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1. Introduction to Symmetry and Particles

Symmetry simplifies the description of physical phenomena. It plays a particularly impor-
tant role in particle physics, for without it there would be no clear understanding of the
relationships between particles. Historically, there has been an “explosion” in the number
of particles discovered in high energy experiments since the discovery that atoms are not
fundamental particles. Collisions in modern accelerators can produce cascades involving
hundreds of types of different particles: p,n,II, K, A, X ... etc.

The key mathematical framework for symmetry is group theory: symmetry transfor-
mations form groups under composition. Although the symmetries of a physical system are
not sufficient to fully describe its behaviour - for that one requires a complete dynamical
theory - it is possible to use symmetry to find useful constraints. For the physical systems
which we shall consider, these groups are smooth in the sense that their elements depend
smoothly on a finite number of parameters (called co-ordinates). These groups are Lie
groups, whose properties we will investigate in greater detail in the following lectures. We
will see that the important information needed to describe the properties of Lie groups is
encoded in “infinitessimal transformations”, which are close in some sense to the identity
transformation. The properties of these transformations, which are elements of the tangent
space of the Lie group, can be investigated using (relatively) straightforward linear algebra.
This simplifies the analysis considerably. We will make these rather vague statements more
precise in the next chapter.

Examples of symmetries include

i) Spacetime symmetries: these are described by the Poincaré group. This is only an
approximate symmetry, because it is broken in the presence of gravity. Gravity is the
weakest of all the interactions involving particles, and we will not consider it here.

ii) Internal symmetries of particles. These relate processes involving different types
of particles. For example, isospin relates u and d quarks. Conservation laws can be
found for particular types of interaction which constrain the possible outcomes. These
symmetries are also approximate; isospin is not exact because there is a (small) mass
difference between m, and mgy. Electromagnetic effects also break the symmetry.

iii) Gauge symmetries. These lead to specific types of dynamical theories describing
types of particles, and give rise to conserved charges. Gauge symmetries if present,
appear to be exact.

1.1 Elementary and Composite Particles

The fundamental particles are quarks, leptons and gauge particles.
The quarks are spin 1/2 fermions, and can be arranged into three families

Electric Charge (e)
u (0.3 GeV) c (1.6 GeV) |t (175 GeV) 2
d (=03GeV)|s (05GeV)|b (4.5GeV) -

o=




The quark labels u, d, s, ¢, t, b stand for up, down, strange, charmed, top and bottom.
The quarks carry a fractional electric charge. Each quark has three colour states. Quarks
are not seen as free particles, so their masses are ill-defined (the masses above are “effective”
masses, deduced from the masses of composite particles containing quarks).

The leptons are also spin 1/2 fermions and can be arranged into three families

FElectric Charge (e)

e” (0.5 MeV) p~ (106 MeV) 7~ (1.8 GeV) -1

ve (< 10eV) v, (< 0.16 MeV) vr (< 18 MeV) 0

The leptons carry integral electric charge. The muon p and taon 7 are heavy unstable
versions of the electron e. Each flavour of charged lepton is paired with a neutral particle
v, called a neutrino. The neutrinos are stable, and have a very small mass (which is taken
to vanish in the standard model).

All these particles have antiparticles with the same mass and opposite electric charge
(conventionally, for many particles, the antiparticles carry a bar above the symbol, e.g.
the antiparticle of u is @). The antiparticles of the charged leptons are often denoted by
a change of — to +, so the positron e' is the antiparticle of the electron e~ etc. The
antineutrinos v differ from the neutrinos v by a change in helicity (to be defined later...).

Hadrons are made from bound states of quarks (which are colour neutral singlets).

i) The baryons are formed from bound states of three quarks gqq; antibaryons are formed
from bound states of three antiquarks ggq

For example, the nucleons are given by

p = uud : 938 Mev
n = udd : 940 Mev

ii) Mesons are formed from bound states of a quark and an antiquark ¢q.

For example, the pions are given by

7t =ud : 140 Mev
T~ =du : 140 Mev
70 = wi, dd superposition : 135 Mev

Other particles are made from heavy quarks; such as the strange particles K+ = us
with mass 494 Mev , A = uds with mass 1115 Mev, and Charmonium 1 = c¢¢ with mass
3.1 Gev.

The gauge particles mediate forces between the hadrons and leptons. They are bosons,
with integral spin.



Mass (GeV) Interaction
~ (photon) 0 Electromagnetic
w+ 80 Weak
W= 80 Weak
Z0 91 Weak
g (gluon) 0 Strong

The gluons are responsible for interquark forces which bind quarks together in nucleons.
It is conjectured that a spin 2 gauge boson called the graviton is the mediating particle
for gravitational forces, though detecting this is extremely difficult, due to the weakness of
gravitational forces compared to other interactions.

1.2 Interactions

There are three types of interaction which are of importance in particle physics: the strong,
electromagnetic and weak interactions.

1.2.1 The Strong Interaction

The strong interaction is the strongest interaction.

e Responsible for binding of quarks to form hadrons (electromagnetic effects are much
weaker)

e Dominant in scattering processes involving just hadrons. For example, pp — pp is
an elastic process at low energy; whereas pp — ppr ™7~ is an inelastic process at

higher energy.

e Responsible for binding forces between nucleons p and n, and hence for all nuclear
structure.

Properties of the Strong Interaction:

i) The strong interaction preserves quark flavours, although ¢g pairs can be produced
and destroyed provided ¢, ¢ are the same flavour.

An example of this is:

+ u u +

T q s K

d S +

P u u X
u u




The ¥ and KT particles decay, but not via the strong interaction, because of con-
servation of strange quarks.

ii) Basic strong forces are “flavour blind”. For example, the interquark force between
q@ bound states in the 1) = c¢ (charmonium) and Y = bb (bottomonium) mesons are
well-approximated by the potential

Vo~ % + fr (1.1)

and the differences in energy levels for these mesons is approximately the same.

The binding energy differences can be attributed to the mass difference of the b and

¢ quarks.

iii) Physics is unchanged if all particles are replaced by antiparticles.

The dynamical theory governing the strong interactions is Quantum Chromodynamics
(QCD), which is a gauge theory of quarks and gluons. This is in good agreement with
experiment, however non-perturbative calculations are difficult.

1.2.2 Electromagnetic Interactions

The electromagnetic interactions are weaker than the strong interactions. They occur in
the interactions between electrically charged particles, such as charged leptons, mediated
by photons.

The simplest electromagnetic process consists of the absorption or emission of a photon
by an electron:

e > e

This process cannot occur for a free electron, as it would violate conservation of 4-
momentum, rather it involves electrons in atoms, and the 4-momentum of the entire atom
and photon are conserved.

Other examples of electromagnetic interactions are electron scattering mediated by
photon exchange



e > .
§V
e >

and there are also smaller contributions to this process from multi-photon exchanges.
Electron-positron interactions are also mediated by electromagnetic interactions

e+ e+
Y
e e
e’ e
Y
+
e e
Electron-positron annihilation can also produce particles such as charmonium or bot-

e+
Y W
-

tomonium

wWZO0XWO>T



The dynamic theory governing electromagnetic interactions is Quantum Electrody-
namics (QED), which is very well tested experimentally.

Neutrinos have no electromagnetic or strong interactions.

1.2.3 The weak interaction

The weak interaction is considerably weaker than both the strong and electromagnetic
interactions, they are mediated by the charged and neutral vector bosons W* and Z°
which are very massive and produce only short range interactions. Weak interactions
occur between all quarks and leptons, however they are in general negligable when there
are strong or electromagnetic interactions present. Only in the absence of strong and
electromagnetic interactions is the weak interaction noticable.

Unlike the strong and electromagnetic interactions, weak interactions can involve neu-
trinos. Weak interactions, unlike strong interactions, can also produce flavour change in

quarks and neutrinos.

The gauge bosons W* carry electric charge and they can change the flavour of quarks.
Examples of W-boson mediated weak interactions are n — p + e~ + Ue:

('D<‘

o o

o C
©

and p~ —— €7 + Ve + vyt

~10 -



u
U
W .
Ve
&
and v, +n — pu~ +p
Y .
+
W
d . u
n d d p
u u
The flavour changes within one family are dominant; e.g.
€ < U, B vy
u < d, ce s (1.2)

whereas changes between families, like u < s and u < b are “Cabibbo suppressed”.

The neutral Z°, like the photon, does not change quark flavour; though unlike the
photon, it couples to neutrinos. An example of a Z° mediated scattering process is ve”
scattering:

- 11 -



<I
A
A
'C<‘

e > ¢ > e

In any process in which a photon is exchanged, it is possible to have a Z% boson
exchange. At low energies, the electromagnetic interaction dominates; however at high
energies and momenta, the electromagnetic and weak interactions become comparable.
The unified theory of electromagnetic and weak interactions is Weinberg-Salam theory.

1.2.4 Typical Hadron Lifetimes

Typical hadron lifetimes (valid for most decays) via the three interactions are summarized

below:
Interaction Lifetime (s)
Strong 10722 — 10724
Electromagnetic | 10716 — 1072
Weak 1077 —10713

with the notable exceptional case being weak neutron decay, which has average lifetime
of 103s.

1.3 Conserved Quantum Numbers

Given a configuration of particles containing particle P, we define N(P) to denote the
number of P-particles in the configuration. We define various quantum numbers associated
with leptons and hadrons.

Definition 1. There are three lepton numbers. The electron, muon and tauon numbers
are given by

Le = N(e7) = N(e) + N(ve) = N(z)
Ly = N(u™) = N(u") + N(vu) = N(#)
Ly = N(r7) = N(v") + N(v;) — N(r) (1.3)

In electromagnetic interactions, where there are no neutrinos involved, conservation
of L is equivalent to the statement that leptons and anti-leptons can only be created or
annihilated in pairs. For weak interactions there are more possibilities, so for example, an

- 12 —



election e~ and anti-neutrino 7, could be created. Lepton numbers are conserved in all
interactions.

There are also various quantum numbers associated with baryons.

Definition 2. The four quark numbers S, C, B and T corresponding to strangeness,
charm, bottom and top are defined by

— N()) (1.4)

These quark quantum numbers, together with N(u) — N(@) and N(d) — N(d), are
conserved in strong and electromagnetic interactions, because in these interactions quarks
and antiquarks are only created or annihilated in pairs. The quark quantum numbers are
not conserved in weak interactions, because it is possible for quark flavours to change.

Definition 3. The baryon number B is defined by

1 _

B = (N(g) - N@) (15)
where N(q) and N(q) are the total number of quarks and antiquarks. Baryons therefore
have B = 1 and antibaryons have B = —1; mesons have B = 0. B is conserved in all
nteractions.

Note that one can write

1 - .
B:g(N(u)—N(ﬂ)+N(d)—N(d)+C+T—S—B) (1.6)
Definition 4. The quantum number Q is the total electric charge. Q is conserved in all
interactions
In the absence of charged leptons, such as in strong interaction processes, one can write
2 1 - .

Q:g(N(u)—N(fL)—i-C—FT)—g(N(d)—N(d)—S—B) (1.7)

Hence, for strong interactions, the four quark quantum numbers S, C, B, T together
with @ and B are sufficient to determine N (u) — N (@) and N(d) — N(d).

~13 -



2. Elementary Theory of Lie Groups and Lie Algebras

2.1 Differentiable Manifolds

Definition 5. A n-dimensional real smooth manifold M is a (Hausdorff topological) space
which is equipped with a set of open sets U% such that

1) For each p € M, there is some U* with p € U

2) For each U, there is an invertible homeomorphism xo : U — R™ onto an open
subset of R"™ such that if U* N UP # () then the map

250 xe ' 2o (U NUP) — 25U NUP) (2.1)

is smooth (infinitely differentiable) as a function on R™.

The open sets U* together with the maps z, are called charts, the set of all charts
is called an atlas. The maps xz, are local co-ordinates on M defined on the U®, and have
components z*, for i = 1,...,n. So a smooth manifold looks locally like a portion of R".

A n-dimensional complex manifold is defined in an exactly analogous manner to a real
manifold, with R" replaced by C™ throughout.

Definition 6. Suppose M is a m-dimensional smooth manifold, and N is a n-dimensional
smooth manifold, with charts (U, x4), (W4, y4) respectively. Then the Cartesian product
X = M x N is a m+n-dimensional smooth manifold, equipped with the standard Cartesian
product topology.

The charts are V&4 = U® x W4 with corresponding local co-ordinates

Za,A = Ta X YA 1 U x WA — R™H" (2.2)

Definition 7. Suppose M is a m-dimensional smooth manifold, and N is a n-dimensional
smooth manifold, with charts (U%,xs), (WA, ya) respectively. Then a function f : M — N
is smooth if for every U® and W4 such that f(U*) N WA # (), the map

yao foug!:wa(U?) — ya(WH) (2.3)
is smooth as a function R™ — R",

Definition 8. A smooth curve on a manifold M is a map v : (a,b) — M where (a,b) is
some open interval in R such that if U is a chart with local co-ordinates x then the map

xo~vy:(a,b)—R" (2.4)
may be differentiated arbitrarily often.

2.2 Lie Groups

Definition 9. A group G is a set equipped with a map e : G x G — G, called group
multiplication, given by (g1,92) — g1eg2 € G for g1, g2 € G. Group multiplication satisfies

— 14 —



i) There ezists e € G such that gee =ce g =g for all g € G. e is called an identity
element.

ii) For every g € G there exists an inverse g~' € G such that ge g~ ' =g leg=e.

ii1) For all g1, 92,93 € G; g1e(g20g3) = (g10g2)egs3, so group multiplication is associative.

It is elementary to see that the identity e is unique, and g has a unique inverse g~ 1.

Definition 10. A Lie group G is a smooth differentiable manifold which is also a group,
where the group multiplication e has the following properties

i) The map o : G x G — G given by (g1, 92) — g1 ® g2 is a smooth map.

1

it) The inverse map G — G given by g — g~ is a smooth map

Henceforth, we shall drop the e for group multiplication and just write g; ® go = g192.

Examples:

Many of the most physically interesting Lie groups are matrix Lie groups in various
dimensions. These are subgroups of GL(n,R) (or GL(n,C)), the n x n real (or complex)
invertible matrices. Group multiplication and inversion are standard matrix multiplication
and inversion.

Suppose that G is a matrix Lie group of dimension k. Let the local co-ordinates
be x* for i = 1,...,k. Then g € G is described by its matrix components g*Z(z?) for
A, B=1,...,n. The ¢*P are smooth functions of the co-ordinates z*. Examples of matrix
Lie groups are (here F =R or F = C):

i) GL(n,TF), the invertible n x n matrices over [F. The co-ordinates of GL(n,F) are the
n? real (or complex) components of the matrices.

ii) SL(n,F) ={M € GL(n,F) : det M = 1}

iii) O(n) = {M € GL(n,R) : MMT =1,}

iv) U(n) = {M € GL(n,C) : MMT =1}, where { is the hermitian transpose.
v) SO(n) ={M € GL(n,R) : MMT =1T,, and det M =1}

vi) SU(n) = {M € GL(n,C) : MM' =T, and det M = 1}. SU(2) and SU(3) play a
particularly important role in the standard model of particle physics.

vii) SO(1,n — 1) ={M € GL(n,R) : MTnM =n and det M =1}
where n = diag (1,—1,—1,--- — 1) is the n-dimensional Minkowski metric.

There are other examples, some of which we will examine in more detail later. It can
be shown that any closed subgroup H of GL(n,F) (i.e. any subgroup which contains all
its accumulation points) is a Lie group.

~15 —



Some of these groups are related to each other by group isomorphism; a particularly
simple example is SO(2) = U(1). Elements of U(1) consist of unit-modulus complex
numbers e? for § € R under multiplication, whereas SO(2) consists of matrices

R(9) = <C089 —sin9> (2.5)

sin @ cos

which satisfy R(6+¢) = R(6)R(¢). The map T : U(1) — SO(2) given by T'(e?) = R(6)
is a group isomorphism.

2.3 Compact and Connected Lie Groups

A lie group G is compact if G is compact as a manifold. Recall that a subset of U C R"
is compact iff it is closed and bounded, or equivalently iff every sequence u,, € U has a
subsequence which converges to some u € U.

It is straightforward to see that SU(n) is compact, for if we denote the rows of M €
SU(n) by R4 then RBRB = 04p. Hence the components M4% are all bounded |M48| < 1.
So it follows that if M, is a sequence of points in SU(n), then by repeated application of the
Bolzano-Weierstrass theorem, there is a subsequence M, which converges to some matrix
N. Moreover as the constraints det M,,, =1 and M,,, MJLT = 1 are smooth functions of the
matrix components, one must also have det N = 1 and NNt = 1 in the limit as r — oo,
ie. N € SU(n).

[There is a subtlety concerning convergence which we have glossed over, namely how
one actually defines convergence. We assume the existence of some matrix norm (for
example || M||syp = max(|M“AP|)) with respect to which convergence is defined. As all
(finite-dimensional) matrix norms are equivalent, convergence with respect to one matrix
norm ensures convergence with respect to any norm].

In contrast, the Lorentz group SO(1,n — 1) is not compact. For example, consider for
simplicity SO(1,1). One can define a sequence of elements M,, € SO(1,1) by

coshn sinhn

M, = 2.6
(sinhn cosh n) (2:6)

As the components of M,, are unbounded, it follows that M, cannot have a convergent
subsequence. Observe that as SO(1,n—1) is a Lie subgroup of both SL(n,R) and GL(n,R)
it must follow that SL(n,R) and GL(n,R) are also non-compact.

A Lie group G is said to be connected if any two points in the group can be linked
together by a continuous curve in G.

O(n) is not connected. To see this, observe that if M € O(n) then MM” = 1 and on
taking the determinant this implies det M = +1. Now take M € O(n) with det M = —1,
so if O(n) is connected, there is a continuous curve v : [0,1] — O(n) with (0) = I and
(1) = M. We can then compute det~(¢) which must be a continuous real function of ¢
such that dety(¢) € {—1,1} for all ¢ € [0, 1] and det~(0) = 1, dety(1) = —1. This is not
possible.

~16 -



We shall say that two points in G are connected if they can be linked with a continuous
curve. This defines an equivalence relation on GG, and hence partitions G into equivalence
classes of connected points; the equivalence class of g € G is called the connected component
of g. The equivalence class of points of O(n) connected to I is SO(n), which is connected.

2.4 Tangent Vectors

Suppose that U is an open subset of a manifold M, and that the curve v passes through
some p € U with v(t9) = p. Then the curve defines a tangent vector at p, denoted by ~p,
which maps smooth real functions f : U — R to R according to

o f = [ (0] (27)

The components of the tangent vector are

i = [ (@ o™iy, = Hpla™) (28)

Note that one can write (using the chain rule)

o (f)

(f ov(t))]t:to

(foatozoy®)],_,
0

M:&\&&\&

@
I
—

(7 0w (@ o) et

QD
)

I
M-
S (o))

@
Il
—

(foa” ey (2.9)
Proposition 1. The set of all tangent vectors at p forms a n-dimensional vector space
(where n = dim M ), denoted by T,,(M).
Proof

Suppose that p lies in the chart U with local co-ordinates . Suppose also that V,
W € T,(M) are tangent vectors at p corresponding to the curves v, o, where without
loss of generality we can take v : (a,b) — M, o : (a,b) — M with a < ty < b and
Y(to) = o(to) =p

Take a,b € R. Consider the curve p in R" defined by

pt) =a(zov)(t)+b(xoo)(t)— (a+b—1)x(p) (2.10)
where scalar multiplication and vector addition are the standard operations in R™.
Note that p(tg) = z(p).
Then define the curve p on U by p = 2! 0 p, so that p(tg) = p.
If f is a smooth function on U then by (2.9) it follows that

d
Za, Dl (dt(xop))t to

17 -



N Z oz’ (foux 1)‘x(p)(£10 ())e=to
i=1

B ) d l.
B a; a7 07 Dl (5 (@ 0 7)i=to

+ bz 6?5" (fo x_l)‘z(p)(%(fﬂ °7)"e=to
=1
— ai(f) + boy(f) (2.11)

So it follows that a<, 4 bo), is the tangent vector to p at p.
In order to compute the dimension of the vector space it suffices to compute a basis.
To do this, define n curves p(i) for i = 1,...,n passing through p by

(w0 p(i))(t)! = (x(p))’ +t6] (2.12)
Using (2.9) it is straightforward to compute the tangent vectors to the curves p(i) at
p;
o 0 1

and hence, if 7 is a curve passing through p then (2.9) implies that

W(f) =D (N (2.14)
i=1

and hence it follows that 4, = "1, W;p'(i)p. Hence the tangent vectors to the curves
p(i) at p span T,(M). A

Given the expression (2.13), it is conventional to write the tangent vectors to the curves
p(i) at p as

iy = (o), (2.15)

Lemma 1. Suppose that My, Ms are smooth manifolds of dimension ny, no respectively.
Let M = M x My be the Cartesian product manifold and suppose p = (p1,p2) € M. Then
Ty(M) = Ty, (My) @ Ty, (Mo).
Proof

Suppose V), € T,(M). Then V is the tangent vector to a smooth curve (), with
v(to) = p. Write y(t) = (71(t),72(t)); 7:(t) is then a smooth curve in M; and v;(to) = p;
fori=1,2.

Let f be a smooth function f : M — R. Suppose that x* are local co-ordinates on M;

fora =1,...,n; and y™ are local co-ordinates on My for m = 1,...,ny corresponding to
charts U; C My and Us C Ms.
Then one has nj + ny local co-ordinates z% on M where if ¢ = (g1, q2) € Uy x Us,

g1, q2) = (2 (@), - 2™ (@), v (@2), - - ¥ (2)) (2.16)
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Note that fi(q1) = f(q1,42) is a smooth function of ¢; when g2 is fixed, and fa(q2) =
f(q1,q2) is a smooth function of g2 when ¢ is fixed.
Then using the chain rule

ni1+n2 ) . d N
Vf = Z_:l 50 02 )l g (20 M) (1)) le=tg

ni a B d .
= Z 3$a(f1 °x 1)’(9«"(?1),31((12))@((33 0 71)*(t))]e=to
a=1

ny
0 _ d ,
+ Z @(fQ ) 1)|(x(p1),y((I2))%((y © '72)J (t))‘t:to
j=1
= (V(l)p + V(2)p)f (2-17)
where V' (1), is the tangent vector to v; at p, and V(2), is the tangent vector to y2 at
p. Hence V), = V (1), + V(2),. Conversely, given two smooth curves v;(t), y2(t) in M;, Mo
passing through p; and ps at t = o, with associated tangent vectors V (1), and V'(2),, one

can construct the smooth curve y(t) = (v1(t),v2(¢)) in M passing through p = (p1,p2) at
t = tg. Then (2.17) shows that V (1), + V(2), can be written as V,, € T,(M).

2.5 Vector Fields and Commutators
The tangent space of M, T'(M) consists of the union

T(M) = | T,(M) (2.18)
peEM

A vector field V on M is a map V : M — T(M) such that V(p) =V, € T,(M).
Note that T'(M) is a vector space with addition and scalar multiplication defined by

(X +Y)(f) =X +Y(f) (2.19)
where X, Y € T(M) and f: M — R is smooth, and

(@X)(f) = aX(f) (2.20)

for constant o € R.
At a point p € M, one can decompose V, into its components with respect to a
particular chart as

i 0
Vo=V (5, (2.21)
It is conventional to write
V=V 0 ) (2.22)
N ozt ’

where Vi = (V o 271)(z%) are functions R” — R and ( 6(?ci) is a locally defined vector
field which satisfies
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0
( ozt

It follows that T'(M) is n-dimensional with a local basis given by the ( aii ). The vector

) = & (2.23)

)

field is called smooth if the functions V* are smooth functions on R™.
Suppose now that f is a smooth function on M and that V', W are vector fields on M.
Then note that V f can be regarded as a function M — R defined by

(V)p) =Vpf (2.24)
Hence one can act on V' f with W), at some p € M to find

0

WV ) = Wi (0 (V)
= Wi(s) (VI3 (o Dy
= Wi e oy (o2 Dlegy
WL (o gy .25

The fact that there are second order derivatives acting on f means that we cannot
write W, (V f) = Z, f for some vector field Z.
However, these second order derivatives can be removed by taking the difference

% SOWJ 0 _
Wp(VE) = VoW F) = Wy g lat) = Vo 57 o) (55 (F 027Dt (2:26)

which can be written as Z,f where Z is a vector field called the commutator or alter-
natively the Lie bracket of W and V' which we denote by [W, V] with components

OV W
(3 V’L

i =
W,V w ozt ozt

(2.27)

Exercise:
Prove that the Lie bracket satisfies

i) Skew-symmetry: [X,Y] = —[Y, X] for all smooth vector fields X, Y € T'(M).
ii) Linearity: [aX + Y, Z] = o[X, Z]+ G[Y, Z] for «, § constants and X, Y, Z € T(M).
iii) The Jacobi identity: [[X,Y], Z]+[[Z, X],Y]+[[Y.Z],X]|=0forall X, Y, Z € T(M).

