peter L. Read, Cambridge University Press (2016)
 [9] B. Cheng, Improved Accuracy of Incompressible Approximation of Compressible Euler Equations. SIAM J. on Mathematical Analysis, vol. 46, no. 6, pp. 38383864, 2014 (SIMA). doi:10.1137/140955173
 [8] B. Cheng and A. Mahalov, Euler equations on a fast rotating sphere  timeaverages and zonal flows. European J. Mech.  B/Fluids, vol. 37, pp. 4858, 2013 (E.J.Mech.B). doi:10.1016/j.euromechflu.2012.06.001
 [7]
B. Cheng and A. Mahalov, Time averages of fast oscillatory systems. Discrete and Continuous Dynamical Systems  Series S, vol. 6, pp. 11511162 2013 (DCDSS). doi:10.3934/dcdss.2013.6.1151
 [6] B. Cheng, Singular limits and convergence rates of compressible Euler and rotating shallow water equations. SIAM J. on Mathematical Analysis, vol. 44, pp. 10501076, 2012 (SIMA). Referee(s)' remarks. doi:10.1137/11085147X
 [5] B. Cheng and C. Xie, On the classical solutions of two dimensional Rotating Shallow Water system. J. Differential Equations vol. 250, 690709, 2011 (JDE). doi:10.1016/j.jde.2010.09.017
 [4] B. Cheng and E. Tadmor, Approximate periodic solutions for the rapidly rotating shallowwater and related equations. Water waves: theory and experiment  Proc. of the conference, 6978, World Scientific Pub. Co. Inc., 2010.
 [3] B. Cheng and E. Tadmor, An improved local blowup condition for EulerPoisson equations with attractive forcing, Physica D, vol. 238, pp. 20622066, 2009 (Phys. D). doi:10.1016/j.physd.2009.08.008
 [2] B. Cheng, Multiscale dynamics of 2D rotational compressible Euler equations. Hyperbolic problems: theory, numerics and applications, 497506,
Proc. Sympos. Appl. Math., 67, Part 2, Amer. Math. Soc., 2009.
 [1] B. Cheng and E. Tadmor, Long time existence of smooth solutions for rapidly rotating shallowwater equations and Euler equations. SIAM J. on Mathematical Analysis, vol. 39, pp. 16681685, 2008 (SIMA). doi:10.1137/070693643
 Unpublished Work
 Teaching
 MAT2001, Numerical and Computational Methods, Spring 2014.
Teaching materials on SurreyLearn virtual learning environment.
 Past course webpages.
 Events
 
2012 is Alan Turing Year
2013 is Year of Mathematics of Planet Earth
Jupiter