Definition 11. Let V' be a smooth vector field on M. An integral curve o(t) of V is a
curve whose tangent vector at o(t) is V|y), i-e.

d
dt
where in a slight abuse of notation, o*(t) = (x o 0)!(t) for some local co-ordinates x.

(0'(t) = Vo (2.28)

g

Such a curve is guaranteed to exist and to be unique (at least locally, given an initial
condition), by the standard existence and uniqueness theorems for ODE’s.
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2.6 Push-Forwards of Vector Fields

Suppose that M, N are two smooth manifolds and f : M — N is a smooth map. Then
there is an induced map

f.: T(M) — T(N) (2.29)

which maps the tangent vector of a curve v passing through a point p € M to the
tangent vector of the curve f o~ passing through f(p) € N.

In particular, for each smooth function h on N, and if v is a curve passing through
p € M with v(0) = p, and if V), € T,,(M) is the tangent vector of y at p then f.V}, € Ty (N)
is given by

(FoVdh = % (ho (F o),
= Vylho f) (230)

Hence it is clear that the push-forward map f, is linear on the space of tangent vectors.
Note that if M, N and @ are manifolds, and f: M — N, g : N — @ are smooth
functions then if h : Q — R is smooth and p € M,

((go £)Vp)(h) = Vy(ho(go f))
= Vp((hog)of)

= (f«Vp)(hog)
— (:(£V) (R) (2.31)
and hence
(go fle=g«o [ (2.32)

2.7 Left-Invariant Vector Fields

Suppose that G is a Lie group and a, g € G. Define the operation of left-translation
L,: G — G by

Lo.g = ag (2.33)

L, defined in this fashion is a differentiable invertible map from G onto G. Hence, one
can construct the push-forward Ly, of vector fields on G with respect to L,.

Definition 12. A vector field X € T(QG) is said to be left-invariant if

La*(X|g) = X|ag (2‘34)

Given v € T¢(G) one can construct a unique left-invariant vector field X (v) € T(G)
with the property that X (v)e = v using the push-forward by
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X (v)|g = Lgsv (2.35)

To see that X (v) is left-invariant, note that

X(U”ag = L(ag)*v (236)
but from (2.32) it follows that as L,y = L, 0 Ly we must have

Liagysv = (La © Lg)«v = Lax(Lgxv) = Lax X (v)g (2.37)

so X (v) is left-invariant. Hence there is a 1-1 correspondence between elements of the
tangent space at e and the set of left-invariant vector fields.

Proposition 2. The set of left-invariant vector fields is closed under the Lie bracket, i.e.
if X, Y € T(G) are left-invariant then so is [X,Y].
Proof

Suppose that f : G — R is a smooth function. Then

(La*[Xv Y]g)f = [Xv Y]g(foLa)
— X,(Y(f o L)) — Yy(X(f o L) (239)

But as X is left-invariant, L.« Xy, = X44 S0

Xagf = (LaXg)f = X,(f 0 La) (2.39)

so replacing f with Y f in the above we find

Xg((Yf) o La) = Xag(Y f) (2.40)

Moreover, as Y is left-invariant, it is straightforward to show that

(Y(foLa))g=Yy(foLa)
= (La*Yg)f
= YaQ(f)
= (Yf)(ag)
= ((Yf)oLa)g (2.41)

s0Y(foLa)=(Yf)oLq
Hence

Xg(Y(folLa))—Yy(X(foLa)) = Xg((Yf)oLa)— Yg((Xf)o0 Lg)
= Xag(Y f) = Yag(X[)

(X, Yagf (2.42)

So La+[X, Y]y = [X,Y]ag, hence [X, Y] is left-invariant. W
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2.8 Lie Algebras

Definition 13. Suppose that G is a Lie group. Then the Lie algebra L(G) associated
with G is Te(G), the tangent space of G at the origin, together with a Lie bracket | , | :
L(G) x L(G) — L(G) which is defined by

[v,w] = [Lyv, Lyw], (2.43)

forv,w € T.(G), Ly and Lyw denote the smooth vector fields on G obtained by pushing
forward v and w by left-multiplication (i.e. L.v|g = Lgwv), and [Lyv, Lyw] is the standard
vector field commutator. As the Lie bracket on L(G) is obtained from the commutator of
vector fields, it follows that the Lie bracket is

i) Skew-symmetric: [v,w] = —[w,v] for all v,w € L(QG).
it) Linear: [avy + oo, w] = afvy, w] + Blve, w] for a, B constants and v, va, w € L(G),

iii) and satisfies the Jacobi identity: [[v,w],z] + [[z,v],w] + [[w, z],v] = 0 for all v, w,
z € L(G).

where (i) follows because the push forward map is linear on the space of vector fields,
and (iii) follows because as a consequence of Proposition 2, Lg.[v,w] = [Lyv, Lyw],.

More generically, one can also define a Lie algebra to be a vector space g equipped
with a map [, | : g x g — g satisfying (4), (i), (i7i) above.

Definition 14. Suppose that {T; :i =1,...,n} is a basis for L(G). Then the T; are called
generators of the Lie algebra. As [T;,T;] € L(G) it follows that there are constants cijk
such that

T3, Tj] = ci* T (2.44)

The constants cijk are called the structure constants of the Lie algebra.
The structure constants are constrained by the antisymmetry of the Lie bracket to be
antisymmetric in the first two indices;

cijt = —c;if (2.45)

Also, the Jacobi identity implies

(T3, T3], Twe] + ([T, Te], Ti) + [Tk, T], T3] = 0 (2.46)

which gives an additional constraint on the structure constants

Cijngkm + Cj]cngim + C]m'éngm =0 (2.47)
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2.9 Matrix Lie Algebras

The Lie algebras of matrix Lie groups are of particular interest. Suppose that G is a matrix
Lie group, and V' € T(G) is a smooth vector field. Let f be a smooth function of the matrix
components g4Z. Then if h € G,

ap_97 (2.48)

where

(2.49)

defines a tangent matrix associated with the components V;* of V' at h. Each vector
field has a corresponding tangent matrix, and it will often be most convenient to deal with
these matrices instead of more abstract vector fields as differential operators.

In particular, if v(¢) is some curve in G with tangent vector V' then

d
Vf= %(fO’Y(t))
B dgAB af
T (2.50)

A
hence the tangent vector to the curve corresponds to the matrix %. We will fre-

quently denote the identity element of a matrix Lie group by e =1
Examples of matrix Lie algebras are

e a) GL(n,R): the co-ordinates of GL(n,R) are the n? components of the matrices, so
GL(n,R) is n?>-dimensional. There is no restriction on tangent matrices to curves in
GL(n,R), the space of tangent vectors is M, x,(R), the set of n x n real matrices.

e b) GL(n,C): the co-ordinates of GL(n,C) are the n? components of the matrices, so
GL(n,C) is 2n2-dimensional when viewed as a real manifold. There is no restriction
on tangent matrices to curves in GL(n, C), the space of tangent vectors is My, (C),
the set of n X n complex matrices.

e ¢) SL(n,R): Suppose that M(t) is a curve in SL(n,R) with M (0) = I. To compute
the restrictions on the tangent vectors to the curve note that

det M(t) =1 (2.51)

so, on differentiating with respect to t,
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dM(t)
T

Tr(M*(t) )=0 (2.52)

and so if we denote the tangent vector at the identity to be m = d]\gt(t)

Tr m = 0. The tangent vectors correspond to traceless matrices. Hence SL(n,R) is

lt=0 then

n2 — 1 dimensional.

e d) O(n): suppose that M(t) is a curve in O(n) with M (0) = I. To compute the
restrictions on the tangent vectors to the curve note that

M@GM#T =1 (2.53)

so, on differentiating with respect to t,

dM (t) T dM ()"
—=M(t M) ——— =0 2.54
M ()T + M) = (2.54)
and hence if m = d]\[/i[t(t) |lt=o then m-+m7T = 0. The tangents to the curve at the identity

correspond to antisymmetric matrices. There are %n(n — 1) linearly independent

antisymmetric matrices, hence O(n) is $n(n — 1)-dimensional.

Note that the Lie algebra of SO(2) is 1-dimensional and is spanned by

i) ) 259

As [T1,T1] = 0 it follows trivially that the Lie bracket vanishes

e f) SO(n) the group of n x n real matrices such that if M € SO(n) then MM7T =1
and det M = 1. By the reasoning in (c¢) and (e) it follows that the tangent matrices
at the identity are skew-symmetric matrices (these are automatically traceless).

As the skew symmetric matrices are automatically traceless, it follows that the Lie
algebra £(S0O(n)) of SO(n) is identical to the Lie algebra of O(n). If v,w € L(SO(n))
are skew-symmetric matrices it is straightforward to show that the matrix commu-
tator [v,w] is also skew symmetric, as [v,w]? = (vw — wv)T = wlv? —VTwT =
[w,v] = —[v,w]. Hence [v,w] € L(SO(n)) as expected. We will show that vector

field commutation can be reduced to tangent matrix commutation for matrix Lie

groups.
Exercise

Show that the tangent vectors of U(n) at I consist of antihermitian matrices, and the
tangent vectors of SU(n) at I are traceless antihermitian matrices.
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Proposition 3. Suppose that G is a matriz Lie group and V is a smooth vector field on
G and a € G is fized. If V denotes the tangent matriz associated with V', then the tangent
matriz associated with the push-forward Lq.V is aV.
Proof

Suppose h € G, and f : G — R is a smooth function on G. Consider the tangent
vector L.V}, defined at ah

Then

(LaxVi)f = Vi(f o La)

= Vif (2.56)

S L . (2.57)

So it follows that the tangent matrix associated with L.V}, is aV. m
Using this result, it is possible to re-interpret the commutator of two left-invariant
vector fields in terms of the matrix commutators of their associated matrices.

Proposition 4. Suppose that G is a matriz Lie group and that v,w € Te(G) and V., W
are the left-invariant vector fields defined by V, = Lgwv, Wy = Lgyw. Then the matriz
associated with [V, W], is the matriz commutator of [0,%] where 0 and W are the matrices
associated with v and w.
Proof

By definition, the matrix associated with [V, W] is

0 dg 0 0gAB
—yr L (wm WP (Y™
v 8@1’192/ ox™ ) B 6301’( ox™ )
ow ov
— 1P _ TP 2.
Vv 97 1% B (2.58)

where V aﬂd W denote the matrg:es associated with V and W. But from the previous
.. 5 AB N . AB )
proposition V, = g2 H¢B and W, = g CwCE so
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agAC agAC
AB _ ;P ~CB _ 1i/P ~CB
V,W]Z =V e |ew %% o |
— ,&AC,UA}C'B TDAC@CB
= [0, w]4P (2.59)

as required. W

We have therefore shown that if G is a matrix Lie group then the elements £(G) can be
associated with matrices and the Lie bracket is then simply standard matrix commutation
by Proposition 4 (which can be directly checked satisfies all three of the Lie bracket for
Lie algebras). In the literature, it is often conventional to denote the Lie algebra of SO(n)
by so(n), su(n) is the Lie algebra of SU(n), u(n) the Lie algebra for U(n) etc. We will
however continue to use the notation £(G) for the Lie algebra of Lie group G.

Observe that the image [£(G), £L(G)] under the Lie bracket need not be the whole of
L(G). This is clear for SO(2), as the Lie bracket vanishes identically in that case. Recall
that the Lie bracket on R viewed as a Lie group under addition vanishes identically as
well. If G is a connected 1-dimensional Lie group then G must either be isomorphic to R
or SO(2) (equivalently U(1)).

2.10 One Parameter Subgroups

Definition 15. A curve o : R — G is called a one-parameter subgroup if o(s)o(t) = o(s+t)
for all s,t € R.

Note that if o(¢) is a 1-parameter subgroup then o(0) = e.

We shall show that these subgroups arise naturally as integral curves of left-invariant
vector fields.

Proposition 5. Suppose that V' is a left-invariant vector field. Let o(t) be the integral
curve of V' which passes through e when t = 0.

Then o(t) is a 1-parameter subgroup of G.
Proof

Let x denote some local co-ordinates.

Consider the curves x1(t) = o(s)o(t) and x2(t) = o(s + t) for fixed s.

These satisfy the same initial conditions x1(0) = x2(0) = o(s).

By definition, yo satisfies the ODE

G(@oxa®)") = (o ots +0))
= Va(s+t) (l,n)

Consider
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= i(((aj‘ o La(s) o x_l) o(xo U)(t))n)

dt
B ajm (o Lo oa™)") Im(t)%((a: oa(t)™) (2.61)

where we have used the chain rule. But by definition of o(t),

L (wooym =V, (2.62)

Hence, substituting this into the above:

= Viuw(@")  (as Vis left — invariant) (2.63)

So x1, x2 satisfy the same ODE with the same initial conditions.

Hence it follows that o(s)o(t) = o(s +t), i.e. o defines a 1-parameter subgroup. W

The converse is also true: a l-parameter subgroup o(t) has left-invariant tangent
vectors

Proposition 6. Suppose o(t) is a 1-parameter subgroup of G with tangent vector V. Sup-
pose Ve =v. Then Vi) = Lg(1)«v, i.€. the tangent vectors are obtained by pushing forward
the tangent vector at the identity.
Proof

Suppose f : G — R is a smooth function. Then

Voo f = (7 00)()
i (L) — fote),

h—0 h

(f(U(t)J(h)) - f(U(f)))

- ;1%% h
= @(f o Loy 0 o(t'))]v=o
= (Lo@v)f (2.64)

SO Vg(t) = Lo(t)*v. ]
From this we obtain the corollory

Corollory 1. Suppose that o(t), u(t) are two 1-parameter subgroups of G with tangent
vectors V., W respectively, with Ve = We = u. Then o(t) = u(t) for all t.
Proof

Note that
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= (Lo(psu)z" (2.65)

and also

(w0 ut)") = Wyya”
= (Lypsu)z" (2.66)

So z oo and x o y satisfy the same ODE and with the same initial conditions, hence

2.11 Exponentiation

Definition 16. Suppose v € T.(G), Then we define the exponential map exp : T.(G) — G
by

exp(v) = o,(1) (2.67)

where o,(t) denotes the 1-parameter subgroup generated by X(v), and X (v) is the
left-invariant vector field obtained via the push-forward X (v)y = Lgsv
Note that exp(0) = e.

Proposition 7. If v € T.(G) and t € R then

exp(tv) = oy(t) (2.68)

and hence exp((t1 + t2)v) = exp(t1v)exp(tav).
Proof

Take a € R, a # 0. Note that o, (at) and 04,(t) are both 1-parameter subgroups of G.
The tangent vector to o4,(t) at the origin is av.

We also compute the tangent vector to o,(at) at e via

d n d n n
a((a: oo(at)) )t=0 = ad(at) ((z o o(at)) )at:O =av (2.69)
So oy (at) and 04y(t) have the same tangent vector av at the origin. Therefore o, (at) =
Oav(t).
Hence

exp(tv) = oy (1) = o, (t) (2.70)

as required. W



2.12 Exponentiation on matrix Lie groups

Suppose that G is a matrix Lie group, and v € T.(G) is some tangent matrix. The
exponential exp(tv) produces a curve in G with 4 (exp(tv))|=o = v satisfying exp((t1 +
to)v) = exp(tiv) exp(tav)

It is then straightforward to show that

& fexp(t0)li=ty = im (17 (exp((to + ) — explton)
= }/E)I(l) (t_l(exp(tv) —I) exp(tov))
= vexp(tov) (2.71)

Similarly, one also finds %(exp(tv))hzto = exp(tov)v, so v commutes with exp(tv).

It is clear that % exp(tv) = vexp(tv) implies that exp(tv) is infinitely differentiable (as
expected as the integral curve is smooth by construction). Then by elementary analysis,
one can compute the power series expansion for exp(tv) as

> gt

|
=0 n!

exp(tv) = (2.72)

with a remainder term which converges to 0 (with respect to the supremum norm on
matrices, for example). Hence, for matrix Lie groups, the Lie group exponential operator
corresponds to the usual operation of matrix exponentiation.

Comment: Suppose that G; and G are Lie groups. Then G = G1 x G4 is a Lie group,
and by Lemma 1, £(G) = L(G1) @ L(G2).

Conversely, suppose Lie groups G, G1, G9 are such that L(G) = L(G1) @ L(G2). Then
by exponentiation, it follows that, at least in a local neighbourhood of e, G has the local
geometric structure of G1 x G2. However, as it is not in general possible to reconstruct the
whole group in this fashion, one cannot say that G = G1 x G globally (typically there will
be some periodic identification somewhere in the Cartesian product group).

In general, one cannot reconstruct the entire Lie group by exponentiating elements of
the Lie algebra. Consider for example, SO(2) and O(2). Both £(O(2)) and L£(SO(2)) are

generated by
0 1
T, = 2.73
1 (_ ) 0) (2.73)

however it is straightforward to show that
oTy _ cos O sinf 574
° (— sin # cosf (2.74)

which always has determinant +1. So SO(2) = exp(L(SO(2))) but O(2) # exp(L(O(2))).
However, there do exist neighbourhoods By of 0 € £(G) and B; of I € G such that the
map exp : By — Bj is invertible. (The inverse is called log by convention).

— 30 —



2.13 Integration on Lie Groups

Suppose that G is a matrix Lie group, and let V' be a left-invariant vector field on G, and
suppose that the associated tangent matrix to V at the identity is ©.
Then if z are some local co-ordinates on GG, we know that

. om 09(x)
g9(x)0 = Vi, D (2.75)
From this formula, it is clear that if A € G is a constant matrix then
Vo) = Vhg() (2.76)

If H={hy,...,h,} is a finite group, and f : H — R is a function, then the integral of
f over H is simply

> f(hi) (2.77)
=1

and note that if h € H is fixed then

r

Do fha) =) f(hhi) (2.78)
=1

=1

We wish to construct an analogous integral over a matrix Lie group G. Suppose that
x,y are co-ordinates on G and define

d"z = dzt. .. da", d"y =dy' ... dy" (2.79)

Note that d"x and d"y are related by

d"z = J " (2.80)
where J is the Jacobian J = det (%)
Now suppose that p; for ¢ = 1,...,n is a basis of left-invariant vector fields. Then
; 0
:ui‘g(ac) = Nig(x)@ (2.81)

Then we have

| _ i 9
i g(x) oxi i g(x) dad dyF = K g(y) Oyi (2.82)
SO
. 8yj
J _ ok
Higly) = Pig(x) gk (2.83)
and hence
det (,ug’g(z)) = J ldet (,ug’g(y)) (2.84)

Motivated by this, we make the
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Definition 17. The Haar measure is defined by

d"x(det(uig(x)))*l (2.85)

Then by the previous reasoning,

d"z(det (uz !

o)) = dy(det(ud )) (2.86)

)

so the measure is invariant under changes of co-ordinates.
Also, if h is a constant matrix, then as the y; are left-invariant, /'Lg,g(:c) = ,uihg(x), and
SO

d"x( det(uf.;g(x))) = d"a( det(,uihg(x))) - (2.87)

It follows that if f: G — R, then

[ (et ) o) = [ dno(dettul ) rlhg@) @289

It can be shown that the Haar measure (up to multiplication by a non-zero constant)
is the unique measure with this property.

Example: SL(2,R)
Consider g € SL(2,R),
a b
= 2.89
g (C J (2.89)
for a,b,c,d € R constrained by ad — bc = 1. Note that
d —b
-1
= 2.90
g (_C a) (2.90)

We take co-ordinates ! = b, 22 = ¢, 2® = d (in some neighbourhood of the identity).
Then

Log (e d)  og (0 0y Log (o -
I oat —% —c]’ I z2 é 0/’ 9 923 ae a

(2.91)

) e () e

to be a basis for £L(SL(2,R)). Then note that

Take

0 0
+ cg_l—g — dg_l—g

_ -1
v = —bg 0z? oz3

99
Ozt
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v2 =dg g
dg _1 Og
v3 = ag 18 T+ g 18:1:3 (2.93)

It follows that the left-invariant vector fields obtained from pushing-forward the vector
fields associated with vy, v9,v3 at the identity with L, are

TR )
L= 050 T o2 ox3
0
M2 852 )
— g2 4T 2.94
H3 = a5 +68x3 (2:94)
So the matrix ug is
‘ b ¢ —d
wh=10 d 0 (2.95)

As det(,ug ) = d it follows that the Haar measure in these co-ordinates is 5 db dc dd.

2.14 Representations of Lie Groups

Definition 18. Let V' be a finite dimensional vector space (over R or C) and let GL(V)
denote the space of invertible linear transformations V. — V. Then a representation of a
Lie group G acting on V is a map D : G — GL(V') such that

D(g192) = D(91)D(g2) (2.96)

for all ga, g2 € G. (i.e. D is a homomorphism). The dimension of the representation is
given by dim D =dim V.

Lemma 2. If D is a representation of G then D(e) = 1 where 1 € GL(V) is the identity
transformation, and if g € G then D(g~1) = (D(g))~ .
Proof

Note that D(e) = D(ee) = D(e)D(e) and so it follows that D(e) = 1 where 1 € GL(V)
is the identity transformation.

If g€ G then 1="D(e) =D(g99~") = D(9)D(9"),s0 D(g~") = (D(¢9))"". M

If M (V) denotes the set of all linear transformations V. — V, and D : G — M(V)
satisfies D(e) = 1 together with the condition (2.96) then it follows from the reasoning
used in the Lemma above that D(g) is invertible for all g € G, with inverse D(g~!), and
hence D is a representation.

We next define some useful representations

Definition 19. The trivial representation is defined by D(g) =1 for all g € G
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Definition 20. If G is a matriz Lie group which is a subgroup of GL(n,R) or GL(n,C)
then the group elements themselves act directly on n-component vectors. The fundamental
representation is then defined by D(g) = g.

Definition 21. If G is a matriz Lie group then the adjoint representation Ad : G —
GL(L(G)) is defined by

(Ad(9))X = gXg~! (2.97)
for g € G and X € L(G) is a tangent matriz.

Lemma 3. Ad(g) as defined above is a representation
Proof

We first verify that if X € £(g) then Ad(g)X € L(G).

Fix g € G. Next, recall that if X € £(G) then there is some smooth curve in G, y(t)
such that X = dzl—sf)h:o. Define a new smooth curve in G by p(t) = gvy(t)g~!, then the
tangent matrix to p(t) at ¢ = 0 is given by dfi—g)hzo = gdzl—gf)h:og*l =gXg L

Hence Ad(g)X € L(G).

It is clear that Ad(g) is a linear transformation on X € £L(G).

Note that Ad(e)X = eXe ! = X, so Ad(e) = 1. Also, if g1, g2 € G then

Ad(g192)X = (9192)X (g192) "
= 192X g5 g7
= 91(92X 95 Va7
= g1(Ad(g2)X)gy "
= Ad(g1)Ad(g2)X (2.98)

1

hence Ad(g192) = Ad(g1)Ad(g2).
It then follows that Ad(g)Ad(g~') = Ad(gg™') = Ad(e) = 1 so Ad(g) is invertible. B

Definition 22. Suppose D is a representation of G acting on V. A subspace W C V is
called an invariant subspace if D(g)w € W for all g € G and w € W.

Definition 23. Suppose D is a representation of G acting on V. Then D 1is reducible if
there is an invariant subspace W of V. with W # 0 and W # V. If the only invariant
subspaces of V are 0 and V then D is called irreducible.

Definition 24. A representation D is called totally reducible if there exists a direct sum de-
composition of V into subspaces W;, V.=W1 P Wo P ... B Wy, where the W; are invariant
subspaces with respect to D and D restricted to W; s irreducible.

In terms of matrices, if D is totally reducible, then there is some basis of V' in which
D has a block diagonal form

Dig)=| O Da(g) (2.99)
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D;(g) denotes D(g) restricted to W.
Definition 25. A representation D of G acting on V is faithful if D(g) =1 only if g = e.

Definition 26. Suppose that D is a representation of G acting on V where V is a vector
space over C equipped with an inner product. Then D is a unitary representation if D(g) :

V — V satisfies D(g)D(g)f = 1 for all g € G.

Proposition 8. A finite dimensional unitary representation is totally reducible
Proof

If D is irreducible then we are done. Otherwise, suppose that W is an invariant
subspace. Write V. =W @& W . Suppose v € W, . Then if w € W and g € g,

(D(g)v,w) = (v,D(g)"w)
= (v,D(g9)"'w)
= (v,D(g™")w)
=0 (2.100)

as D(g~')w € W because W is an invariant subspace.

Hence it follows that if v € W, then D(g)v € W, and so W, is also an invariant
subspace. Repeating this process by considering D restricted to the invariant subspaces W
and W one obtains a direct sum decomposition of V' into invariant (orthogonal) subspaces
W; such that D restricted to W; is irreducible. B

Proposition 9. Let Vi, Vs be finite dimensional vector spaces. Suppose D is a represen-
tation of G acting on V1, and A : Vi — Vs is an invertible linear transformation. Define
D(g) = AD(g)A~'. Then D is a representation of G on Va.
Proof

As D is a composition of invertible linear transformations, D is also an invertible linear
transformation on V5.

Also, if g1,g2 € G

D(glg2) = AD(glgg)A’l

AD(g1)D(g2) A"

AD(g1) A" AD(g2)A™!

D(91)D(g2) (2.101)

and hence D is also a representation.

Definition 27. Suppose D is a representation of G acting on Vi, and A : Vi, — V4 is an
invertible linear transformation. Define D(g) = AD(g)A~". Then D and D are said to be
equivalent representations.
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Proposition 10. Schur’s First Lemma: Suppose that D1 and Do are two irreducible rep-
resentations of G acting on V1 and Vo respectively and there exists a linear transformation
A Vi — Vy such that

AD,(g) = Da(g)A (2.102)

for all g € G. Then either D1 and Do are equivalent representations, or A = 0.
Proof First note that

Ker A={¢yeVi: AY =0} (2.103)

is an invariant subspace of D1, because if ¢ € Ker A then

ADi(g9)y = Da(9)AY =0 (2.104)
so Di(g)y € Ker A for all g € G. But D; is irreducible on Vj, so one must have

Ker A=0or Ker A=V;,s0 Ais 1-1 or A =0.
Similarly,

Im A={¢ € Va:¢= Ay for some ¥ € V1 } (2.105)

is an invariant subspace of Do, because if ¢ € Im A then there is some ¢ € V; such
that ¢ = A1 and hence

Ds(9)¢ = D2(g9) Ay = AD1(g)v (2.106)

and hence Dy(g)¢ € Im A for all g € G. But Dy is irreducible on V3, so one must have
ImA=0o0orIm A=V, ie. A=0or A is onto.

Hence either A = 0 or A is both 1-1 and onto i.e. A is invertible. If A is invertible
then Dy and D5 are equivalent. B

Proposition 11. Schur’s Second Lemma: Suppose that D is an irreducible representation
of G on V, where V is a vector space over C, and A :' V — V is a linear transformation
such that

AD(g) = D(g)A (2.107)

forall g € G. Then A = Al for some \ € C.
Proof
As V is over C, A has at least one eigenvalue. Let A € C be an eigenvalue of A, with
corresponding eigenspace U (U # 0). Then U is an invariant subspace of V' with respect
to D, for if ¢ € U then
A = N (2.108)

and if g € G, then
AD(g)y = D(g9) Ay = D(g)(A\p) = AD(g)¥» (2.109)

so D(g)y € U.
But D is irreducible on V, so this implies U =V (as U # 0).
Hence it follows that A = A1. B
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Definition 28. Suppose that D1 and Do are representations of the Lie group G over vector
spaces V1 and Va respectively. Let V- = V1 Q) Va be the standard tensor product vector space
of Vi and Va consisting of elements vi @ vy (v1 € V1 and ve € Vo) in the vector space dual
to the space of bilinear forms on Vi x Vo. If v1 ® v9 € V then vy ® ve acts linearly on
bilinear forms Q2 via v1 @ V2 = Q(v1,v2). V is equipped with pointwise addition and scalar
multiplication which satisfy (v1 + w1) @ (v + we) = V1 ® V2 + V] @ Wa + W1 @ Vo + W ® Wo
and a(vy ® v2) = (av1) @ v = v1 ® (awvs).
Then the tensor product representation D is defined as a linear map on V satisfying

D(g)v1 ® v2 = D1(g)v1 @ Da(g)v2 (2.110)

for g e G and v1 € V1 and vy € V5

Proposition 12. The tensor product representation defined above is a representation.
Proof
The map D(g) is linear by construction, also

D(e)vy ® va = D1(e)v1 @ Da(e)ve = v1 ® vy (2.111)

because Di(e) = 1 and Da(e) = 1. Hence D(e) = 1. And if g1, g2 € G then

D(g192)v1 ® v2 = D1(g192)v1 ® D2(g192)v2
= D1(g1)D1(g92)v1 @ Da(g1)D2(g2)v2
= D(g1)(D1(g2)v1 ® D2(g2)v2)
= D(gl)D(QQ)’Ul X vy (2112)

so D(g192) = D(91)D(g2). Hence, this together with D(e) = 1 implies that D(g) is
invertible. So D(g) is a representation. l

Note that if D; is irreducible on V; and Dj is irreducible on V5 then D = D; Q) Dy is
not generally irreducible on V' = V; @ V,2. Indeed, we shall be particularly interested in
decomposing D into irreducible components in several explicit examples.

2.15 Representations of Lie Algebras

Definition 29. Let V' be a finite dimensional vector space (over R or C) and let M (V)
denote the space of linear transformations V- — V. Suppose that L(G) is the Lie algebra of a
Lie group G. Then a representation of L(G) acting on'V is a linear map d : L(G) — M (V)
satisfying
d([X,Y]) =d(X)d(Y) — d(Y)d(X) (2.113)
for all X, Y € L(G). The dimension of the representation is the dimension of V.

Definition 30. The trivial representation of L(G) on V is given by d(X) = 0 for all
X € L(G)
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Definition 31. If G is a matriz Lie group and hence L(G) is a matriz Lie algebra, then
the tangent vectors can be regarded as matrices acting directly on n-component vectors.
Then we define the fundamental representation of L(G) on V by d(X) =X

There is a particularly natural representation associated with any Lie algebra.

Definition 32. Let £(G) be a Lie algebra. Then the adjoint representation is a represen-
tation of L(G) over the vector space L(G), ad : L(G) — M(L(G)) defined by

(ad v)w = [v, w] (2.114)

forv,w e L(G).

It is clear from the above that (ad v)w is linear in w , hence ad v € M(L(G)), and
ad v is also linear in v.

Moreover, if vy, v, w € L(G) then

(ad [v1, va]Jw = [[v1, va], w]
= [v1, [v2, w]] — [v2, [v1, w]] (using the Jacobi identity)
ad v1)[ve, w] — (ad va)[vy, W]

= (
= (ad v1)(ad ve)w — (ad ve)(ad v)w (2.115)

so ad is indeed a representation.

2.16 The Baker-Campbell-Hausdorff (BCH) Formula

The BCH formula states that the product of two exponentials can be written as an expo-

nential:

1 1 1

exp(v) exp(w) = exp(v +w+ 3 [v,w] + [, [o,wl] + vl + ) (2116)
where ... indicates terms of higher order in v and w. For simplicity we shall consider

only matrix Lie groups, in which case the Lie algebra elements are square matrices.

To obtain the first few terms in this formula, consider e®’e® as a function of t and set

eZt) = tvetv (2.117)

At t = 0 we must have €Z(%) = I, which is solved by taking Z(0) = 0 (this solution is
unique if we limit ourselves to the neighbourhood of the identity on which exp is invertible).
Hence we can write Z(t) as a power series

Z(t) =tP + %FQ +0(t) (2.118)

where we determine the matrices P and @ by expanding out (2.117) in powers of ¢:

[+ tv+w)+ %t2(w2 + v 4+ 20w) + O(t*) =T+ tP + %tz(Q + P2+ 0@ (2.119)

from which we find P = v+ w and Q = [v, w].
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Proposition 13. All higher order terms in the power series expansion of Z(t) in the BCH
formula depend only on sums of compositions of commutators on v and w.

Proof
Suppose that Z(y) is an arbitrary square matrix. Consider

0 ((22)
= — 2.12
filay) = 5o (2120)
and
! 0Z(y)
— (z—14t)Z(y) Y) (-2 (y)
fa(z,y) /1:5 e 3y e dt (2.121)
These both satisfy
ofi  0Z(y) ,
L 2 ) 1 24 i) (2,122

and f;(0,y) = 0 for ¢ = 1,2. Hence fi(z,y) = fa(x,y).
Now suppose that Z(t) is the matrix appearing in the BCH formula, i.e.

eZ) = etvetw (2.123)
Then consider the identity fi(1,t) = f2(1,t). This implies that

1
v+ elVapetY :/ eyZ(t)a(Zait)e—yZ(t)dy (2.124)
0

Now consider the function

g(t) = e"we " (2.125)
this satisfies g(0) =Y and

dn
ﬁg = e (ad v)"we ™ (2.126)

hence the power series expansion of ¢(t) is given by

o
_ t"
ewe™ = w + Z H(ad v)" w (2.127)
n=1
Applying this expression to both sides of (2.124) and performing the y-integral, one
finds

o0

=t dz 1 dz
— "= — R Z(t))"— 2.12
v+w+nzlm(adv)w dt+zl(n+1)!(ad (B)"— (2.128)

Then by expanding out Z(t) =Y 2 | Z,t" (as we know that Z(0) = 0), it follows by
induction using the above equation that the Z, can be written as sums of compositions of
commutators on v and w. W

Exercise: Suppose that [v, w] = 0. Show that e’e” = "™,
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Proposition 14. Suppose that D is a representation of the matriz Lie group G acting on
V. Then there is a representation d of L(G) also on 'V defined via

2 (Dexp(tv)) o (2.129)

d(v) = p

forv e L(G).
Proof
It is convenient to expand out up to O(¢®) by

D(e') =1+ td(v) + t?h(v) + O(t?) (2.130)

Note that as D is a representation we must have D(e(t112)?) = D(e!1?)D(e!2?)

Hence

L+ (t1 +t2)d(v) + (1 +t2)*h(v) + O(£)) = (1 +t1d(v) + Eh(v)) (1 +tad(v) + t3h(v)) + O(t)

(2.131)
and so on equating the t1ty coefficient we find h(v) = $d(v)?.
Next consider for v,w € L(G)
—tv —tw tv tw 1 2 2 1 2 2
D(e e "™e™e™) = (1 —td(v) + §t d(v)*)(1 — td(w) + it d(w)?)
x (1 +td(v) + %th(v)z)(l + td(w) + %th(w)Q) +O(t?)
=1+ 2(d(v)d(w) — d(w)d(v)) + O(t3) (2.132)
But using the BCH formula
et eTtw tv tw e—t(v—i—w)—&-%1&2[1),111}-1—0(753)et(v—i—w)-ﬁ-%t2 [v,w]+O(3)
_ tPlowl+o(t?) (2.133)
and so
D(e e Welvel) = D(etQ[”’wHO(tg)) =1+ t2d([v,w]) + O(t?) (2.134)
Comparing (2.132) with (2.134) we find that
d([v,w]) = d(v)d(w) — d(w)d(v) (2.135)
as required.
To show that d is linear, suppose v, w € L(G) and «, 3 are constants. Then
D(etcwetﬁw) — D(etcw)D(eth)
= (1 4 tad(v) + O(t*))(1 + tBd(w) + O(t?))
= 1+ t(ad(v) + Bd(w)) + O(t?) (2.136)
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But by the BCH formula

D(etcwetﬁw) _ D(et(av+,@w)+0(t2)) =1+ td(av + fw) + O(tQ) (2.137)

Hence, comparing the O(¢) terms in (2.136) and (2.137) it follows that d(av + fw) =
ad(v) + fd(w). &

Proposition 15. If G is a matriz Lie group, then the representation Ad : G — GL(L(Q))
induces the representation ad : L(G) — M(L(G)).
Proof

If v,w € L(G) then

Ad (e")w = ePwe ™™
= (1 +tv+Ot*)w(l — tv + O(t?))
= w + tv,w] + O(t?)

= (I+tad v+ O(t*))w (2.138)
and hence it follows that
d tv
a(Ad(e )|=0 =ad v (2.139)

as required. W
We have seen that a representation D of the matrix Lie group G acting on V' gives rise
to a representation d of the Lie algebra £(G) on V. A partial converse is true.

Definition 33. Suppose that G is a matriz Lie group. Let d denote a representation of
L(G) on V. Then a representation D is induced locally on G via

D(g) = ) (2.140)

for those g € G such that g = €".
Here we assume that the representation d(v) is realized as a matrix linear transforma-

tion on V, so that the standard matrix exponentiation e4(®)

may be taken. The represen-
tation D induced by d is generally not globally well-defined, but it is locally well-defined

on the neighbourhood of the identity on which exp is invertible.

Proposition 16. The map D given in (2.140) which is locally induced by the representation
d of L(G) on'V defines a representation.
Proof

Clearly, D(g) defines a linear transformation on V.

As I = € it follows that D(e) = e¥®) = €0 = 1 where d(0) = 0 follows from the
linearity of d.

Also, suppose that g1, go have g = e"', go = 2. Then by the BCH formula we have

G192 = pv1Hv2 3 [V1,v2] 4. (2.141)
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where ... denotes a sum of higher order nested commutators by Proposition 13. Hence

D(g1g2) = ed(vlJrszr [v1,v2]+...)
— ) +d(v2)+5d(fvrva))+d(..) (by the linearity of d)
el Fd(v2)rgld(vn).dw)l 4 (ysing (2.113))
— d(v1) od(v2)
= D(9:1)D(g2) (2.142)

So D is at least locally a representation. Note that we have made use of the fact that all
higher order terms in the BCH expansion can be written as sums of commutators, together
with the property (2.113) of representations of £(G) in proceeding from the second to the
third line of the above equation. l

Proposition 17. Suppose that G is a matriz Lie group. If D is a unitary representation
of G on V then the induced representation d of L(G) on V is antihermitian.

Conversely, suppose d is a antihermitian representation of L(G) on V', then the (lo-
cally) induced representation D of G on V is unitary.
Proof

First suppose that D is a unitary representation.

Recall that d satisfies D(e!X) =T+ td(X) + O(t?) for t € R and X € L(G).

As D is unitary it follows that D(e!*)D(e!*)" = 1.

Hence (I +td(X) + O(t?))(I + td(X) + O(t?))" =1, so expanding out, the O(t) terms
imply d(X) +d(X)T =0, i.e. d is antihermitian.

Conversely, suppose that d is an antihermitian representation of £(G) on V. Let D
denote the (locally) induced representation of G on V.

Suppose that g € G is given by g = e* for X € £L(G). Then

D(g) = 4X) (2.143)
Then
D(g)D(g)" = /) (X))
ed(X)ed(X)T
— d(X) g—d(X)
1 (2.144)

Hence D(g) is unitary H.
There are directly analogous definitions for irreducibility of representations of Lie al-
gebras

Definition 34. Suppose d is a representation of L(G) acting on V. A subspace W C V is
called an invariant subspace if d(X)w € W for all X € L(G) and w € W.

Definition 35. Suppose d is a representation of L(G) acting on V. Then d is reducible
if there is an invariant subspace W of V with W # 0 and W # V. If the only invariant
subspaces of V' are 0 and V' then d is called irreducible.
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Definition 36. A representation d of L(G) is called totally reducible if there exists a direct
sum decomposition of V into subspaces Wi, V.= W, @ Wa &P ... @ Wi, where the W; are

invariant subspaces with respect to d and d restricted to W; is irreducible.

Proposition 18. Suppose that G is a matriz Lie group. If D is a representation of G on'V
with invariant subspace W, then W is an invariant subspace of the induced representation
d of L(G) on V

Conversely, suppose d is a representation of L(G) on V with invariant subspace W ;
then W is an invariant subspace of the (locally) induced representation D of G on V.
Proof

Suppose that D is a representation of G on V with invariant subspace W with respect
to D. Let d be the induced representation of £(G) on V. If w € W and X € £(G) then

d(X)w = %(D(etx))tzow = %

As D(e)w € W for all t € R it follows that d(X)w € W.
Conversely, suppose that d is a representation of £(G) on V, and W is an invariant

(D(e™)w)i—o (2.145)

subspace of V' with respect to d. Let D be the locally defined representation of GG induced
by d. Then if g € G is given by g = e¥ for some X € £(G) then if w € W,

D(g)w = ¥ w =" —d"(X)w (2.146)

However, as W is an invariant subspace of V' with respect to d, it follows that d"(X)w € W
for all n € N. Hence D(g)w ¢ W. R

Note that in this proof we made implicit use of the closure of W.

There is also a natural concept of equivalent representations of Lie algebras.

Definition 37. Suppose d is a representation of L(G) acting on Vi, and B : Vi — V; is
an invertible linear transformation. Define d(X) = Bd(X)B~" for X € L(G). Then d and
d are said to be equivalent representations.

Exercise: Show that d defined above is a representation of £(G). Also show that if D;,
Dy are equivalent representations of G on vector spaces Vi and Vs then the corresponding
induced representations di and do on Vi and V5 are equivalent; and conversely, if d; and
dy are equivalent representations of £(G) on Vi and V5 then the locally defined induced
representations D; and Dy of G are equivalent.

Note that Schur’s lemmas may be applied to representations of Lie algbras in exactly
the same way as to representations of Lie groups.

Hence we have shown that there is (at least locally) a 1-1 correspondence between
irreducible representations of the Lie group G and the Lie algebra £(G). This is useful,
because it enables us to map the analysis of representations of G to those of £L(G), and
thus the problem reduces to one of linear algebra.

Proposition 19. Suppose that di and dy are representations of L(G) acting on Vi and
Vo and let V=V, Q Va. Defined =dy @ 14+ 1®ds as a linear map on V. Then d is a
representation of L(G) acting on V.
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Proof
If wi,wy € L(V) and «, § are scalars and v; ® va € V' then

d(aw1 + ,ng)vl R vo = dl(awl + ng)vl QXU +v1® dz(awl + ﬁwz)UQ
= (ad(w1) + Bdi(w2))v1 @ v2 + v1 @ (ada(wy) + Bda(wz))ve
= adi(w1)v1 ® va + Bdi(w2)v1 ® vo
+ av; ® do(wy)ve + Pu1 ® da(we)ve
= a(di(w)v1 ® v2 +v1 @ da(w1)v2)
+ B(Bd1(w2)v1 ® v + v1 ® da(wa)ve)
= ad(w;)v) ® vy + Bd(wg)v2 ® vy (2.147)

so d is linear on £(G). Also

d([wl, wg])’ul R vy = dl([wl, wg])vl & vy + Uldg([wl, ’wg])vg
= (di(w1)di(wa) — di(w2)dy (w1))v1 @ vo
+ v1 ® (d2(wy)da(w2) — do(w2)da(wr))v2
= di(w1)di(w2)v1 ® vo — di(wa2)di(wi)vy & vo
+ v1 ® da(wi)de(we)ve — v1 ® do(wa)da(wi)ve (2.148)

Also note that

d(wr)d(wz)vy @ va = d(w1)(di(w2)v1 ® v + v @ da(ws)v2)
= dl(wl)dl(wg)vl ® vy + d1 (’U)Q)’Ul X dg(wl)vg
+ d1(w1)U1 (%9 dQ(wQ)UQ +11 ® dz(wl)dg(wg)vg (2.149)

where the sum of the second and third terms in this expression is symmetric in wy and ws.
Hence

d(wy)d(w2)v1 ® vg — d(wz)d(wr)v1 ® v = di(wr)di(w2)vr @ va — di(wa2)dy (w1)v1 ® vo
+ 1 ® dz(wl)dz(wg)vg -1 ® dQ(wQ)dQ(wl)’UQ
= d([wl, wg])’Ul X v2 (2.150)

as required .

Proposition 20. Suppose that D1 and Ds are representations of matrix Lie group G on
Vi and Vo with induced representations of L(G) on Vi and Vs denoted by dy and dg. Let
D = D1 ® D, denote the representation of G on the tensor product V4 @Q Va. Then the
corresponding induced representation of L(G) on Vi Q Ve isd=d1 ® 1+ 1® da.

Proof Suppose w € L(G), then expanding out in powers of ¢;

D(e™)v1 @ vy = D1(e")vy @ Da(e™)ve
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= (v1 + tdi(w)vy + O(t?)) @ (vg + tdo(w)ve + O(?))
= 11 @ vy + t(dl (w)m XU +1v1 ® dg(’w)’l)g) + O(t2)
=01 @y +t(d ®1+1®da)vy ® vz + O(t?) (2.151)

and hence from the O(t) term we find the induced representation d =d; ® 1 + 1 ® da
as required W

2.17 The Killing Form and the Casimir Operator

Definition 38. Suppose that G is a matriz Lie group with Lie algebra L(G). Then for
X € L(G), ad X can be realized as a matriz linear transformation on L(G). The Killing
form k is defined by

K(X,Y)=Tr (ad Xad V) (2.152)

Suppose that T, is a basis for £(G). Then from the Killing form one obtains a sym-
metric matrix
Rab — H(Ta,Tb) (2.153)

Denote the matrix elements of ad T, by (ad T},);; then note that

(ad Ta)Tb = [Ta, Tb} = CabcTC
= (ad To)y T (2.154)

Hence (ad Tg)p¢ = cqp°. So it follows that
Kab = Cad“Coe” (2.155)

Lemma 4. The Killing form is associative: k(X,[Y, Z]) = k([X,Y], Z)
Proof

K(X,[Y,Z]) = Tr (ad Xad [Y, Z])

Tr (ad X(ad Yad Z —ad Zad Y'))

Tr (ad Xad Yad Z) — Tr (ad Xad Zad Y)

Tr (ad Xad Yad Z) — Tr (ad Yad Xad 2)

Tr ((ad Xad Y —ad Yad X)ad Z)

(ad [X,Y]ad Z)

[(X,Y],2) (2.156)

|
2 5

as required. W

As Kqp is symmetric, one can always choose an adapted basis for £(G) in which kg, is
a diagonal matrix, and by rescaling the Lie algebra generators, the diagonal entries can be
set to +1, 0 or —1.

Definition 39. The Killing form is non-degenerate if kqp has no zero diagonal entries in
the adapted basis. The Lie algebra L(G) is then called semi-simple. If all the diagonal
entries are —1 then L(G) is said to be a compact Lie algebra.
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Lemma 5. Suppose that L(G) is semi-simple. Define cqp. = Cab ¥ Kode (i.e. lower the last
indez of the structure constants with the Killing form). Then cqp is totally antisymmetric

n a,b,c.
Proof
Note that
5(Tay [Ty, Te]) = cbe (T, Ta) = cheFad = Coea (2.157)
and
H([Tm TbLTC) = Cade<Tda Tc) = Cabd"'idc = Cabe = ~Chac (2158)

But by associativity of k, (2.157) and (2.158) are equal. Hence ¢peq = —Cpac- AS Cape 18
skew symmetric in both the first two and the last two indices, it follows that cqp. is totally
antisymmetric. W

Definition 40. Suppose that L(G) is a Lie algebra with non-degenerate Killing form, and
d is a representation of L(G) on V. The Casimir operator C of L(G) is defined by

C ==Y (k1)"d(T,)d(T}) (2.159)

a,b
where k™1 denotes the inverse of the Killing form.
Proposition 21. The Casimir operator commutes with d(X) for all X € L(G)
Proof

It suffices to show that [C,d(T},)] = 0 for all Tj,.
Note that

[d(T), C] = —Z “HP([d(Ta), d(Ty)d(Te)))
= —Z 1 ([d(T), d(T))A(T.) + d(Ty)[d(Ta), d(T2))
= —Z “U(d[Ty, Ty)d(T.) + d(Ty)d[T, T2

= —Z _1 bc Cab Tg)d(Tc) +Cac€d(Tb)d(T€))

— —caced(TZ)d( L) — cod(TL)d(Ty)
0 (2.160)

where we have defined

=Y (k) eu" (2.161)

4

and we note that ¢, is antisymmetric in b,c. B
Note that if d is irreducible then by Schur’s second lemma, C' must be a scalar multiple
of the identity.
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If £(G) is compact, then working in the adapted basis, C' takes a particularly simple
form

C=> d(T,)d(T,) (2.162)
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3. SU(2) and Isospin

3.1 Lie Algebras of SO(3) and SU(2)

We have shown that the Lie algebra of SO(3) consists of the 3 x 3 antisymmetric real

matrices.

A basis for £(SO(3)) is given by

0 0 0 0 0 1 -1 0
Tv=| 0 o -1 =] 0 0 5= 1 0o ol 31
0 1 0 -1 0 0 0o 0 0

Exercise: Show that
[Tm Tb] = €abcle (32)

where €, is totally antisymmetric and €103 = 1.
Next consider SU(n). Let M(t) be a smooth curve in SU(n) with M(0) =1 . Then
M (t) must satisfy
det M(t)=1  M@E)M@) =1 (3.3)

Differentiating these constraints we obtain

_,dM(t) dM (t) dM (t)f
Tr (M) ——=) = ———=M ()" + M(t = 4
(re P =0 Bme 0™ -0 e
Setting t = 0 we find
Trm=0 m+mi=0 (3.5)
where m = d]\flt(t) lt=0. Hence L(SU(n)) consists of the traceless antihermitian matrices.

Exercise: Verify that if X and Y are traceless antihermitian square matrices then so is
[(X,Y].

It is convenient to make use of the Pauli matrices o, defined by

ae(00) e (0F) (b h) ee

which satisfy o,0, = dapll + i€4pe0c-
Then a basis of traceless antihermitian 2 x 2 matrices is given by taking T, = —%aa.
It follows that

[Ta, Tb] = eabcTC (37)

Comparing (3.2) and (3.7) it is clear that SO(3) and SU(2) have the same Lie algebra.
We might therefore expect SO(3) and SU(2) to be similar, at least near to the identity.
We shall see that this is true.

Exercise: Using this basis, show that the Lie algebra £(SU(2)) is of compact type.
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3.2 Relationship between SO(3) and SU(2)

Proposition 22. The manifold SU(2) can be identified with S3.
Proof
Consider

U= < g “) € SU(2) (3.8)
for a, B, u, v € C.

Then UUT = T implies that (g) be orthogonal to (M ) with respect to the standard
v

. Q). . . .
inner product on C2. As the orthogonal complement to in C? is a 1-dimensional

g

complex vector space spanned by [ | it follows that p = —¢f3, v = ga for o € C.
@

We also require that (g) and (,u) have unit norm, which fixes
v

lof* = la* + 18] =1 (3.9)

Finally, the constraint det U =1 fixes ¢ = 1.

U—< g —f) (3.10)

where aa + 33 = 1. Such U is automatically an element of SU(2). Hence this is the form
of the most generic element of SU(2).

Hence we have shown that

Set o = yo +iy3, 8 = —y2 + 1y1 for yo,y1,y2,y3 € R. Then it is straightforward to see
that

U = yol + iynon (3.11)

and aa + B8 = 1 is equivalent to y2 + y? +y3 +y3 =1, ie y € S°.

This establishes a smooth invertible map between SU(2) and S°. B

Note that this map provides an explicit way of seeing that SU(2) is connected, because
S3 is connected.

Proposition 23. There is a 2—1 correspondence R : SU(2) — SO(3) between SU(2) and
SO(3). The map R is a group homomorphism.
Proof Suppose U € SU(2). Define a 3 x 3 matrix R(U) via

1
R(U)mn = 5Tx (omUo,UT) (3.12)

By writing U = yol+iymonm, for yo, Ym € R satisfying y2+y,y, = 1, it is straightforward
to show that

Ry = (yg - ypyp)émn + 2€mnqy0yq + 2Ym¥n (3-13)
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(here we have written Ry, = R(U)mp,)-
It is clear that if y, = 0 for p =1,2,3 so that U = +£I, then R =1, so R € SO(3).
More generally, suppose that y,y, # 0. Then one can set yp = cosa, y, = sin az, for
0 < a < 27 and « # w. Then the constraint y(g] + ypYp = 1 implies that 2,2, =1, ie zis a
unit vector in R3. The expression (3.13) can be rewritten as

Rypn = €08 200y, + SIN 20€mnq2q + (1 — €08 200) 2 2, (3.14)

It is then apparent that

Rymzn = Zm (3.15)

and if z is orthogonal to z then

Ry = cos 202y, + Sin 2a€p,nqTn 2q (3.16)

The transformation R therefore corresponds to a rotation of angle 2« in the plane with
unit normal vector z.

It is clear that any non-trivial rotation in SO(3) can be written in this fashion. How-
ever, the correspondence is not 1 — 1. To see this explicitly, suppose that two rotations
corresponding to y € S3 and u € S? are equal. Then

(yg — YpYp)Omn + 2€mng¥0Yq + 2YmYn = (Ug — Uplp)Omn + 2€mngUotq + 2umun  (3.17)

where y2 + ypyp = ud + upu, = 1.
From the antisymmetric portion of this matrix we find yoy, = uou,.
From the diagonal elements with n = m, we see that

Y2 — Ypp + 2(ym)? = ud — upuy + 2(um)? (3.18)

where p is summed over but m is fixed. Summing over m we find

3?!(2) — YpYp = 3“3 — UpUp (3.19)

where p is summed over; which together with y% + YpYp = u% + upu, = 1 implies that
y2 = u? and y,y, = uyu, (sum over p). Substituting back into (3.18) we find y2, = u2, for
each m =1,2,3.

Suppose first that yo # 0, then ug # 0, and it follows that yo = fup and y, = +u,, for
each p = 1,2, 3 (with the same sign throughout).

Next, suppose yg = 0. Then uy = 0 also, and ymyn = Umu, for each m,n = 1,2, 3.
Contracting with y,, we get (yn¥n)Ym = (Yntn)um for m = 1,2,3. As y,y, = 1, this implies
that y,, = Auy, for m = 1,2,3 where A is constant. Hence, (1 — /\Q)umun = 0. Contracting
over m and n then gives 1 — A2 = 0, so A = 1. Therefore yp = Fu, for p = 1,2,3 (with
the same sign throughout).
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Hence, we have shown that each R € SO(3) corresponds to two elements U and
—U € SU(2). These two elements correspond to antipodal points £y € S3. This establishes
the correspondence.

It remains to check that R(U1Us) = R(U;)R(Us) for U;,Us € SU(2). Note that on
writing

Uy = yolo 4 typon, Us = wy + tw,on, (3.20)

for yo, yp, wo, wp, € R satisfying y% + Ypyp = w% + wpw, = 1 then
U,Us = uplls + tupop (3.21)

where ug = yowo — Ypwp and wuy, = YoWm + WoYm — EmpgYpWq Satisfy ud + upup = 1. It then
suffices to evaluate directly

R(ULU2)mn = (u% — UpUp) O + 2€mnqUolg + 2Um Uy, (3.22)
and compare this with

R(U1)mpR(U2)pn = [(yg*?Jﬁ?/@)5mp+2€mpqyqu+2ymyp] [(w(%*wrwr)5pn+2€pm“w0wr+2wpwn]

(3.23)
On expanding out these two expressions in terms of y and w it becomes an exercise in
algebra to show that R(U1U2)mn = R(U1)mpR(U2)pn as required. W

Exercise: Verify the identity R(U1U2)mn = R(U1)mpR(U2)pn-

It is conventional to write SU(2) = S® and SO(3) = S3/Zs, where S3/Z5 is the 3-
sphere with antipodal points identified. SU(2) is called the double cover of SO(3); and
there is an isomorphism SO(3) = SU(2)/Zs.

It can be shown (using topological methods outside the scope of this course) that
SU(2) and SO(3) are not homeomorphic. This is because SU(2) and SO(3) have different
fundamental groups 7. In particular, as SU(2) = S3, and S is simply connected, it
follows that 71 (SU(2)) is trivial. However, it can be shown that m1(SO(3)) = Zo.

3.3 Irreducible Representations of SU(2)

The standard basis of £(SU(2)) which we have been using is 7, = —%0,. Suppose that
d is a finite-dimensional irreducible representation of £(SU(2)) on V, where V is a vector
space over C.

Define

J3 = id(13), Jr = —=(d(T1) £id(13)) (3.24)

SR

Then

U Ji] = £y, [y, J]=Js (3.25)

As V is a complex vector space, there exists an eigenstate |¢) of J3 with some eigenvalue
A, and using (3.25) it follows that
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JaJx|¢) = (A £ 1)Jx[0) (3.26)

and so by simple induction

J3(Jx)" [9) = (A £ n)(Jx)" |9) (3.27)

for non-negative integer n; i.e. Ji are the standard raising and lowering operators.
The eigenvalues of J3 are called weights. We have therefore shown that (Ji)"|¢) either
vanishes or is a J3 eigenstate with eigenvalue \ + n.

Consider the states (Jy)™|¢). If non-vanishing, these states are linearly independent
(as they have different Js eigenvalues). Hence, as V' is finite dimensional, there exists a J3
eigenstate (J4+)" |¢) which we will refer to as |7, j) with eigenvalue j such that J5 |j,7) = 0.

Definition 41. j is called the highest weight of the representation. In the context of particle
physics, it is called the spin.

Note that by acting on |7, j) with J_ other distinct eigenstates of J3 are obtained. As
we are interested in finite dimensional representations, it follows that (J_)V |5,) = 0 for
some positive integer N (otherwise one could just keep going and the representation would
be infinite dimensional). Let k4 1 be the smallest positive integer for which this happens,
and set 1) = (J_)¥14,4), so, by construction, J_ |¢3) = 0.

Define for £ =0,...,k

o) = (J2) 14, 5) (3.28)

Then |¢) are (non-vanishing) j — ¢ eigenvectors of Js.
Note that

Iy [he) = J. ( ) 14,4)
(T T )T 4 d)
= (J+, |+ J_Je) (), )
= (J3+ J- J+) J) M4, )
= (J

— (0= D)) g, 5) 4+ T T (T d, ) (3.29)

Repeating this process, one finds by induction

Jile) = (G- (=1 +j—(=2)+ - +j—1+4]) [e)

= € - 5= D) e-r) (3.30)

In order to constrain j recall that J_ |¢) = 0, so

0= JyJ_ |vg)
= ([J, J] + J_Js) )
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= (Ja+ J-Jy) [¢n)

= R+ T (kG 5 (k= 1) )
=k KG = 56— 1) )

(k+1)(2) — k) [¢r) (3.31)

I
A~ e

N | =

As k is non-negative, it follows that k = 2j
Using this it is straightforward to prove the following

Proposition 24. V = span{J* |j,7),J* 7 15,5),...,14.4)} and the highest weight state is
UNIQUE.
Proof

Consider the vector space V' spanned by |¢;) for ¢ = 0,...,k. This is an invariant

subspace of V' with respect to the representation d. As the representation is irreducible on
V it follows that V = V'. In particular, J3 is diagonalizable on V and each eigenspace is
1-dimensional.

To prove uniqueness suppose that |¢) € V satsfies Jy |¢) = 0. As |¢) € V it follows
that we can write

Z ai(J-)"|4.4) (3.32)

for constants a;. Applying (J4)% to both sides of this equation implies az; = 0. Then,
applying (J4)¥
azj—1 = az; = 0, and so |¢) = ag|j,j). So the highest weight state in an irreducible

implies ag;—1 = 0. Continuing in this way, we obtain a; = as = --- =

representation of £(SU(2)) is unique (up to scaling). H.

Hence, we have shown that j is half (non-negative) integer, and the representation is
27 + 1-dimensional. The irreducible representations are therefore completely characterized
by the value of the weight j.

It is possible to go further, and prove the following theorem (the proof given is that
presented in [Samelson]):

Theorem 1. **NON-EXAMINABLE** Suppose that d is a representation of L(SU(2))
on a complex vector space V. Then V can be decomposed as V = Vi @ --- @V, where V;
are invariant subspaces of V' such that d restricted to V; is irreducible.
Proof Given in Appendix A.

Note that we have not as yet assumed that the representation originates from a unitary
representation of the Lie group. However, in order to compute normalized states, it will
be convenient to assume this; so in particular, the d(7,) are antihermitian and hence

Ji=J, Jl=Us (3.33)

We will assume that the highest weight state |7, j) is normalized to 1.

Exercise:
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Show using (3.30) that (1| 1) = £(25 — £+ 1) (¢_1|1¢—1), and hence that

(2)1e!
Ny = = 5t 3.34
It is conventional to define normalized states |j,m) for m = —j,...,j via
) =~ (45 (3.3))

the first label denotes the highest weight value j, the m label denotes the eigenstate
of J3, J3|j,m) = m|j,m). These satisfy (check!)

J_|j.m) = j§¢<j+m><j A1) jm— 1)
Ty jm— 1) = \gm TG —m 1) |j.m) (3.36)

Exercise: Show that the Casimir operator C is given by C' = —1(J1J_ +J_J1 + (J3)?)
and satisfies

C lj,m) = ~ 3G+ 1)1, m) (337)

3.3.1 Examples of Low Dimensional Irreducible Representations

It is useful to consider several low-dimensional representations.

i) j = 3. A normalized basis is given by |3, ) and |4, —3), with

11
J+1|27%> 01 11
J+’§>—§> = 72\5,§> (3.38)
and
11 1,1 1
J—‘2,5> *2157—?
AT (3.39)
- 27 2 - .

ii) j = 1. A normalized basis of states is |1,1), |1,0) and |1, —1) with

Ji|1,1) = 0
J+|170> = ‘171>
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and

JI11) = [1,0)
J- ‘170> = ’17_1>
J_|1,-1) =0 (3.41)

iif) j = 2. A normalized basis of states is |3,3), [3,1), |3, —3) and |3, —3). with

Tl 3 =0

A ;> 212 2>

Tl -3 = VBIS,3)

Tl -2 =313 (3.4

and

31
12,2y = V22, -2
IS =vak )
3 1 3.3 3
33 4
AL (3.43)

3.4 Tensor Product Representations

Suppose that dy and dy are two irreducible representations of £(SU(2)) over vector spaces
V(1), V(2). Let V =V (1) ® V(2) be the tensor product, and d = d; ® 1 + 1 ® da be the
representation on V.

We wish to decompose V' into irreducible representations of d (i.e. invariant subspaces
of V' on which the restriction of d is irreducible).

Denote the states of V(1) by |j1,m) for m = —ji,...,j1 and those of V(2) by |j2,n)
for n = —ja, ..., jo, where j; and j, are the highest weights of V(1) and V' (2) respectively.
Note that |j1,m) ® |j2,n) for m = —j1,...,j1 and n = —ja, ..., jo provides a basis for V.

Set

Jg(l) = idl(Tg), J:t(l) (dl(Tl) + Zdl(TQ)) (344)

s\@

and

J3(2) = ida(13), J+(2) = (d2(T1) + idy(T2)) (3.45)

&\@
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with

J3=J3(1) @1+ 1® J3(2), Jr=J:(1)®1+1® J+(2) (3.46)
Exercise: Check that J4 and J3 satisfy Jg =Js, Jl = J+ and
[Js, J1] = £J4, [y, J_]=J3 (3.47)

In order to construct the decomposition of V' into irreducible representations, first note
that if (1)) € V(1) is a state of weight m; with respect to J3(1), and |¥(2)) € V(2) is
a state of weight mo with respect to J3(2) then |[¢(1)) ® |¢(2)) € V is a state of weight
m1 + mg with respect to Js, i.e. weights add in the tensor product representation.

Using this, it is possible to compute the degeneracy of certain weight states in the
tensor product representation. In particular, the maximum possible weight must be j; + jo
which corresponds to |j1,j1) ® |71, J2)-

Consider the weight j; 4+ jo — k for £ > 0. In general, j; + jo — k can be written as a
sum of two integers mq + mag, for m; € {—j1,...,71} and mg € {—ja,...,jo} in k+ 1 ways:

Nt+je—k = (j1—Fk)+jo
= (i —k+1)+(2—1)

= (-1t G k4 D)
= j1+(2—k) (3.48)

provided that j; — k > —j; and jo — k > —ja, or equivalently

k < 2min(j1, j2) = j1 +Jj2 — |1 — Ja| (3.49)

Consider the state of weight j; + jo. There is only one such state, and there is no state
of higher weight. Hence it must be a highest weight state of a subspace of V' on which
the tensor product representation is irreducible. This irreducible subspace has dimension
2(j1 + j2) + 1, and is denoted by Vj, 4, Write V =V' @&V}, 1j,.

Next consider the states in V’. The highest possible weight is j1 + j2 — 1. In V there
were two linearly independent states of this weight, however one of these lies in V}, 4,, and
does not lie in V. The remaining state of weight j; + jo — 1 is of highest weight in V'’ and
hence must be a highest weight state of a subspace (of dimension 2(j; + j2) — 1) of V', on
which the tensor product representation is irreducible. Denote this subspace by Vj, 4, 1.
Note that by construction Vj 44, N Vj,4j,—1 = {0}.

One can continue inductively in this fashion: for each j = |j1—j2|, [j1—j2|+1,... ji+Jo
there is a subspace V; (of dimension 2j+1) on which the tensor product representation is ir-
reducible, with highest weight j, and V;NV}, = {0} if j # k. In fact these subspaces account
for all of the elements in V. To see this, compute the dimension of V}; _;,| @ --- @ Vj,+j:

We find

Ji1t+j2
dim V|j1—j2\@"'@vjl+j2 = Z (27 +1)

J=lj1—72l
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J1t+ie—li1—j2]
= > @i —del+n)+1)
n=0
= (14 251)(1 + 2j2)
— dim V (3.50)

Hence we have decomposed V' = V|; _;, D - D Vj, 14, into irreducible subspaces V;
where V; has highest weight j and is of dimension 25 + 1.

3.4.1 Examples of Tensor Product Decompositions

We shall consider two simple spin combinations which are of physical interest.

Firstly, take the spin 1/2 ® spin 1/2 composite system. As j; = jo = % there are two
possible values for the composite spin, 7 = 1 or j = 0, and the tensor product space is
4-dimensional.

For the j = 1 states, the highest weight state can be written as

11

1,1) =5, =
’7> |2’2

) (3.51)

>®‘1 1
272

Applying J_ to both sides we find

1,1 1 11 11 1 1

1,0) = —(|=,—= - = - = -, —= 3.52
1,0) \/5(!27 51 @155 +55) @15 -3)) (3.52)
and applying J_ once more
1 1 1 1
1,-1)=|=,—= S )
L= =13,-3)®l5 -3 (3.53)

The remaining possible spin is 7 = 0. This has only one state, which must have the
form

11 1 1> 2| 11
272 2 2 272
for constants cg, ¢ to be fixed. Applying J; to both sides we get

1 1
0,0) =co| >®|§7* >+Cl‘§,* ) (3.54)

11 11
(CO+61)|§7§>®|§a§>_0 (3.55)
so ¢y = —c¢g. Then on making the appropriate normalization we find
1,1 1 11 11 1 1
0,0) =—(|=z,—= — =y ==, = -, —= 3.56
0.0)= 2= (15:-5) @ 15:5)~ 5.5 @ 15.~3) (3.56)
Next, take the spin 1 ® spin 1/2 composite system. As j; = 1, jo = % there are two

1

possible values for the composite spin, j = 5 or j = 3

5, and the tensor product space is

6-dimensional.

For the j = % states, the state with greatest weight is

3 3 11
2= L) e, - .
S =Lnel,3) (3.57)
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Applying J_ to both sides gives

1 1
1,0) ® —= 3.58
b=y2n, + L)@l —3) (3.59)
Further applications of J_ give
3 1
- —= 1 .
55 = 75— Heyinoel-h (3.59)
and
3 3 1 1
-, —=)y=11,-1 - —= .
=S = e s, —3) (3.60)
For the j = % states, the state with maximal weight can be written as a linear combi-
nation
11 1 1 11
§7§>_CO|171>®‘§7_§>+Cl|170>®’§7§> (361)
for some constants ¢y, ¢; to be determined. Then
11 1 11
= — =)= — 1,1 — = .62
0=l 5) = (e +zen) LD ©15.5) (3.62)
SO ¢1 = —%co. On making a unit normalization, we also fix ¢y and find
11
1,1) 1 — .
R T LI (3.63)
and applying J_ to both sides this gives
1 1
-, —=) = 1 1,— - = .64
33 =-sL0e beyin-nelil (3.64)

3.5 SU(2) weight diagrams

One can plot the weights of an irreducible £(SU(2)) representation on the real line; for
example:

The spin j=4 SU(2) irreducible representation
0000 0 0 0 0 0
-6 -5 4 -3 -2 -1 0 1 2 3 4 5 6
The weight diagrams of irreducible representations have the following properties

i) The diagram is reflection symmetric about the origin.

ii) The weights are all half integer; and are distributed with unit distance between each
weight. The highest weight is j for 25 € N, and the lowest weight is —j, and there
are no “holes” in the weight diagram- —j,—j 4+ 1,...,j5 — 1,7 are all weights.
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iii) Each weight has multiplicity 1.

One can also plot the weight diagram of a generic (not necessarily irreducible) represen-
tation. For example, the weight diagram of the tensor product (j1 = 3)®(jo = 2)®(jz = 3)
eight dimensional tensor product representation is

et @ 9000 000 T @ ¢
-3 -2 -1 0 1 2 3

This has a highest weight j = % and a lowest weight —% both with multiplicity 1, and
weights :l:% each with multiplicity 3. In general, a non-irreducible representation will have
a highest weight, but it need not be of multiplicity 1. For a generic weight diagram

i) The diagram (together with weight multiplicities) is reflection symmetric about the
origin.

ii) The weights are all half-integer.

iii) Each weight need not be of multiplicity 1. However, as one proceeds from a particular
weight towards the origin (in unit steps from either the left or the right), the weight
multiplicities do not decrease.

3.6 SU(2) in Particle Physics
3.6.1 Angular Momentum

The orbital angular momentum operators L, acting on wavefunctions are given by

, 0
Lo = —Zeabcxb@ (3.65)
These operators satisfy
[Lav Lb] = t€abeLic (366)

and hence correspond to a (complexified) representation of SU(2). Particles also carry a
spin angular momentum S, which commutes with the orbital angular momentum [L, S| = 0.
The total angular momentum is defined by J = L + S.

3.6.2 Isospin Symmetry

It is observed that the proton and neutron have similar mass, and also that the strong
nuclear forces between nucleons are similar. Heisenberg introduced the concept of a SU(2)
isospin symmetry to systematize this. Particles are grouped into multiplets of isospin
value I (previously called j) and labelled by the weights, which are the eigenvalues of I3.
Originally, this was formulated for nucleons, but later extended to describe all mesons and
baryons.

Particles in the same isospin multiplet have the same baryon number, the same content
of non-light quarks, the same spin and parity and almost the same mass. Isospin is a
conserved quantum number in all known processes involving only strong interactions: it is
related to the quark content by
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I3 = %(N(U) — N(a) — (N(d) — N(d))) (3.67)

Isospin symmetry arises in the quark model because of the very similar properties of
the u and d quarks.
Examples:

i) Nucleons have isospin I = 5; the proton has I3 = %, and the neutron has I3 = —%:

1
2

1 1
n ’%712)
p |§>§> (3.68)
ii) The pions have I = 1 with
T =|1,-1)
70 = |1,0)
at =11,1) (3.69)

iii) The strange baryons have I =0 and I =1

¥ =|1,-1)
¥ = 11,0)
»t=11,1) (3.70)
and
A° =10,0) (3.71)

1

iv) The strange mesons lie in two multiplets of I = 5

1 1
KOZ’ 7*7>
i
Kt =|= = 3.72
505) (3.72)
and
_ 1 1
K | 7_7>
142
K=|> = 3.73
505) (3.73)

K* are antiparticles with the same mass, but are in different isospin multiplets
because of their differing quark content.
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v) The light quarks have I = 3

1 1

d=|=.—Z=
==, .74
u=133) (3.74)

and all other quarks are isospin singlets I = 0.

3.6.3 Pauli’s Generalized Exclusion Principle and the Deuteron

Consider first NN nucleon-nucleon bound states. From the previously obtained decompo-
sition of the (I3 = 1/2) ® (I2 = 1/2) tensor product we find the following isospin states

1
1,1) =pp, |[1,0) = —(mp+pn), |[1,—-1)=nn 3.75
I1,1) = pp, [1,0) \/5(19 pn), | ) (3.75)

which are are symmetric under exchange of isospin degrees of freedom, and the remaining
state is

10,0) = %(np ) (3.76)

which is anti-symmetric under exchange of isospin degrees of freedom.

The deuteron d is a pn bound state, which has no pp or nn partners. There is therefore
only one possibility; d = |0,0).

In general, the total wavefunction for a NN state can be written as a product of space,
spin, and isospin functions

1 = 1 (space)(spin)ip(isospin) (3.77)

The generalized Pauli exclusion principle requires allowed NN wave-functions be anti-
symmetric under exchange of all degrees of freedom. As 1 (isospin) is anti-symmetric,
1 (space)y(spin) must be symmetric- in fact ¢ (space) is symmetric (the nucleons in the d
are in a ¢ = 0 angular momentum state), and ¥ (spin) as also symmetric, as d is a spin 1
particle.

3.6.4 Pion-Nucleon Scattering and Resonances

Isospin can be used to investigate scattering processes; consider for example pion-nucleon
scattering processes. From the decomposition of the (I3 = 1) ® (I2 = 1/2) tensor product
we find

3 3

Z 0y — £t

55 = 7P

31, 2, 1 .
]2,2>— 37rp+\/§7rn
3L [
5 2—\/§7rp 3TN
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|-, —=)=7"n (3.78)
and
11 2 .

7T —TTn

’2? 7: 3

— (3.79)
f
These equations can be inverted to give
33
7T+p: |§7§>
231 1 11
0, — /212 2y — = =
1 31 11
W+n:ﬁ|§7§> 3‘272>
_ 1 3 1
Q p_ﬁ|§a *> | *>
23 1 1 1 1
0 P — — —_ R — — _
_ 3 3

Consider mN scattering. The scattering is described by a S-matrix, which, in processes
dominated by strong interactions is taken to be isospin invariant: [I;,S] = 0 and so by
Schur’s lemma

(I',m/| S|I,m) = ¢(I)S11 0 (3.81)
The cross sections of the scattering processes are given by
o(in — out) = K| (in| S |out) |* (3.82)
for constant K. Hence
+ + ENE
o(m'p — m'p) = Kl(3)l (3.83)
_ 2 3 1

olx'n — 77p) = SK10(5) — o3I (3:584)

_ _ 1 3 1.
o(m”p— 7 p)= §K\¢(§) + 205(5)\ (3.85)

For all three of these processes, a marked resonance is measured at approximately 1236
Mev. The ratio of the cross-sections of these resonances is
2 1
o(rTp—ntp):io(@®n - 17p)io(nTp TP =1: 5°%9 (3.86)
which is consistent with the supposition that the resonance corresponds to a particle of
isospin 3 (and so [#(3)] > |¢(3)]). This particle is the A particle, which lies in an

isospin J = 2 multiplet with states A=, A%, AT ATF having weights I3 = —3,—3, 1,

(et

respectlvely.
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3.7 The semi-simplicity of (complexified) £(SU(n + 1))

To proceed, define the n 4+ 1 x n 4 1 square matrices Ej; by (E; j)pq = dipdjq. Recall that
L(SU(n+1)) consists of the traceless antihermitian matrices, and is therefore spanned over
R by Z(Ez’l — n+1,n+1) fori=1,...,n and Ei,j — Ej@ Z(Ez’] + Ej,i) for i < 7. Hence, on
complexification, the Lie algebra is spanned by traceless diagonal matrices together with
the Fj; ; for i # j.

Suppose that h = diag (a1,as2,...,an+1), »_a; = 0 is a traceless diagonal matrix.
Then if i # j, observe that [h, E; ;] = (a; — a;)E; ;.

Proposition 25. Complezified L(SU(n + 1)) is semi-simple.
Proof
Note by direct computation that

[El}j? Eﬁs} = 5j7‘E’i,s - 5isEr,j (3.87)

)
(ad Epg ad E; ;) Ers = 6jr0igEp s — 0jr0psEi g — 0isOqrEp,j + 0is0p;j Er g (3.88)

and hence the component of (ad E,, ad E; ;)E, s in the Ey; direction is
0jr0iqOpeOst — 0jrOpsOitdqt — 0isOqrOpedijt + 0is0p;0redgt (3.89)
There are various cases to consider

i) k(Epgq, Ei ;) for p # q, i # j. We must compute Tr (ad E, 4 ad E; ;). If r # s then
the component of (ad E, ; ad E; j)E, s in the E, ; direction is

5jr6iq5p,« — 5jr5p35ir5qs — 5i35qr5pr5js + 5i35pj5qs = 5jr5iq5pr + 5i55pj5qs (3.90)

(as i # j and p # q). So the contribution to the trace from these terms is

n+1
D 8iebigOpr + GisOpdgs = 2ndigbp; (3.91)
r=1,s=1,r#s

We also compute the component of (ad E,, ad E;;)E, in the direction Ejj —
Epiinyr for k= 1,...,n. Observe that the component of 6;,E, s — 0psFiq in this
direction is 0;q0ps(dpr — 0ix) (if @ # ¢ or p # s then the diagonal components of
digEp,s—Ops Eiq vanish). Hence the component of (ad E, ; ad E; j)E, s in the direction
Ek,k — En+1,n+1 for k = 1, N is

5jr5iq5ps(5pk - 5Zk) + 5is(spj5rq(6rk - 6pk) (3'92)
It follows that the component of (ad E, 4 ad E;;)(Ekr — Entint1) along (Egp —

En+1,n+1) is

5jk5iq5pk(5pk — i) + 5ik5pj5qk(1 - 5pk)
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—(8n+10iq0pn+1(Spk — Oik) — Gint10pj0gnt10pk) (3.93)

which can be simplified using ¢ # j and p # ¢ to

35k 0iqOpk + OikOpjOqk + jn+18iq0p.n+10ik + 0int10pj0g.n+10pk (3.94)
On taking the sum from k£ = 1,...,n this gives a contribution to the trace of
20i40p; (3.95)
and so
K(Ep,q, Eij) = 2(n + 1)diq0p, (3.96)

ii) k(Epg,h) for h = diag (a1,a2,...,ap+1) with ) .a; = 0 and p # ¢. The only
contribution to the trace Tr (ad E, , ad h) comes from terms

(ad Epq ad h)Eij = ad Epg(ai — aj)Eij = (ai — a;j)(04iEpj — 0piEig)  (3.97)
for i # j. The component of this matrix along the E; ; direction is
(a; — a;)(8qibpi — 0p,j0q,5) =0 (3.98)

as p # q. Hence

K(Epqg.h) =0 (3.99)

iii) k(h,g) where h = diag (a1,a2,...,an+1) and g = diag (b1, b2,...,bp41) and >, a; =
Zi b’L = 0)

The only contribution to the trace Tr (ad h ad g) is from the terms
(ad h ad g)E; ; (3.100)

for i # j. But
(ad h ad g)EZ'J‘ == (ai - aj)(bi - bj)EiJ' (3101)

so taking the sum over i and j (i # j) we obtain

k(hyg) =2(n+1)) aibi (3.102)

Hence & is negative definite over the span over R of i(E, , — Epq1p41) forr=1,...,n;
and this span is orthogonal to the span of the E;; — E;; and i(E;; + E;;) (i # j).
Furthermore, « is diagonal and negative definite over the span over R of the F; ; — E;; and
i(E;j + Ej;). k is therefore non-degenerate. B

We also have the immediate corollory:

Corollory 2. The Lie algebra of SU(n + 1) (as a real Lie algebra) is compact.

— 64 —



4. SU(3) and the Quark Model

The Lie algebra of SU(3) consists of the traceless antihermitian 3 x 3 complex matrices.

It is convenient to define the following matrices

1
3 00 e
=] 0 -3 0 hy = 0 ﬁ 0
1
0o 0 0 0 0 7
1
1 0 5 0 1 (1) 0 0
€L = 0 0 0 e = ﬁ 0 0
0 0 0 0 0 0
0 0 0 0o 0 0
=10 0 = e2=| 0 (1) 0
0 0 0 0 5 0
1
0 0 0 0 0
=10 0o 0 =1 0 0 0 (4.1)
0 0 0 5 0 0

Then ihy, ihy and i(ef]' +e™), e’ —e™ for m = 1,2, 3 form a basis for the antihermitian
traceless 3 x 3 matrices (over R), and hence are a basis for £(SU(3)). Suppose that d is
the irreducible representation of £(SU(3)) acting on a complex vector space V' which is
induced from an irreducible representation of SU(3) acting on V.

It is convenient to set

Hy =d(h1), Hy=d(ha), ET =d(]) form=1,2,3 (4.2)

Then we find the following commutators:

[H1,Hs] =0 . .
[Hlin] = :tEi, [HlaEi] = :FiE?b [HhEi] = i§E§t
V3 V3
[H27E:1t] =0, [H2’E:2t] = :t?E:Ztv [HQij:] = :tTE?t (4.3)
and
[E-ll-vEl] = H,
3 1
(B3, E%] = \gHz — 5
3 1
[EY,E?] = {HQ +5H (4.4)
The remaining commutation relations are
[El EQ]:LEB [El EQ]:_LES
+2 =+ ﬂ + - = \& -
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b 1
V2 V2

[EY,E®) = ——E?, [E'E}]=—"FFE2

and

[EY, B2 =[EL B3 = [EL, B3] = [FL,E?) = B3, B} = [E*,E*] =0 (4.6)

Note in particular that Hy, He commute. The subalgebra of £(SU(3)) spanned by
thy and ihs is called the Cartan subalgebra. It is the maximal commuting subalgebra of

L(SU(3)).

4.1 Raising and Lowering Operators: The Weight Diagram

The Lie algebra of £(SU(3)) can be used to obtain three sets of £(SU(2)) algebras. In
particular, we find that

[Hi, Bl =+EL,  [EL,El]=H (4.7)

and
R R N 2 [ER T (48)

and
[\fﬂg + %Hl,Ef’t] =+FE3, (B3, B3] = \fHQ + %Hl (4.9)

In particular, there are three pairs of raising and lowering operators E".

For simplicity, consider a representation d of £(SU(3)) obtained from a unitary repre-
sentation D of SU(3) such that d is an anti-hermitian representation- so that H; and Ho
are hermitian, and hence diagonalizable with real eigenvalues. Hence, H; and @H ot %H 1
can be simultaneously diagonalized, and the eigenvalues are real. (In fact the same can be
shown without assuming unitarity!)

Suppose then that |¢) is an eigenstate of H; with eigenvalue p and also an eigenstate
of Hy with eigenvalue ¢. It is convenient to order the eigenvalues as points in R? with
position vectors (p,q) where p is the eigenvalue of H; and q of Hy. (p,q) is then referred
to as a weight.

From the commutation relations we have the following properties

i) Either EL |¢) = 0 or E1 |¢) is an eigenstate of H; and Hs with eigenvalue (p, ¢)%(1,0)

)

N

ii) Either EZ |¢) =0 or E2 |¢) is an eigenstate with eigenvalue (p,q) £ (—3,
iii) Either E3 [¢) = 0 or E3 |¢) is an eigenstate with eigenvalue (p, q) & (3, @)

Moreover, from the properties of L(SU(2)) representations we know that

2p=m1, V3q¢—p=ma, V3q+p=ms (4.10)
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for m1, ma, ms € Z. It follows that 2v/3¢ € Z. It is particularly useful to plot the
sets of eigenvalues (p, q) as points in the plane. The resulting plot is known as the weight
diagram. As the representation is assumed to be irreducible, there can only be finitely
many points on the weight diagram, though it is possible that a particular weight may
correspond to more than one state. Moreover, as 2p € Z, 2v/3q € 7Z, the weights are
constrained to lie on the points of a lattice. From the effect of the raising and lowering
operators on the eigenvalues, it is straightforward to see that this lattice is formed by the
tessalation of the plane by equilateral triangles of side 1. This is illustrated in Figure 1,
where the effect of the raising and lowering operators is given (in this diagram (0,0) is a
weight, though this need not be the case generically).

The weight diagram has three axes of symmetry. To see this, recall that if m is a weight
of a state in an irreducible representation of £(SU(2)) then so is —m. In the context of
the three £(SU(2)) algebras contained in £(SU(3)) this means that from the properties
of the algebra in (4.7), if (p, q) is a weight then so is (—p, q), i.e. the diagram is reflection
symmetric about the line § = 7 passing through the origin. Also, due to the symmetry of
the £(SU(2)) algebra in (4.8), the weight diagram is reflection symmetric about the line
¢ = % passing through the origin: so if (p, ¢) is a weight then so is (%(p—i—\/gq), %(\/gp—q)).
And due to the symmetry of the £(SU(2)) algebra in ((4.9) the weight diagram is reflection
symmetric about the line § = 5% passing through the origin: so if (p, ¢) is a weight then so
is (3(p — V34), 3(—=V3p —q)).

Using this symmetry, it suffices to know the structure of the weight diagram in the
sector of the plane § < 6 < 5. The remainder is fixed by the reflection symmetry.

Motivated by the treatment of SU(2) we make the definition:

Definition 42. |¢) is called a highest weight state if |1) is an eigenstate of both Hy and
Hy, and ET |¢) =0 form =1,2,3.

Note that there must be a highest weight state, for otherwise one could construct
infinitely many eigenstates by repeated application of the raising operators E''. Given
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a highest weight state, let V'’ be the vector space spanned by [¢)) and states obtained by
acting with all possible products of lowering operators E™ on |¢). As there are only finitely
many points on the weight diagram, there can only be finitely many such terms. Then, by
making use of the commutation relations, it is clear that V' is an invariant subspace of V.
As the representation is irreducible on V, this implies that V' =V, i.e. V is spanned by
|1} and a finite set of states obtained by acting with lowering operators on |¢)). Suppose
that (p,q) is the weight of |¢)). Then V is spanned by a basis of eigenstates of Hy and Hy
with weights confined to the sector given by 7 < 6 < %’r relative to (p, ¢)- all points on the
weight diagram must therefore lie in this sector.

Lemma 6. The highest weight state is unique.

Proof Suppose that |¢)) and |¢) are two highest weight states with weights (p, q), (9, ¢)
respectively. Then (p/, ¢') must make an angle 7 < 6 < 5{ relative to (p,q) and (p, ¢) must
make an angle 7 < 0 < %’r relative to (p/,¢’). This implies that p = p/, ¢ = ¢'.

Next suppose that |¢1) and |¢2) are two linearly independent highest weight states
(both with weight (p,q)). Let Vi and Va be the vector spaces spanned by the states
obtained by acting with all possible products of lowering operators E™ on |i¢1) and |1)2)
respectively; one therefore obtains bases for V7 and V5 consisting of eigenstates of Hy and
H,. By the reasoning given previously, as V; and V5 are invariant subspaces of V' and the
representation is irreducible on V, it must be the case that V; = V5, = V. In particular, we
find that |1)2) € V1. However, the only basis element of V; which has weight (p, q) is |¢1),
hence we must have [i2) = c|t1) for some constant ¢, in contradiction to the assumption
that [¢1) and [i2) are linearly independent. B

Having established the existence of a unique highest weight state |¢), we can proceed
to obtain the generic form for the weight diagram. Recall that the highest weight j of an
irreducible representation of £(SU(2)) is always non-negative. By acting on |¢) with the
lowering operators E™, one obtains three irreducible representations of £(SU(2)). Non-
negativity of the highest weight corresponding to the £(SU(2)) irreducible representation
generated by E! implies that the highest weight must lie in the half-plane to the right of

™

the line 6 = 7, or on the line 6 = 7:

Non-negativity of the highest weight corresponding to the £(SU(2)) irreducible represen-
tation generated by E? implies that the highest weight must lie in the half-plane above
the line § = &, or on the line 6 = %:
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Finally, non-negativity of the highest weight corresponding to the L£(SU(2)) irreducible

representation generated by E2 implies that the highest weight must lie in the half-plane

bm bm

above the line 6 = %, or on the line § = %

As the highest weight must lie in all three of these regions, it must lie in the sector
5 < 0 < 7 relative to (0,0), or at the origin:

Lemma 7. If the highest weight is (0,0), then there is only one state in the representation,
which is called the singlet.
Proof

Let [1) be the highest weight state with weight (0,0). Suppose that E™ [¢)) # 0 for
some m. Then by the reflection symmetry of the weight diagram, it follows that E7* [¢) # 0,
in contradiction to the fact that E% |[¢p) = 0 for i = 1,2,3, as [¢) is the highest weight
state. Hence ET' [¢)) = 0 for m = 1,2,3. Also H; |¢p) = Ha|yp) = 0. It follows that the
1-dimensional subspace V' spanned by [¢) is an invariant subspace of V, and therefore
V =V’ as the representation is irreducible. W

There are then three possible locations for the highest weight state [1).

4.1.1 Triangular Weight Diagrams (I)

Suppose that the highest weight lies on the line § = 7. In this case, by applying powers of
E2 the states of the £(SU(2)) representation given in (4.8) are generated. These form a
line orthogonal to the axis of reflection 6 = %, about which they are symmetric, and there
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are no states outside this line, as these points cannot be reached by applying lowering
operators. Then, by using the reflection symmetry, it follows that the outermost states
from an equilateral triangle with horizontal base. Each lattice point inside the triangle
corresponds to (at least) one state which has this weight, because each lattice point in the
triangle lies at some possible weight within the £(SU(2)) representation given in (4.7),
and from the properties of £(SU(2)) representations, we know that this has a state with
this weight (i.e. as the £(SU(2)) weight diagram has no “holes” in it, neither does the
L(SU(3)) weight diagram).
This case is illustrated by

Proposition 26. Each weight in this triangle corresponds to a unique state.
Proof

Note that all of the states on the right edge of the triangle correspond to unique states,
because these weights correspond to states which can only be obtained by acting on |1))
with powers of E2. It therefore follows by the reflection symmetry that all of the states on
the edges of the triangle have multiplicity one.

f

This implies that products of lowering operators involving E2 can be rewritten as

[EY, E?) = —

linear combinations of products of operators involving only E! and E? (in some order).
In particular, we find

(BL)(EB2)" [¢) = [EL, E2)(E2)" " [¢) + EZEL(E2)" " |¢)
= —\2153(152)"1 [) + E2EL (E?)" 1 )
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— B (4.12)

by simple induction, where we have used the fact that E! [1)) = 0 and [E2, E3] = 0.

A generic state of some fixed weight in the representation can be written as a linear
combination of products of E? and E' lowering operators acting on [t)) of the form

II(E', E?) |4) (4.13)

where II(E', E?) contains m powers of E2 and ¢ powers of E' where m, ¢ are uniquely
determined by the weight of the state- only the order of the operators is unfixed.

Using (4.12), commute the E! states in this product to the right as far as they will
go. Then either one finds that the state vanishes (due to an E' acting directly on [¢)), or
one can eliminate all of the E! terms and is left with a term proportional to

(B2)" 4B [¥) (4.14)

where we have used the commutation relations [E?, E3] = [EL, E3] = 0.

Hence, it follows that all weights in the diagram can have at most multiplicity 1.
However, from the property of the £(SU(2)) representations, as the weights in the outer
layers have multiplicity 1, it follows that all weights in the interior have multiplicity at
least 1.

Hence, all the weights must be multiplicity 1. B

4.1.2 Triangular Weight Diagrams (II)

Suppose that the highest weight lies on the line § = Z. In this case, by applying powers of

T
G
E! the states of the £(SU(2)) representation given in (4.7) are generated. These form a
horizontal line orthogonal to the axis of reflection § = 7, about which they are symmetric,
and there are no states outside this line, as these points cannot be reached by applying
lowering operators. Then, by using the reflection symmetry, it follows that the outermost
states from an inverted equilateral triangle with horizontal upper edge. Each lattice point
inside the triangle corresponds to (at least) one state which has this weight, because each
lattice point in the triangle lies at some possible weight within the £(SU(2)) representation
given in (4.7), and from the properties of £L(SU(2)) representations, we know that this has
a state with this weight (i.e. as the £(SU(2)) weight diagram has no “holes” in it, neither

does the £(SU(3)) weight diagram).
This case is illustrated by
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Proposition 27. Each weight in this triangle corresponds to a unique state.
Proof

Note that all of the states on the horizontal top edge of the triangle correspond to
unique states, because these weights correspond to states which can only be obtained by
acting on [t)) with powers of El. It therefore follows by the reflection symmetry that all
of the states on the edges of the triangle have multiplicity one.

Now, using (4.11) it is straightforward to show that

2 (plyn N 3 plyn—1
EZ(E2)" [p) = ﬁEf(Ef) %) (4.15)

for n > 1, where we have used E? |1)) = 0.

Now consider a state of some fixed weight in the representation; this can be written as
a linear combination of terms of the form

I(EY, E?) |) (4.16)

where II(E', E?) contains m powers of E! and ¢ powers of E? in an appropriate order,
where m and ¢ are determined uniquely by the weight of the state in question.

Using (4.15), commute the E? states in this product to the right as far as they will
go. Then either one finds that the state vanishes (due to an E? acting directly on [¢)), or
one can eliminate all of the E! terms and is left with a term proportional to

(BL)™ B2 |v) (4.17)

where we have used the commutation relations [E?, E3] = [EL, E3] = 0.

Hence, it follows that all weights in the diagram can have at most multiplicity 1.
However, from the property of the £(SU(2)) representations, as the weights in the outer
layers have multiplicity 1, it follows that all weights in the interior have multiplicity at
least 1.

Hence, all the weights must be multiplicity 1. B
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4.1.3 Hexagonal Weight Diagrams

Suppose that the highest weight lies in the sector § < 6 < 7. In this case, by applying
powers of E! the states of the £(.SU(2)) representation given in (4.7) are generated. These
form a horizontal line extending to the left of the maximal weight which is orthogonal
to the line 6 = 7, about which they are symmetric, There are no states above, as these
points cannot be reached by applying lowering operators. Also, by applying powers of E2
the states of the £L(SU(2)) representation given in (4.8) are generated. These form a line
extending to the right of the maximal weight which is orthogonal to the axis of reflection
0 = &, about which they are symmetric, and there are no states to the right of this line,
as these points cannot be reached by applying lowering operators.

Then, by using the reflection symmetry, it follows that the outermost states form a
hexagon. Each lattice point inside the hexagon corresponds to (at least) one state which
has this weight, because each lattice point in the hexagon lies at some possible weight
within the £(SU(2)) representation given in (4.7), and from the properties of L(SU(2))
representations, we know that this has a state with this weight (i.e. as the £(SU(2)) weight
diagram has no “holes” in it, neither does the £(SU(3)) weight diagram).

This case is illustrated by

The multiplicities of the states for these weight diagrams are more complicated than
for the triangular diagrams. In particular, the weights on the two edges of the hexagon
leading off from the highest weight have multiplicity 1, because these states can only be
constructed as (EL)™|¢) or (E2)™ |¢). So by symmetry, all of the states on the outer layer
of the hexagon have multiplicity 1. However, if one proceeds to the next layer, then the
multiplicity of all the states increases by 1. This happens until the first triangular layer is
reached, at which point all following layers have the same multiplicity as the first triangular
layer.
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Suppose that the top horizontal edge leading off the maximal weight is of length m,
and that the other outer edge is of length n, with m > n. This situation is illustrated
below

@@@..t%
Teeee

»::—f——b o0 //// \\
000

%0**

The highest weight is then at (%2 (m 4+ 2n)). The outer n layers are hexagonal,

2 2\/3
whereas the n 4+ 1-th layer is triangular, and all following layers are also triangular. As

one goes inwards through the outer n + 1 layers the multiplicity of the states in the layers
increases from 1 in the first outer layer to n + 1 in the n 4+ 1-th layer. Then all the states
in the following triangular layers have multiplicity n 4+ 1 as well.

We will prove this in several steps.

Proposition 28. States with weights on the k-th hexagonal layer for k = 1,...,n or the
k = n+ 1-th layer (the first triangular layer) have multiplicity not exceeding k.
Proof
In order to prove this, consider first a state on the upper horizontal edge of the k-th
layer for £ < n 4 1. The length of this edge is m — k + 1. A general state on this edge is
obtained via
I(E?, EY) [¢) (4.18)

where II(E?, E') contains (in some order) k — 1 powers of E? and ¢ powers of E! for
b=k—-1,...,m.

Now use the commutation relation (4.11) to commute the powers of E2 to the right as
far as they will go. Then the state can be written as a linear combination of the k vectors

[vi) = (B2) ™ H(BL) (B2 ) [y) (4.19)

fori=1,...k.
It follows that this state has multiplicity < k.
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Next consider a state again on the k-th level, but now on the edge leading off to the
right of the horizontal edge which we considered above; this edge is parallel to the outer
edge of length n. Take k < n+ 1, so the edge has length n — k 4+ 1. A state on this edge is
obtained via

(EL, E2) [y) (4.20)

where II(E, E?) contains (in some order) k — 1 powers of E! and ¢ powers of E2 where
¢ =Fk—1,...,n. Now use the commutation relation (4.11) to commute the powers of E!
to the right as far as they will go. Then the state can be written as a linear combination

of the k vectors
wi) = (E2)"H(E2) T (EL |y) (4.21)

fori=1,...,k.

So these states also have multiplicity < k. By using the reflection symmetry, it follows
that the all the states on the k-th hexagonal layer have multiplicity k. B

We also have the

Proposition 29. The states with weights in the triangular layers have multiplicity not
exceeding n + 1.
Proof

Consider a state on the k-th row of the weight diagram for m + 1 > k > n + 1 which
lies inside the triangular layers. Such a state can also be written as

II(E?,EY) [4) (4.22)

where II(E?, E') contains (in some order) k — 1 powers of E? and ¢ powers of E! for
f =k —1,...,m. and hence by the reasoning above, it can be rewritten as a linear
combination of the k vectors |v;) in (4.19), however for i < k—n, |v;) = 0 as (E?)*~|¢) = 0.
The only possible non-vanishing vectors are the n + 1 vectors |vg—n) , [Vk—n+1) ;- -, |Vk)-
Hence these states have multiplicity <n +1. B

Next note the lemma

Lemma 8. Define |w; ;) = (E2) L ELFH{E2)*1 ) fori=1,....k, k=1,...,n+ 1.
Then the sets S, = {|wi k), ..., |wkk)} are linearly independent for k =1,...,n+ 1.
Proof

By using the commutation relations, it is straightforward to prove the identities

2 \f2 2
3 1 1 k

— (k=2 (= - i
(h=)*("ra—gp+5+5— 3

. V31 g
Ed fwig) = (i —1)(-q+-p+ 2 +1—k)|wi—14-1)
1
2

w’i,k71>
2 v Lo
EY |wig) = E (ﬁ(l—l)lwi—l,k—ﬁ

b =L = Lo = =i = 1) ) (4.23)

(with obvious simplifications in the cases when i =1 or i = k)
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Note that S; = {|1)} is linearly independent. Suppose that Si_; is linearly indepen-
dent (k > 2). Consider Si. Suppose

k

> cilwik) =0 (4.24)

i=1

for some constants ¢;. Applying Ei to (4.24) and using the linear independence of
Si—1 we find the relation
V3 1 i 3 1

(Y2 D Ve —
5 +aptgty—han NG

1 1 1
(k — i)Q(\égq — 3P + % + 3~ 5]4?)67, =0 (4.25)

fori=1,...,k— 1. Applying E? to (4.24) another recursion relation is obtained

1 \/g 1 7 1 1
—icii+ (k—i)(——q—=p+=-+=— k)¢ = 4.2
\/§ZC+1 (k ’L)( 5 q 2p B 5 2/€)C 0 ( 6)

Combining these relations we find ¢,y =0fori=1,..., k—1. If @q— %p—{— % + % — %k #£0
when ¢ = 1 then one also has ¢; = 0. This holds if £ < n + 1, however if k = n + 2 then ¢;
is not fixed by these equations. The induction stops at this point. B

These results are sufficient to fix the multiplicity of all the states. This is because the
vectors in Sy for 1 < k < k + 1 correspond to states with weight (p,q) — (k — 1)(3, @)
which are at the top right hand corner of the k-th hexagonal (or outermost triangular for
k =n+ 1) layer. We have shown therefore that these weights have multiplicity both less
than or equal to, and greater than or equal to k. Hence these weights have multiplicity
k. Next consider the states on the level k edges which are obtained by acting with the
L(SU(2)) lowering operators EX and E? on the “corner weight” states. Observe the
following:

Lemma 9. Let d be a representation of L(SU(2)) on V' be such that a particular L(SU(2))
weight m > 0 has multiplicity p. Then all weights m’ such that |m'| < m have multiplicity
>p

whose proof is left as an exercise.

By this lemma, all the states on the k-th layer obtained in this fashion have multi-
plicity k also. Then the reflection symmetry implies that all states on the k-th layer have
multiplicity k.

In particular, the states on the outer triangular layer have multiplicity n + 1. We
have shown that the states on the triangular layers must have multiplicity not greater than
n+ 1, but by the lemma above together with the reflection symmetry, they must also have
multiplicity > n 4+ 1. Hence the triangular layer weights have multiplicity n 4+ 1, and the
proof is complete.

This was rather long-winded. There exist general formulae constraining multiplicities
of weights in more general Lie group representations, but we will not discuss these here.
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4.1.4 Dimension of Irreducible Representations

Using the multiplicity properties of the weight diagram, it is possible to compute the
dimension of the representation. We consider first the hexagonal weight diagram for m > n.
Then there are 1+ -+ (m—n)+(m—n+1) = £ (m—n+1)(m—n+2) weights in the
interior triangle. Each of these weights has multiplicity (n + 1) which gives 3(n + 1)(m —
n + 1)(m — n + 2) linearly independent states corresponding to weights in the triangle.
Consider next the k-th hexagonal layer for £ = 1,...,n. This has 3((im+1— (k—1)) +
(n+1—(k—1))—2)=3(m+n+2—2k) weights in it, and each weight has multiplicity
k, which gives 3k(m + n + 2 — 2k) linearly independent states in the k-th hexagonal layer.
The total number of linearly independent states is then given by

;(n+1)(m—n+1)(m—n+2)+kzn:13k(m+n+2—2k¢) - %(m+1)(n+1)(m+n+2) (4.27)

This formula also applies in the case for m < n and also for the triangular weight diagrams
by taking m = 0 or n = 0. The lowest dimensional representations are therefore 1,3,6,8,10...

4.1.5 The Complex Conjugate Representation

Definition 43. Let d be a representation of a Lie algebra L(G) acting on V. Ifv € L(G),
then viewing d(v) as a matriz acting on V, the complex representation d is defined by

d(v)u = (d(v))*u (4.28)

for uw € V', where x denotes matrix complex conjugation.
Note that as d(v) is linear in v over R, it follows that (d(v))* is also linear in v over
R. Also, as
d([v,w]) = d(v)d(w) — d(w)d(v) (4.29)

for v,w € L(G), so taking the complex conjugate of both sides we find

d([v,w]) = d(v)d(w) — d(w)d(v) (4.30)

i.e. d is indeed a Lie algebra representation.
Suppose that T, are the generators of £(G) with structure constants c,,°. Then as d
is a representation,

[d(Ta), d(Th)] = cap“d(Te) (4.31)
Taking the complex conjugate, and recalling that cy,¢ are real, we find
[&(T&% J(Tb)] = CabCCZ(Tc) (432)

i.e. the d(T,) and d(T,) satisfy the same commutation relations.

In the context of representations of £(SU(3)), the conjugate operators to iH;, iHa,
i(ET'4+E™) and ET' — E™ are denoted by iH1, iHa, i(E™+ E™), and ET' — E™ respectively
and are given by

il = (iHp)*
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iHy = (iH)*
i(E™ + ET) = (i(ET + E™))*
ET —E™ = (E7 — E™)* (4.33)

which implies

H = —(H\)*, Hy=—(Hy)*, ET=—(ET) (4.34)

Then Hi, Hy and ET satisfy the same commutation relations as the unbarred opera-
tors, and also behave in the same way under the hermitian conjugate. One can therefore
plot the weight diagram associated with the conjugate representation d, the weights being
the (real) eigenvalues of H; and Hy. But as Hy = —(Hp)* and Hy = —(H3)* it follows
that if (p, q) is a weight of the representation d, then (—p, —¢q) is a weight of the represen-
tation d. So the weight diagram of d is obtained from that of d by inverting all the points
(p,q) — —(p,q). Note that this means that the equilateral triangular weight diagrams A
and V¥ of equal length sides are conjugate to each other.

4.2 Some Low-Dimensional Irreducible Representations of L(SU(3))

4.2.1 The Singlet

The simplest representation has only one state, which is the highest weight state with
weight (0,0). This representation is denoted 1.

4.2.2 3-dimensional Representations

Take the fundamental representation. Then as h; and ho are already diagonalized, it is
straightforward to compute the eigenstates and weights.
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State Weight
1
o] | G55
0
0
et
0
0

1

0 (07 _ﬁ)
1

1

The state of highest weight is | 0 | which has weight (% 7) The weight diagram is
0

————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

This representation is denoted 3. It will be convenient to define the following states
in the 3 representation.

1 0
u=|0|, d=|1], s=]o0 (4.35)
0 1

so that u has weight (3, 2\[) d has weight (—3, 2\[) and s has weight (0, %)
The lowering operators have the following effect: d = v2elu, s = V2e3u and s =

V2e2 d.
The complex conjugate of this representation is called 3 and the weights are obtained
by multiplying the weights of the 3 representation by —1.
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State Weight

1

1 1
0 (=2:—33)
0
0

1 1
1 (3 —ﬁ)
0
0

1
1
0
The state of highest weight is | 0 | which has weight (0, %) The weight diagram is

1

It will be convenient to define the following states in the 3 representation.

vl

1 0
a=1(0]|, d=]|1], 5=10 (4.36)
0 1

so that @ has weight (—3, —2—\1@), d has weight (3, _zlﬁ) and s has weight (0, %)

The lowering operators have the following effect: @ = —v/2e35, d = —v/2e25 and
% = —+/2¢l d; where e = —(ef)*.

Exercise: Verify that all other lowering operators é” (except those given above) an-
nihilate @, d, 5. Also compute the effect of the raising operators en.
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4.2.3 Eight-Dimensional Representations

Consider the adjoint representation defined on the complexified Lie algebra L(SU(3)), i.e.

ad(v)w = [v,w]. Then the weights of the states can be computed by evaluating the
commutators with hq and ho:

State v | [h1,v] | [he,v] Weight
h 0 0 (0,0)
ho 0 (0,0)
el el 0 (1,0)
el —eb 0 (—1,0)
ei _%61 ?ei _%v 23)
e? ze2 —@e% %,—‘?)
| gt | Pl | 5.9)
ed [ gt [ el [ (05,9

The highest weight state is ei with weight (%, ?) All weights have multiplicity 1

except for (0,0) which has multiplicity 2. The weight diagram is a regular hexagon:

4.3 Tensor Product Representations

Suppose that dj, dg are irreducible representations of £(SU(3)) acting on Vi, V, respec-
tively. Then let V=11 Q) V2 and d = d; ® 1 + 1 ® d2 be the tensor product representation
of L(SU(3)) on V. In general d is not irreducible on V', so we want to decompose V' into
a direct sum of invariant subspaces on which the restriction of d is irreducible.

To do this, recall that one can choose a basis of V; which consists entirely of eigenstates
of both dy (hi) and dj(h2). Similarly, one can also choose a basis of Vo which consists entirely
of eigenstates of both da(hi1) and d2(h2). Then the tensor product of the basis eigenstates
produces a basis of V; Q) V2 which consists of eigenstates of d(h1) and d(h2).

Explicitly, suppose that |¢;) € V; is an eigenstate of d;(h1) and d;(h2) with weight
(pi, Qi) (1e dl(hl) ’¢z> = D; |§bl> and dl(hg) |¢)Z> = q; ’¢z>) for ¢ = 1, 2. Define |¢> =
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1) ® |¢2). Then

d(h1) |#) = (di(h1)[¢1)) @ [p2) + [¢1) @ (d2(h1) |h2))
= (p1191)) @ [¢2) + [91) @ (p2 |$2))
= (p1+p2) |9) (4.37)

and similarly

d(h2) |#) = (@1 + q2) [¢) (4.38)

So the weight of |¢) is (p1 + p2, @1 + ¢2); the weights add in the tensor product repre-
sentation.

Using this, one can plot a weight diagram consisting of the weights of all the eigenstates
in the tensor product basis of V', the points in the weight diagram are obtained by adding
the pairs of weights from the weight diagrams of d; and dy respectively, keeping careful
track of the multiplicities (as the same point in the tensor product weight diagram may be
obtained from adding weights from different states in V3 Q) V5.)

Once the tensor product weight diagram is constructed, pick a highest weight, which
corresponds to a state which is annihilated by the tensor product operators E* for m =
1,2,3. (Note that as the representation is finite-dimensional such a state is guaranteed
to exist, though as the representation is no longer irreducible, it need not be unique). If
there are multiple highest weight states corresponding to the same highest weight, one
can without loss of generality take them to be mutually orthogonal. Picking one of these,
generate further states by acting on a highest weight state with all possible combinations
of lowering operators. The span of these (finite number) of states produces an invariant
subspace W1 of V on which d is irreducible. Remove these weights from the tensor product
weight diagram. If the multiplicity of one of the weights in the original tensor product
diagram is k, and the multiplicity of the same weight in the W; weight diagram is k¥’ then
on removing the W weights, the multiplicity of that weight must be reduced from k to
k—K.

Repeat this process until there are no more weights left. This produces a decomposition
V=Wi..0 W of V into invariant subspaces W; on which d is irreducible.

Note that one could also perform this process on triple (and higher order) tensor
products e.g. V1 Q) Vo @ V3. In this case, one would construct the tensor product weight
diagram by adding triplets of weights from the weight diagrams of dy on Vi, do on V5 and
ds on V3 respectively.

This process can be done entirely using the weight diagrams, because we have shown
that for irreducible representations, the location of the highest weight fixes uniquely the
shape of the weight diagram and the multiplicities of its states.

We will see how this works for some simple examples:

4.3.1 3 ® 3 decomposition.

Consider the 3 ® 3 tensor product. Adding the weights together one obtains the following
table of quark content and associated weights
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Quark content and weights for 3 ® 3
Quark Content Weight
g
u®u (1, %)
d®d (_L %)
5®s (0, — 23)
u®d, du (0, 13)
U®s, s®u (3 —575)
1 1
d®s,s®d (-3, —53)

The raising and lowering operators are E' = €' ® 1 +1 ® e'. The highest weight state

is u ® u with weight (1, %) Applying lowering operators to u ® w it is clear that a

six-dimensional irreducible representation is obtained. The (unit-normalized) states and
weights are given by

States and weights for the 6 in 3 ® 3
State Weight
U U (1,%)
ded (-1, %)
S®s (0,—%)
Hd®u+u®d) (0. 7)
Fues+sou) | (3,-57%)
%(d@s%—s@d) (—%,—ﬁ)
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which has the following weight diagram

This representation is called 6. Removing the (non-vanishing) span of these states
from the tensor product space, one is left with a 3-dimensional vector space. The new
highest weight is at (0, %) with corresponding state %(d ®u—u® d) (this is the unique
linear combination- up to overall scale- of d ® u and u ® d which is annihilated by all the
raising operators). This generates a 3. The states and their weights are

States and weights for the 3 in 3 ® 3
State Weight

1 T

%(s@u—u@s) (%,—ﬁ)

Hence 3 ® 3 = 6 @ 3. The states in the 6 are symmetric, whereas those in the 3 are
antisymmetric.

4.3.2 3 ® 3 decomposition

For this tensor product the quark content/weight table is as follows:
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Quark content and weights for 3 ® 3
Quark Content Weight

u® s (L, %)
u®d (1,0)
d®s (=3 %)

u@u, d®d, s® s (0,0)
d®a (=1,0)
s@ U (—1,—3)
s®@d (3,—%2)

with weight diagram

The raising and lowering operators are E}' = €' ® 1 + 1 ® e All weights have
multiplicity 1, except for (0,0) which has multiplicity 3. The highest weight state is u ® §
with weight (%, @) Acting on this state with all possible lowering operators one obtains
an 8 with the following states and weights

States and weights for the 8 in 3 ® 3
State Weight
u® s (1,%2)
u®d (1,0)
d®3 (-3, %)
—%M@J—u@@R%M®J+u®ﬂ—%®Q (0,0)
d®u (—1,0)
s®T (=3, %)
s J (%7 —é)
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Removing these weights from the weight diagram, one is left with a singlet 1 with
weight (0, 0), corresponding to the state

1 _
—uRu+s®@s+d®d) (4.39)

V3

which is the unique linear combination- up to an overall scale- of u®, s®5 and d®d which
is annihilated by the raising operators E7'. Hence we have the decomposition 3®3 = 8$1.

4.3.3 3 ® 3 ® 3 decomposition.

For this tensor product the quark content/weight table is as follows:

Quark content and weights for 3 ® 3 ® 3

Quark Content Weight
URUR U (%,é)
9308 =
ded®d (_g,g)
URURS, URSRU, SOUR U (1,0)
wouedu@dou, doueu | (1,%)
SRSPOU,SPOURS, UR SR S (%_%ﬁ
sRsRd,sRAdRs,dRsR s (_;_éﬁ
dodos,dosed sodod | (~1,0)
dd®u,du®d, u®d®d (_%,g)

URAdRs, u®RsRd, dRuR s,
d®@s@u, s@ued, s@du (0,0)

with weight diagram

The raising and lowering operators are ' = e ® 1®1+1®elf ®1+1®1® €.
There are six weights of multiplicity 3, and the weight (0, 0) has multiplicity 6. The highest
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weight is u ® v ® v with weight (%, @) By applying lowering operators to this state, one

obtains a triangular 10-dimensional irreducible representation denoted by 10, which has
normalized states and weights:

States and weights for 10 in 3 ® 3 ® 3

State Weight
UR U U (3, @)
S®S®S (0,—V3)
dod®d (—3,3)
%(u®u®s+u®s®u+s®u®u) (1,0
Fu®uedtued®utdeusu) (1,%2)
%(8®8®u+s®u®s+U®8®S) (3, @)
F(60s0d+s0d0s+dos®s) (—1,—3)
%(d®d®s+d®s®d+s®d®d) (-1,0)
Hdedoutdoued+ueded) (—1,%3)
Fuedestu®s®d+dou® st
dRs@u+sRu®d+sdu) (0,0)
The 10 weight diagram is
S A
AN :\\ddd ddu/ duut uud
ddsl?\\ ~ d .IS uus
,,,,,,,,,,,,,,,,,,,, e T \.
AN NS RV

Removing the (non-vanishing) span of these states from the tensor product space, one
is left with a 17-dimensional vector space. The new weight diagram is
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————————————————————————————————————————————————————————————

Note that the highest weight is now (%, @) This weight has has multiplicity 2. It
should be noted that the subspace consisting of linear combinations of d@u @ u, u R d R u

and © ® u ® d which is annihilated by all raising operators E'* is two-dimensional and

is spanned by the two orthogonal states %(d QURutu®du—2u®u®d) and

%(d Ru®u—u®d®u). By acting on these two states with all possible lowering
operators, one obtains two 8 representations whose states are mutually orthogonal.

The states and weights of these two 8 representations are summarized below:

States and weights for an 8 in 3 ® 3 ® 3

State Weight
Ldououtuedou-2ucued | (3%
7($®u®u+u®s®u—2u®u®s) (1,0)
7(2d®d®u—d®u®d—u®d®d) (-1, %)

f(s®d®u+s®u®d+d®s®u
tuRs®d—2du®s —2u®d® s),
2\[(28®d®u—|—2d®s®u—s®u®d

—d®u®s—u®s®d—u®d®s) (0,0)
(s®d®d+d®s®d 2d®d® s) (—1
(23®s®u—s®u®s—u®s®s) (
(28®s®d—s®d®s—d®s®s) (-3, —%)

ANSESE
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States and weights for another 8 in 3® 3 ® 3

State Weight
SHldouou—uwdou) (1, 43)
%(s@u@u—u@s@u) (1,0)
Hdouod-uwdod) (—1,%3)

3(50dRu+sRUR®d—dRsOU—Uu® s®d),
1(50u®d+dRu®s—u®s®d—u®dQ s) (0,0)

%(s@d@d—d@s@d) (—1,0)
%(s@u@sfu@)s@s) (%77§)
S(s0d0s—dRs®s) (—1,-3)

Removing these weights from the weight diagram, we are left with a singlet 1 with
weight (0,0). The state corresponding to this singlet is

1
(sdRu—sQud+du®s—d@sQu+uRsVd—uRdR s) (4.40)

V6

which is the only linear combination-up to overall scale- of u® d® s, uR s R d, dR U R s,
d®s®u, sRQu®dand s ®d®u which is annihilated by all the raising operators.

Hence we have the decomposition 3 ® 3 ® 3 =10® 8 ® 8 ® 1 where the states in 10
are symmetric, but the state in 1 is antisymmetric. The 8 states have mixed symmetry.

4.4 The Quark Model

It is possible to arrange the baryons and the mesons into SU(3) multiplets; i.e. the states
lie in Hilbert spaces which are tensor products of vector spaces equipped with irreducible
representations of £(SU(3)). To see examples of this, it is convenient to group hadrons into
multiplets with the same baryon number and spin. We plot the hypercharge Y = S + B
where S is the strangeness and B is the baryon number against the isospin eigenvalue I3
for these particles.

4.4.1 Meson Multiplets

The pseudoscalar meson octet has B = 0 and J = 0. The (I3,Y) diagram is
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There is also a J = 0 meson singlet 7.

The vector meson octet has B =0 and J = 1. The (I3,Y) diagram is

There is also a J = 1 meson singlet, ¢.

4.4.2 Baryon Multiplets

The baryon decuplet has B =1 and J = % with (I3,Y) diagram
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There is also an antibaryon decuplet with (I3,Y) — —(I3,Y).

The baryon octet has B =1, J = % with (I3,Y) diagram

and there is also a J = % baryon singlet A%,

4.4.3 Quarks: Flavour and Colour

On making the identification (p, q) = (I3, @Y) the points on the meson and baryon octets
and the baryon decuplet can be matched to points on the weight diagrams of the 8 and 10
of L(SU(3)).

Motivated by this, it is consistent to consider the (light) meson states as lying within
a3®3;as 3®3 =8®1, the meson octets are taken to correspond to the 8 states, and
the meson singlets correspond to the singlet 1 states. The light baryon states lie within a
3 ® 3 ® 3; the baryon decuplet corresponds to the 10 in 33 ®3 =100 8 ® 8 P 1; the
baryon octet corresponds to appropriate linear combinations of elements in the 8 irreps,
and the baryon singlet corresponds to the 1.
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In this model, the fundamental states in the 3 are quarks, with basis states u (up),
d (down) and s (strange). The basis labels u,d, s are referred to as the flavours of the
quarks. The 3 states are called antiquarks with basis @, d, 5. Baryons are composed of
bound states of three quarks ggq, mesons are composed of bound states of pairs of quarks
and antiquarks gg. The quarks have J = % and B = % whereas the antiquarks have J = %
and B = —% which is consistent with the values of B and .J for the baryons and mesons.
The quark and antiquark flavours can be plotted on the (I3,Y") plane:

‘Y
213 S

) I
2172 2 3 =172 12 3

S

fZ/Bf

We have shown that mesons and baryons can be constructed from ¢q and qqq states

respectively. But why do ¢ggq particles not exist? This problem is resolved using the notion
of colour. Consider the AT particle in the baryon decuplet. This is a u ® u ® u state with
J = % The members of the decuplet are the spin % baryons of lowest mass, so we assume
that the quarks have vanishing orbital angular momentum. Then the spin J = % is obtained
by having all the quarks in the spin up state, i.e. u T ®u T ®u T. However, this violates the
Pauli exclusion principle. To get round this problem, it is conjectured that quarks possess
additional labels other than flavour. In particular, quarks have additional charges called
colour charges- there are three colour basis states associated with quarks called r (red), g
(green) and b (blue). The quark state wave-functions contain colour factors which lie in
a 3 representation of SU(3) which describes their colour; the colour of antiquark states
corresponds to a 3 representation of SU(3) (colour). This colour SU(3) is independent of
the flavour SU(3).

These colour charges are also required to remove certain discrepancies (of powers of
3) between experimentally observed processes such as the decay 7° — 2y and the cross
section ratio between the processes ete™ — hadrons and eTe™ — p*u~ and theoretical
predictions. However, although colour plays an important role in these processes, it seems
that one cannot measure colour directly experimentally- all known mesons and baryons
are SU(3) colour singlets (so colour is confined). This principle excludes the possibility
of having gq particles, as there is no singlet state in the SU(3) (colour) tensor product
decomposition 3 ® 3, though there is in 3 ® 3 ® 3 and 3 ® 3. Other products of 3 and 3
can also be ruled out in this fashion.

Nevertheless, the decomposition of 3 ® 3 is useful because it is known that in addition
to the u, d and s quark states, there are also ¢ (charmed), ¢ (top) and b (bottom) quark
flavours. However, the ¢, t and b quarks are heavier than the u, d and s quarks, and are
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unstable- they decay into the lighter quarks. The SU(3) symmetry cannot be meaningfully
extended to a naive SU(6) symmetry because of the large mass differences which break the
symmetry. In this context, meson states formed from a heavy antiquark and a light quark
can only be reliably put into 3 multiplets, whereas baryons made from one heavy and two
light quarks lie in 3 ® 3 = 6 ¢ 3 multiplets.
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5. Spacetime Symmetry

In this section we examine spacetime symmetry in the absence of gravity. Spacetime
is taken to be 4-dimensional Minkowski space, M* | with real co-ordinates z* for p =
0,1,2,3, equipped with the Minkowski metric which has the non-vanishing components

Moo = —N11 = —N22 = —N33 = 1, or as a matrix
1 0 0 0
0o -1 0 0
L= (mH = 5.1
(M) = () o o0 1 o (5.1)
0 0 0 —1

5.1 The Lorentz Group

A Lorentz transformation is a linear transformation A : M* — M?* which transforms
co-ordinates
't = AP, a” (5.2)

for A*, € R, but leaves the length invariant
Nt = nyata’ (5.3)

for all .
This condition can be rewritten in matrix notation as

ATnA =17 (5.4)

Suppose that Aj, Ag are two 4 x 4 matrices satisfying (5.4) then it is straightforward to
see that AjAg satisfies (5.4). Also, if A satisfies (5.4) then det A = £1, hence A is invertible,
with inverse A~' = ATy, and

(AH A~ = Ay~ ATy
= nAn ATy
= nAA~!
=7 (5.5)
so A™! is also a Lorentz transformation. Hence, the set of Lorentz transformations forms

a group, under matrix multiplication.
Write a generic Lorentz transformation as

A a7
(2 ) 50

where A € R, o, 8 € R? and R is a 3 x 3 real matrix
Then the constraint (5.4) is equivalent to

M=1+aa (5.7)
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and
A3 =R"a (5.8)
and
R'R-pp" =15 (5.9)
Note that (5.7) implies that

A=*y/14+aa (5.10)

so in particular A < —1 or A > +1. Then (5.8) fixes 3 in terms of o and R by

1
=+—u R’ 5.11
b=*raa® (511

which can be used to rewrite (5.9) as

1
1+ o«

RTR -

RTaa™R =13 (5.12)

Define

R (5.13)

or equivalently
aa’)R (5.14)

Then (5.12) implies
RTR=1; (5.15)

A~

i.e. R € O(3). Moreover, it is straightforward to check directly that

detR— — _detR (5.16)

VI+aa

where we have used the formula det(I3 + KMT) =1+ Ka.«a for any K. Also, one can

A 0 1 A 2T 1 0
A= = 5.17
< @ ]13> < 0 ]Ig—)\_anzT> < 0 R) (5.17)

A A .
detA = ————det R = ——det 1
e [T aa et R Traa et R (5.18)

O(3) has two connected components, the connected component of I3 (which is SO(3))

write

and hence

whose elements have determinant det R = +1, and the connected component of —I3, whose
elements have determinant det R = —1.

There are therefore four connected components of the Lorentz group, according as
A% < —1 or A% > 1 and detA = +1 or det A = —1. It is not possible to construct a
smooth curve in the Lorentz group passing from one of these components to the other.

The set of Lorentz transformations with det A = +1 forms a subgroup of the Lorentz

group.
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Note that (5.13) implies that

N 1
and hence 1
BB=17 agTRRTg =a.a (5.20)

B A QT ;L N QIT
() () -

with A > 1 and X' > 1, then

(AA’)OO =\ +g.g’ > \/1 —|—g.g\/1 + oo — Jaar/ o .o > 1 (5.22)

Hence the set of Lorentz transformations with A% > 1 also forms a subgroup of the
Lorentz group.

The subgroup of Lorentz transformations with det A = +1 and A% > 1 is called the
proper orthochronous Lorentz group, which we denote by SO(3, I)T.

We note the useful lemma

Lemma 10. Suppose that A € SO(3,1)!. Then there exist S, So € SO(3) and z € R such
that

cosh z sinh z

oT sinh z cosh z
S1 0 0
0 0

=

|
VN
o =

O = O O

0
0 1 0of

= 5.2
1

Proof
From the analysis of the Lorentz group so far, we have shown that if A € SO(3,1)!
then there exists o € R® and R € SO(3) such that

A= a.a a'R
(1+ Hmaa )R

| A8 e
1+1+¢m 0

There also exists S; € SO(3) and z € R such that

— =

o +| e +
12 ¢
[®)

sinh z
o = Sl 0 (5.25)
0

The result follows on substituting this into A and setting Sy = (S1)”R. W
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5.2 The Lorentz Group and SL(2,C)

Consider the spacetime co-ordinates x*. Define the matrices

(0 (Y () e e
0 1 1 0 1 0 0 -1

Then given real spacetime co-ordinates x*, define the 2 x 2 complex hermitian matrix

0 3 1 2.2
T —T —r 41
T =ux,0" = 5.27

’ ( —zl — 22 ZL’0+JL‘3> ( )

Observe that any hermitian 2 X 2 matrix can be written as T for some real x*.
Note that
det # = (2%)% — (2% — (2%)? — (2°)? = nuat'z” (5.28)

Nuata” is invariant under the action of SO(3,1). detZ is invariant under the action of
SL(2,C), the complex 2 x 2 matrices with unit determinant.

Proposition 30. There exists an isomorphism 7 : SL(2,C)/Zy — SO(3,1)! where SL(2,C)/Zy
consists of elements £N € SL(2,C) with +N identified with —N .
Proof

Given N € SL(2,C) consider the 2 x 2 complex matrix NZNT. The components of
this matrix are linear in the spacetime co-ordinates xz*. As T is hermitian, it follows that
NZNT is also hermitian. Hence there exist A#, € R (independent of z) for p,v =0,...,3
such that .

NiNT = (Az) (5.29)

—~

Taking the determinant of both sides we find det = det (Az) for all z, and therefore A is
a Lorentz transformation.
Set
A=m(N) (5.30)

Note that

Tr (Az) = 2A%,2# = Tr (N1Nz) (5.31)

Setting 2° = 1, 2! = 22 = 23 = 0 we find A% = 1 Tr (NTN) > 0.
If N1, Ny € SL(Q,(C) then

—_——

(N1 N2)Z(N1No)T = (w(Ny No)z) (5.32)
But
(N1N2)F(N1No)T = Nl(Ni@izT)Nf
= Ni(m(N2)z)N]

—_—

= m(Ny)7(No)x (5.33)
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Hence (w(m)z) = W(N/)_;T_(/]Vg)x for all z, which implies 7(N1N2) = 7w(Ny)7(N2).
Next we will establish that 7 is onto SO(3,1)T. First recall that any R € SO(3,1)! of

the form
1 of
R = A 5.34

can be written as a product of rotations around the spatial co-ordinate axes

1 0 0 0
0 1 0 0
R = 5.35
1(91) 0 O cos ¢1 sin ¢ ( )
0 0 —sin ¢ coSs ¢1
1 0 0 0
0  cosgo 0 — sin ¢9
R _ 5.36
2(d2) 0 0 1 0 (5.36)
0 sin ¢9 0 cOS g
and
1 0 0 0
0 coSs @3 sin ¢s 0
R = 5.37
3(¢3) 0 — sin ¢3 coS ¢3 0 ( )
0 0 0 1
gy
By a direct computation we find ﬂ(eT]“J) = Rj for j =1,2,3; and
cosh z sinh z 0 0
p inh h
W(€_§U1) _ sinh 2z coshz 0 0 (5.38)
0 0 1 0
0 0 0 1

i . z
where ez %’ € SL(2,C) for j = 1,2,3 and e 37 SL(2,C).

Hence, if A € SO(3,1)1, it follows that one can write A = Aj.As...A; where A; are
elementary rotation or boost transformations in SO(3, 1)T, and from the above reasoning,
A; = w(N;) for some N; € SL(2,C). Therefore, A = m(N1.Ns... Ni.), so 7 is onto SO(3, 1)T.

Next, suppose that 7(N) = n(M) for N,M € SL(2,C). Then

NiNt = MzMT (5.39)

Set @ = M~!N, so that
QIQ' =z (5.40)
Setting 20 = 1, 2! = 22 = 23 = 0, we obtain QQT =1, so Q € SU(2). Hence

Qo' = o'Q (5.41)
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for i = 1,2,3. The only @ € SU(2) satisfying this is Q = £y, so M = £N. Hence 7 is a
2 — 1 map.

Lastly, we must prove that if N € SL(2,C) then n(N) € SO(3,1)!. We have already
shown that 7(V) is orthochronous. Suppose that det(7w(N)) = —1. Consider

1 0 0 0

. 0 1 0 0

A= N 42
0o 0 0 -1

The det A = +1, so A € SO(3,1)!. Hence, there exists some N’ € SL(2,C) such that

~

A =mn(N'), so

1 0 0 0
8 (1) (1) 8 T(N) = ©(N) (5.43)
0 0 0 —1
Setting Y = N'N~!, we obtain
1 0 0 0
8 é (1) 8 — (V) (5.44)
0 0 0 —1
for some Y € SL(2,C). This implies that
Y{EHU'MYT = 2oly + 10" + 2902 — 2307 (5.45)

for all z,. In particular, for =12l =22=23=0wefind YY' =1y, s0Y € SU(2).
The remaining constraints are

Yol =o'y, Yo?=0%, Yoi=-0Y (5.46)

This is not possible, because [V, 0!] = [Y,0?] = 0 implies that Y = aly for some a € C.
As detY = 1 this implies Y = +I, but then Yo # —03Y. Hence if N € SL(2,C) then
m(N) € SO(3,1)1.

Although 7 : SL(2,C) — SO(3,1)! is not 1-1, we have shown that the restriction of 7
to SL(2,C)/Zs, in which N is identified with —N is 1-1. W

5.3 The Lie Algebra £(S0O(3,1))

To compute the constraints on the tangent matrices, consider a curve in the Lorentz group
A(t) with A(0) = I4. This is constrained by

A nA(t) =1 (5.47)
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Differentiate this constraint and set ¢ = 0 to obtain

mIn+nm=0 (5.48)
where m = (%}Et))hzo. The generic solution to this constraint is
0 X
mt, = ( N S) (5.49)
for any x € R? and S is a real 3 x 3 antisymmetric matrix; S = —S”. There are three real

degrees of freedom in x and three real degrees of freedom in the antisymmetric matrix S.
Hence the Lie algebra is six-dimensional.
Define the 4 x 4 matrices M* for u,v =0,1,2,3 by

(M) = (8 = 1”6 5) (5.50)

note that M* = —M"Y*, so there are only six linearly independent matrices defined here.
By direct computation, we find

0 0 O 0 0 4 0
00 — i 0 0 O 202 _ 0O 0 0 O
0O 0 0 O i 0 0 0
0O 0 0 O 0O 0 0 O
0 0 O i 0 0 0 0
203 _ 0O 0 0 O 2 - 0o 0 —i 0
0O 0 0 O 0 i 0 0
i 0 0 O 0 0 0 0
0 0 O 0 0 0 O 0
M13 _ 0 0 0 —1 M23 _ 0 0 0 0 (551)
0 0 O 0 0O 0 0 —i
0 i 0 0 0 0 1 0
and
[MH MP] = i(M“"n”p + MVPphto — MHPRYT — M”"n’“’) (5.52)
which defines the complexified Lie algebra of the Lorentz group.
Define
1
Ji = S€ijnMijn
K; = My; (5.53)
for 7,7,k = 1,2,3. Then it follows that
[Ji, Jj] = deijpJr
[KHKJ‘] = _ieijkjk
[JZ',KJ‘] = iéiijk (554)
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So, setting

1 1

we obtain the commutation relations
[Ai,Aj] = ie,-jkAk

[B,L', Bj] = ieijkBk
[4i,Bj] = 0 (5.56)

Hence the complexified Lorentz algebra £(SO(3,1)) can be written as the direct sum of
two commuting complexified £(SU(2)) algebras. It follows that one can classify irreducible
representations of the Lorentz algebra by spins (A, B) for 24,2B € N.

5.4 Spinors and Invariant Tensors of SL(2,C)

Definition 44. The left handed Weyl spinors are elements of a 2-dimensional complex
vector space V' on which the fundamental representation of SL(2,C) acts via D(N)¢p = N
where N € SL(2,C). In terms of components, if v € V' has components 1o for a = 1,2
with respect to some basis of V', then under the action of SL(2,C), v transforms as

¢a - w& = Naﬁl/}ﬁ (557)
where N € SL(2,C).

Definition 45. The right handed Weyl spinors are elements of a 2-dimensional com-
plex vector space V' on which the complex conjugate of the fundamental representation of
SL(2,C) acts as D*(N)x = N*x where N € SL(2,C) and N* is the complex conjugate
of N. In terms of components, if X € V has components X4 for & = 1,2, then under the
action of SL(2,C), x transforms as

Xo = Xo = N*aﬁ)_cﬁ' (5.58)

where N € SL(2,C).
Note: One should regard o and & as being entirely independent! The components of
these spinors anticommute.

We also define €*? and €ap to be totally skew-symmetric with

eaﬁ:( _01 é) ea5:< (1] _01> (5.59)

and observe that ¢*? €gy = 0%. One defines ¢ and €4 Similarly.
Note that e, is invariant under SL(2,C), as

€aB — €5 = €N/ Ng” = det(N)eag = €qp (5.60)

or in matrix notation NeN7T = e.
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If we define the contravariant representation Doy on V via
Dev(N)y — (NT) ™1y (5.61)
and the complex conjugate contravariant representation by
Déy(N)x — (N)~'x (5.62)

then NeNT = ¢ implies that (N7)~! = ¢ ! Ne¢, so Doy is equivalent to the fundamental
representation. The complex conjugate representations are similarly equivalent.

The tensors €,3 and € are called invariant tensors as they transform into themselves
under the action of SL(2,C). For SO(3,1), the invariant tensors are 7, and n**, which
can be used to raise and lower indices. We will raise and lower SL(2,C) indices using *?,
€ag; 50 if 14, X4 are in the fundamental and conjugate representations respectively, then
we define

Pt =Py 3=y, (5.63)

One can construct a tensor product representation of the fundamental representation

acting on n products of V, V@V ®V ---® V. In terms of components, elements of the

tensor product vector space have components 1, ..o, Which transform under the action of
SL(2,C) as

Darron = Uiy oan = New™ - No, 03,3, (5.64)

for N € SL(2,C). Similarly, tensor product representations of the complex conjugate

representation correspond to complex tensors with components Xy, ..«;, Which transform
as

Xirbm = Xagodm = N0 N, " xg 5 (5.65)
By taking the tensor product n tensor products of V acted on by the fundamental

representations, with m tensor products of V acted on by the conjugate representation, one

obtains a vector space which has elements with components v which transform

ay...anfB1...Bm
as

Q’Z)ay..anﬁ.y.ﬂ.m — 1/1/ = Ny, M ... Nan“"N*ﬁll.’l e N*Bmi}mwﬂy.ﬂnlh...bm (5.66)

al---anﬁl---ﬁm

This representation is in general not irreducible.

5.4.1 Lorentz and SL(2,C) indices

It is straightforward to map between Lorentz invariant tensors and SL(2,C) invariant
tensors. In particular, recall that the relationship between N € SL(2,C) and the corre-
sponding Lorentz transformation A = A(N) is given by

Nz, o' NT = n,,A? 275" (5.67)
which implies that

No#NT = g, A" = (7 ATy 0 = (A1) (5.68)
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So, denoting the components of o by O’Z g one finds

v AATRY AV

which implies that JZ 5 is invariant. One can also define

(GH)% = eaﬂedgagﬁ. (5.70)

0

so that % = oY, 6 = —¢? for i = 1,2, 3.

Exercise: Prove the following useful identities
i) ohe¥ + oo = 2V,
ii) Tr ota” = 2t
iii) o 50 = 20057,

Definition 46. Define the 4 x 4 matrices v* by
0 ot
- 5.71
g ( o 0> (5.71)

{77} =AY+ =20 (5.72)

An algebra satisfying this property is called a Clifford algebra.

Then these matrices satisfy

Definition 47. A Dirac spinor ¥ p is a 4-component spinor constructed from left and right

W — ( ‘fg) (5.73)
X

The gamma matrices act on Dirac spinors.

handed Weyl spinors 1a, X* via

The o-matrix identities are useful. For example; recall that the correspondence be-
tween A € SO(3,1)" and N € SL(2,C) is given by No#NT = n,,A?,n"o”. Then using
(74) above the components of A are given by

A, = %Tr (6"No,NT) (5.74)

Also, it is straightforward to relate tensors with SL(2,C) indices to tensors with
Lorentz indices. Given a 4-vector with Lorentz indices V# one can define a tensor with
SL(2,C) indices via

Voo = V“(Uu)ad (575)
The invariance of (0#)a4 ensures that if V# transforms as V# — A*, V" under the action
of the Lorentz group, then V4 transforms as Vo5 — NaﬁNgﬁVﬂB under SL(2,C). This
expression can be inverted using (i7) of the above exercise to give

v — %(wwavm (5.76)

Similar maps between higher order tensors can also be constructed.
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5.4.2 The Lie algebra of SL(2,C)

The Lie algebra of SL(2,C) consists of traceless complex 2 x 2 matrices; which has six real
dimensions. This is to be expected, as £(SO(3,1)) is six-dimensional. It is convenient to
define the matrices

(O'I'W)aﬁ = 2(0“5” — J”&“)aﬁ
. )

(") = (@0" = "), (5.77)

so that 0% = —%ai, ok = %ejkfae, gV = %Ui, gik = %ejkzae. It is clear that the o"” span
the 2 x 2 traceless matrices over R (as do the #¥), hence they are generators of the Lie

algebra of SL(2,C). By a direct computation we obtain the commutation relations:
(o1, 0P7) = i ()Pt + 9T GVP — T gt — PGV (5.78)

which is the same commutation relation as for the Lie algebra £(SO(3,1)). Similarly, we
find
[5—/“” 5/’0] — '(nVP5MJ + 77/“’5”/? _ 77’/‘75,“0 _ n#ﬂa—VU) (5'79)

Hence the 0" and " correspond to representations of £(SO(3,1)).
The action of SL(2,C) on left-handed Weyl spinors is given by

Yo — (e") Papg (5.80)

Just as for the Lorentz algebra, one can define J; = %eijkojk = %ai and K; = 0g; = %ai.
Hence A; = %ai, B; = 0. Therefore the fundamental representation corresponds to a spin—%
L(SU(2)) representation generated by A, and a £(SU(2)) B-singlet. This representation
is denoted by (1,0).

The action of SL(2,C) on right-handed Weyl spinors is given by

Xa — (ew‘“’wy)ﬁ'a% (5.81)

Again, define J; = %eijkﬁjk = %Ui and K; = dg; = —%O’i. Hence A; = 0, B; = %O’i.
Therefore this representation corresponds to a spin-3 £(SU(2)) representation generated

by B, and a £(SU(2)) A-singlet. This representation is denoted by (0, 1).

5.5 The Poincaré Group

The Poincaré group consists of Lorentz transformations combined with translations; which
act on the spacetime co-ordinates by

at — Ay’ + b (5.82)

where A is a Lorentz transformation and b € R?* is an arbitrary 4-vector. One can denote
the generic Poincaré group element by a pair (A, b) which act in this way. Note that under
the action of (A,b) followed by (A',b'); x — A’Axz + A’b+ V', hence one defines the group
product to be

(N0 (A, b) = (AMAA'b+ V) (5.83)
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so the Poincareé group is closed under this multiplication. The identity is (I4,0) and the
inverse of (A,b) is (A=, —A~1b).
One can construct a group isomorphism between the Poincaré group and the subgroup
of GL(5,R) of matrices of the form
A b
5.84
() (534

where A is a Lorentz transformation and b is an arbitrary 4-vector, as under matrix mul-

ANV A Db NN ANb+ Y

5.5.1 The Poincaré Algebra

tiplication

Consider a curve

A(t)  b(t)
( . 1) (5.86)

in the Poincaré group passing through the identity when ¢ = 0, so A(0) = Iy, b(0) = 0.
Differentiating with respect to t and setting ¢ = 0 we note that the generic element of the

(0 2) -

where m € £(SO(3,1)) and v € R? is unconstrained. Hence a basis for the Lie algebra is
given by the 5 x 5 matrices M* and P" for pu,v = 0,1, 2,3 where

Poincaré Lie algebra is of the form

(MP), = (P57, = 17060,

(M), = (MP)Fy = (MP7)*y =0 (5.88)
and
(PY)Fq = in™
(PY)y = (PY)'\ = (P") 4 =0 (5.89)

(labeling the matrix indices by p,v = 0,1,2,3 and the additional index is “4”). The M*r®
generate the Lorentz sub-algebra
m 0
5.90
( 0 0) (5.90)

for m € L(SO(3,1)); they satisfy the usual Lorentz algebra commutation relations

(M MP7) = i (MM7P 4+ MYPpfe — MPPQPT — M7 phP) (5.91)
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The PY generate the translations

0 1
(0 0) -

[P*, P] =0 (5.93)

for v € RY. The P* satisfy

and
[PH, MP?] = inPP P? — in°H PP (5.94)

The commutation relations

[M* | MP] = l-(Muoan + MVPpHT — N[FPpPO Mwnup)
[PH, MP°] = in’t P° — in°H PP
[P*,P"] =0 (5.95)

define the Poincaré algebra.

5.5.2 Representations of the Poincaré Algebra

Definition 48. Suppose that d is a representation of the Poincaré algebra. Let €,,,, be
the totally antisymmetric tensor with €g1203 = 1. Then the Pauli-Lubanski vector is defined

by
1
W = 3enpovd(M?7)d(P") (5.96)

Proposition 31. The Pauli-Lubanski vector satisfies the following commutation relations:
1) Wy, d(P,)] =0
2) Wy, d(Myo)] = inupWo — inueWp
3) Wy, W, | = —i€ppe WPA(P)

Proof
We will use the identities

€papy €777 = —60P1,07 3071 = —601°,87 557, (5.97)

and

Cpage’?? = —40P1,0% 5 = —451P 67 5 (5.98)

To prove (1) is straightforward:

(Wi d(P)] = Jeuposld(MP)d(P), ()
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2 upon (AP A(P), d(P,)] + [ (M), d(P, )] ()
= Seumo (PP, B) + (M7, P)d(P))
= Seuon( — i07ud(P7) + 6%, d(PP))d(P")
~0 (5.99)

To prove (i7) is an unpleasant exercise in algebra:

(W d(My)] = %Euxxe[d(M’\X)d(Pe), A(Myo)
= S (AL APY), d(Myo)] + [dOPY), d(M o) d(P))

(
= S (AP, My]) + d(M, My ])d(P))
(

emg d(M™X) (i6° ,d(Py) — i6° 5d(P,))
( (M*5)6%, — d(MX5)6%, — d(M*,)6%, + d(MX,)5" 5 )d(P"))
Eu/\XG(d(M/\X)56 d(Py) — d(M/\X)fsaad( Py)

+ 2d(M’\ )6%,d(P?) — 2d(M*,)6%,d(P?))

S — e 07 ) epaye (A(MMX)d(PT) — 2d(MAT)d(PX))

2
31 .
= 9 (7]0760 77p7560)6u)\x9d(M[>\X)d(P }) (5.100)
But
1
TV = Ty (M) d(P)
= 3d(M™)d(PT)) (5.101)
Hence

i T
(W, d(Mpo)] = *(7707-50,0 - inéea)Equ9€)\X FWT

2
¢ T T
= 5(7707-56,0 - 77p7-500)(_2)(5 uloy — o 977,u'y)VV7
= MupWo — W, (5.102)

as required.
(3) follows straightforwardly from (2):

W W] = %e,,pgg[wy, (M) d(P)]

= Sevpon (Wi d(MP)d(P) + AW, d(P))
= Seuponl W, (0P d(P)
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1
= S upon(i07 W7 — i67 ,WP)d(P?)
= —i€upe WPA(P7) (5.103)

as required. WL
From this we find the

Corollory 3. The following commutation relations hold
1) (W, WH d(P,)] =0
2) WuWH,d(Mpys)] = 0

Proof
(1) follows because [W,W*#,d(P,)] = W,[WH,d(P,)] + [W,,d(P,)]WH =0
(2) holds because

(W, W, d(Mpe)] = Wu[WH, d(Mps)] 4+ (W, d(Mye ) ]WH
= Wy (io* ;W — 16" W) + (in,pWe — inueW,)WH
=0 (5.104)

as required. W
Hence we have shown that W, W* is a Casimir operator. d(P,)d(P*) is another Casimir
operator:

Proposition 32. The following commutation relations hold
1) [d(P)A(PY), d(P,)] = 0
2) [d(Pu)d(P"),d(Mps)] = 0

Proof
(1) follows because

[d(Bu)d(P"),d(P,)] = d(P,)[d(P"), d(P,)] + [d(Fy), d(P,)ld(P") = 0 (5.105)

(2) holds because

[d(Py)d(P"), d(Mye)] = d(Py)[d(P"), d(Mpo)] + [d(FPp), d(Mpe)|d(P")
d(Py)(i6" pd(Py) — 16" d(P,)) + (inupd(Ps) — inusd(P,))d(P")
0

(5.106)

as required. W
We shall show that irreducible representations are classified by the values of the two
Casimir operators W,W* and d(P,)d(P").
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In particular, suppose that D is a unitary representation of the Poincaré group acting
on V. Such representations arise naturally in the context of quantum field theory when
V' is taken to be a Hilbert space, and it is assumed that Poincaré transformations do not
affect transition probabilities. We will assume that this is the case.

Note that iM,, and iP* form a basis for the (real) Poincaré algebra. Hence one can
locally write the Poincaré transformation as

o~ 5 (bu P +wpu MH) (5.107)

for real b, and skew-symmetric real w,,,,, and

D(e—%(buP“+wuuM“">) — o~ 5 (bud(P*)+wpnd(MH)) (5.108)

where d is a representation of the Poincaré algebra acting on V. As D is unitary, d(M,s)
and d(P*) are hermitian.

As the d(P*) commute with each other and are hermitian, they can be simultaneously
diagonalized, with real eigenvalues. For a 4-vector ¢ define the subspace V; of V' to be
the simultaneous eigenspace

Vo={lY) e Vod(P")|9) = ¢"[¢), n=0,1,2,3} (5.109)

and

V=PV (5.110)
q

Then on Vg, d(P,)d(P*) = ¢*q, = ¢*>. We will assume that for configurations of
physical interest, such as when ¢ is the 4-momentum of a massive particle or of a photon,
that ¢ > 0 and ¢° > 0. We will only consider these cases.

Consider first the operators

R (t) = e%‘(bud(P“)—i-de(MW))d(P)\)e—%(bud(P“)-i-de(MW)) (5.111)

Differentiating with respect to t we find

dh*

= e Oud(P*) e d(M*)) [ g pA)

; —%(b#d(Pﬂ) + wﬂyd(MﬂV))]e—%(bMd(P#)_HuMVd(MHV))
- w)\Xe%(bud(P#)+w“Vd(Muu))d(PX)ei%t(b,ud(P“)+amud(Ml‘l’))

= Wt WX (5.112)
with the initial condition h*(0) = d(P*). Therefore
WA(t) = () pd(PP) = (e~ 29w M () (5.113)
Hence, setting ¢t = 1 we find

d(PY)e s ud Pt dMI)) — (= MM o3 (ud(P) 4 dOI)) g pry - (5.114)

So, if [¢)) € Vj then e~ 3Cud(P)+eumdM™)) |y € Vi, where ¢/ = e~ 2m M,
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Definition 49. The stability subgroup Hy (or “little group”) which is associated with V,
1s the subgroup of the Poincaré group defined by

H, = {6—%(buP“+wwM”“) . o~ 5 (bud(PH)Fwuwd(MH)) 1) € V, for i) € V,} (5.115)

It can be shown that Hj is a Lie subgroup of the Poincaré group. Suppose then that
—2(buP* + wy MM) € L(Hy). Tt follows that e~ zom M — ¢ for t € R. Expanding out
in powers of ¢ we see that this constraint is equivalent to

wuwq” =0 (5.116)

which has a general solution
Wpy = €,uupcrnpqg (5117)

where n” is an arbitrary constant 4-vector. Hence, if [¢)) € V, and e 3 (Ou Pt M) H,
then _ _
e 2 Cud(PH) @ d(MI)) |y — o= 3bua" o =inH Wi |y (5.118)

so we have reduced the action of H, on V; to the action of W, on V.
The action of a generic Poincaré transformation (A,b) does not leave V; invariant,
because

V, -V =V, 5.119
q q q

as ¢ = Aq. However, ¢> = ¢'? is invariant. Hence we can split V into invariant subspaces Vy
corresponding to vectors g* which have the same value of ¢>. We will therefore henceforth
work with such an invariant subspace, and consider ¢> = m? to be fixed.

If m? > 0 then there is a Lorentz transformation A’(q) such that ¢ = A’(q)k where
k* = (m,0,0,0). Alternatively, if m = 0 then there is a Lorentz transformation A(q) such
that ¢ = A’(q)k where k* = (E, E,0,0). These Lorentz transformations can be taken to
be fixed functions of the ¢.

The key step is to show that the action of the entire Poincaré group on the V; (with
q®> = m? fixed) is fixed by the action of Hj on V, (which is in turn determined by the
action of the Pauli-Lubanski vector on V4).

To show this, first note that if [i;) € Vi, then one can write

[¥q) = D(A(q),0) [¥r) (5.120)

where |1)4) € V, and these transformations can be used to obtain all elements of V, from
those in V.

It is then straightforward to show that the action of the representation of the whole
Poincaré group on {V; : ¢ = m?} is determined by the action of D(H},) acting on V.

To see this explicitly, suppose that | ar) for M =1,..., ¢} is a basis of V. Then one
can define

[¢g.01) = D(A(q), 0) [¥e, 1) (5.121)
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and the |14 ar) then form a basis for V;,. The representation of Hj, on Vj, is determined by
the coefficients D(h)yrn, where h € Hy, in the expansion

h) [Yk,ar) = ZD MN |Yk,N) (5.122)

Suppose that (A, b) is a generic Poincaré transformation; then one can write

D(A,B) [thg,ar) = D(A, BYD(A(g), 0) [the.a1)
D(A'(Aq), 0)D(A'(Aq) AN (q), A'(Ag)™'6) [ar)  (5.123)

However, ((A'(Aq))"*AAN(q), A'(Aq)~1b) € Hy, so it is possible to expand

D(A, b) [Yg,n) ZD (A'(Aq),0)D(A'(Aq) " AN (q), A (Aq) ') nrv [k, )

= ZD (N (Aq)""AA (q), A (Aq) ') s | ) (5.124)
N

We will examine the action of Hi on V) in the timelike and null cases separately.
Although

V=V, (5.125)

is not in general finite-dimensional, we shall assume that Vj (and hence the V) are
finite dimensional.

5.5.3 Massive Representations of the Poincaré Group: k* = (m,0,0,0)
We compute the action of W, on Vj. If ) € V}, then

Wolv) = sedMU)A(P) ) =0
Wi ) = —geiged(MI)A(P) [9) = ~md(J;) ) (5.126)

We have already shown that d(.J;) generates a L(SU(2)) algebra, hence the little group for
massive representations is SO(3). For irreducible representations, the spin is fixed by the
value taken by the Casimir on Vi; W,WH |4y = —m?2d(J;)d(J;) ).

5.5.4 Massless Representations of the Poincaré Group: k* = (E, F,0,0)
Again, we compute the action of W, on V. If |¢) € V}, then

Wo ) = sesd(MP)d(PY) [0) = d(M*)d(P) ) = Ed(Jy) )
Wi L) = —Bd(M*) |g) = ~Bd() )

Walt) = Leurd MP)d(P) )
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= B(d(M"?) — d(M™)) [¢)
Jf( d(J2) +d(K3)) [¢)

Ws ) = 263uu/\d(MW) (P) )
= E(—d(M") + d(M*))[¢)
= E(=d(J3) — d(K2)) [¢) (5.127)

Observe that the following commutation relations hold:

[—d(J2) + d(K3), —d(J3) — d(K2)] = 0
[d(J1), =d(J3) — d(K2)] = —i(=d(J2) + d(K3))
[d(J1), =d(J2) + d(K3)] = i(=d(J3) — d(K3)) (5.128)

These expressions may be simplified slightly by setting Ry = —d(J3) — d(K2), R2 =
—d(J2) + d(K3), J = d(J1); so that

[Ri,Ry] =0, [J,R)]=—iRy, [J Ro]=iRy (5.129)

Ry and Ry are commuting hermitian operators on Vi, and hence can be simultaneously

diagonalized over R. Consider a state ) € Vi with Ry |[¢0) = r1 |[¢), Ra @) = ra|¢p) for
r1,72 € R. Define

f0) = e Ry )
9(0) = e Roe™ 1) (5.130)

for § € R. Differentiating with respect to # and using the commutation relations we
find g—](; = —g, % = f. Solving these equations with the initial condition f(0) = rq |¢)),
g(0) = ra 1) we find

f(0) = (r1cosf —rosind) )
g(0) = (r1sind + racos ) 1)) (5.131)

which implies

R1€®7 |4h) = (11 cos — 1y sin 0)e?” |¢))
207 p) = (1 8in 0 + 75 cos 0)e7 1) (5.132)

Hence, unless 71 = ro = 0, there is a continuum of Ry, Ro eigenstates which implies Vj
cannot be finite-dimensional. We must therefore have Ry = Ry = 0 on V. J is also a
hermitian operator on Vj, and can also be diagonalized. For irreducible representations, J
can have only one eigenvalue, o € R. ¢ is called the helicity of the particle. It follows that
W, = ok, so it is clear that o is a Lorentz invariant quantity.

There is no algebraic constraint fixing the value of the helicity ¢ in the massless case,
as there is to fix the spin in the massive case. However, for physically realistic systems, one
can make a topological argument to fix 20 € Z. This is because ¢/ describes a rotation of
angle # in the spatial plane in the 2,3 directions. So in particular, setting 8 = 27 we find

e i) = €7 ) (5.133)
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We require that €?™ = £1 (for a projective representation) and so 20 € Z. Neutrinos
have helicity i%, photons have helicity +1 and gravitons have helicity £2.
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6. Gauge Theories

Lie groups and Lie algebras play an important role in the various dynamical theories which
govern the behaviour of particles - the gauge theories. Though we will not examine the
quantization of these theories, we shall present the relationship between Lie algebras and
gauge theories.

Before examining non-Abelian gauge theories, we briefly recap some properties of the
simplest gauge theory, which is the U(1) gauge theory of electromagnetism.

6.1 Electromagnetism

The gauge theory of electromagnetism contains a field strength
f;u/ = a,uaz/ - auau (61)

where p,v =0,1,2,3 and a* are co-ordinates on Minkowski space (indices raised/lowered

with the Minkowski metric n), and 0, = a%. ay, € R is the 4-vector potential.
I

Under a gauge transformation a, — ay,

a, — Oy A where ) is a real function,
fuw — I'ﬂ, = Ou(ay — O, A) — Oy(ay — OuA) = Opay — Ovay = fuu (6.2)

since 9,0,\ = 0,0, \. Hence f,, is invariant under gauge transformations.
The field equations of electromagnetism are

8luf,u1/ :ju (63)

and
P, fup =0 (6.4)

Equation (6.4) holds automatically due to the existence of the vector potential. Conversely,
if fu. satisfies (6.4) then it can be shown that a vector potential a, exists (though only
locally) such that f,, = d,a, — 0,a,.

Using the vector potential, one defines a covariant derivative D, by

Dy = 0 + iay (6.5)

where ¢ = 1¢(x). Under a gauge transformation
Y — ) = e, ay — ay, = ay — A (6.6)

where A = \(z), it is straightforward to see that

Dy — (D) = ay(ei)\@b) + i(ay — auA)eMlﬁ
=D,y (6.7)

so that D, transforms like . This means that the Dirac equation

iv'D, W —mV¥ =0 (6.8)
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is gauge invariant. V¥ is a 4-component Dirac spinor constructed from left and right handed

U = ( 1%3) (6.9)
X

and the 4 x 4 matrices y* are given by

o ( 50u "()”) (6.10)

These matrices satisfy the Clifford algebra

(VY =AY A =2 (6.11)

Weyl spinors 1, Y& via

The standard Lagrangian governing the interaction of electrodynamics with scalar
fields

L= = fu ™+ S(Dyd) D46+ V(6°6) (612)

where ¢ is a complex scalar field, and V is a real function of ¢*¢ is also gauge covariant.
It is possible to obtain the gauge field strength in a natural way from the commutator
of covariant derivatives. If ¢ is a scalar field then

D, D, ¢ = (0, + ta,) (0,0 + ia,¢)
= 0,0,¢ + i(a, 0,0 + a,0,0) — aya,d + 10,a,¢ (6.13)

and hence
[D;u D,]|¢ = i(@ua,, - 81/au)¢ =i fuw¢ (6.14)
6.2 Non-Abelian Gauge Theory

6.2.1 The Fundamental Covariant Derivative

Suppose that G is a compact matrix Lie group acting on a vector space V via the funda-
mental representation. Consider a scalar field ®(x) which is an z* dependent element of
V' (which can be thought of as a column vector of ordinary scalar fields). Suppose that @
transforms under the fundamental representation as

b(z) — 9'(x) = g(z)®(x) (6.15)
where g(z) € G.
Definition 50. The fundamental covariant derivative D, is defined by
D,®=0,0+A,P (6.16)

where A, € L(G) is an element of the Lie algebra of G acting on V.
We require that D, ® should transform under local gauge transformations in the same
way as ®. Suppose that A, — AL under local gauge transformations. Then we need

9,0 4 A, @' = (9,0 + A,9) (6.17)
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which implies
Ou(g®) + ALgCID =g(0,®+A,9) (6.18)

and hence
0ug® + Angb =gA,P (6.19)

As this must hold for all ®, we find the transformation rule

Al =gAug " — Oug9" (6.20)

Before proceeding further, there is a question of consistency: namely if A, € £(G) then
we must verify that Aj, given above is also an element of £(G). This is proved using the

Lemma 11. If g(t) is a curve in the matriz Lie group G then %g(t)_l € L(G).
Proof

Suppose that g(t) = go when t = to. Set h(t) = g(t +to)gy . Then h(t) is a smooth
curve in G with h(0) = I, and

dh dg o dg
7 li=0 = —li=to 0 f= (59 Y et (6.21)

But %|,_y € £(G) by definition, and hence (%g~1)|i—y, € L(G) for all to. W
Hence we have shown that E)ugg_1 € L(G), and from our previous analysis of the
adjoint representation, we know that gA,g~! € L(G); so A, € L(G) as required.

6.2.2 Generic Covariant Derivative

Definition 51. Suppose that G is a matrixz Lie group with representation D acting on V,
and let d denote the associated representation of the Lie algebra acting on V. Let elements
0 € V transform as 0 — 0’ = D(g(x))0 under local gauge transformations.

Then the covariant derivative D,, associated with D acting on V' is defined by

D0 = 0,0 + d(A,)0 (6.22)

where A, € L(G) transforms as A, — AL =gAug~" — dug9~".
In order to show that this covariant derivative transforms as D,,6 — D(g)D,0 we must

prove the

Lemma 12. Suppose that D is a representation of G acting on V, with associated repre-
sentation d of L(G) acting on V. Then

i) If v e L(G) and g € G, then d(gvg~1)D(g9) = D(g)d(v)
ii) If g(t) is a curve in G then %@D(gil) = d(%gil)

Proof
(Caveat: in this proof t is simply a parameter along a curve in G, not the spacetime
co-ordinate x°/)
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To prove (i), set g = e for h € L(G), so that D(g) = e¥™. Then (i) is equivalent to

e~ MM g(ehve)ed) = d(v) (6.23)
Set
F(t) = e M (eMMpe ")) (6.24)
for t € R. Then
j—{ = MM ([d(eMve™), d(h)] + d(e e=hy)etdh
—tdh d([ thve—th h‘D d( [h 'U] )) td(h)
_ ftdh (d(eh[ ] fth)_i_d(eth[h’,u]e ))ed(h)
=0 (6.25)

and f(0) = d(v). Hence, f(1) = e~ d(elve=")edh) =
To prove (ii), suppose g(t) = go at t = tg. Set (
smooth curve in G with h(0) = I. Then

) as required

f(0) =d(v
) = gt +t0)gy ', so that h(t) is a

dj(piig)p(g_l)h:to - (m(f;g)g())h:()p(gol) = dD(d};@))h:o (6.26)
and
d<%g_1’t:to) = d<d};it) |t=0) (6.27)

As h(0) = I we can set h(t) = "0 for some constant matrix hy. Then

dh(t)

li—o = h1 € L(G) (6.28)
(™0 _o) = agm) (6.20)
But by definition J . J
wm—%W@wmﬂ:%@wmmﬁ (6.30)
Therefore
) 1) oty = () = d( g isy) (6:31)
dt 0 dt -0

are required. W

Proposition 33. The covariant derivative D,, associated with D transforms as

D0 — (D,8) =D(g)D,0 (6.32)
under local gauge transformations.
Proof
Note that

9,0+ d(A,)0" = 9,(D(9)8) + d(9Aug~" — 999~ 1)D(g)9
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= D(9)(u0 + d(A,)0) + (d(gAug~")D(g) — D(g)d(Ap)
+ 9u(D(9)) — d(9ug9™")D(9))0
= D(9)Duf + (d(gAug™")D(g) — D(g)d(Au))0
+ (9u(D(9)) = d(9ug9~")D(9))0 (6.33)

However, by the previous lemma, we have proved that d(gA,g~')D(g)—D(g)d(A,) = 0
and 0,(D(g)) — d(8,99~1)D(g) = 0, hence

9,0 +d(A},)0" = D(g)D,.0 (6.34)

as required. W
Given this property of transformations of covariant derivatives, one can define the
adjoint covariant derivative

Definition 52. Suppose that 0 € L(G) transforms under the adjoint representation Ad of
G. The the covariant derivative associated with the adjoint representation is

D0 = 0,0+ (ad A,)0 = 9,0+ [A,, 0] (6.35)

To summarize, we have shown that if ® transforms under the action of the fundamental
representation as ® — ® = ¢g®, then in order for the fundamental covariant derivative to
transform in the same way, one must impose the transformation

A, — A, = gAgt — 0,997 (6.36)

on the gauge potential. We then have shown that if ® transforms under the action of a
generic representation D, ® — ® = D(g)®, then the same transformation rule A4, —
Al =gAug™ — 099"
0u® + d(A,)® also transforms in the same way as ®. Caveat: a covariant derivative is

is sufficient to ensure that the generic covariant derivative D, ® =

always defined with respect to a particular representation

6.3 Non-Abelian Yang-Mills Fields

Following from the relationship of the U(1) electromagnetic field strength with the com-
mutator of the U(1) covariant derivatives acting on scalars, we consider the commutator
of the fundamental covariant derivative D, acting on ®(x) € V, which transforms under
the fundamental representation as ® — ®' = ¢®:

[Dy, D)® = (0, + A,) (0,® + A, @) — (0, + A)) (0, + A, D)
= (0pdy — 0, A, + [Ay, A))) @ (6.37)

Definition 53. The non-abelian Yang-Mills field strength is

Fl = 0,4, — 0,A, + [Ay, A, (6.38)
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Note that as A, € L(g) it follows that F,, € £(G). Note also that by construction
[Dy, Dy|® transforms like @ under a gauge transformation. Hence if F},, is the transformed
gauge field strength, then F) &' = gF), ®. As this must hold for all ®, we find

F,L,w = .gF;Wg_l (6.39)

so that I transforms like the homogeneous part of A,,.
Exercise: Verify this transformation rule for F),, directly from the definition F,, =
OuA, — 0, A, + [A,, Ay] together with the transformation rule of A,,.

Lemma 13. The non-abelian field strength satisfies
D,D,F" =0 (6.40)

where here D,, is the adjoint covariant derivative.
Proof

D,D,F* = D, (8,F" + [A,, F*))
= 0,0, F" + (A0, 0, F™] + 0[Ay, ™) 4 [, [A,, F™]
= [Ay, D,F* ] 4+ [0,Ay, F*] + [A,, 0, FM]

1
= [Ay, D,F"] + §[F;w —[Au, A, F* + [Ay, D, FM — [A,, F'|

1
= [Au, Dy F] + [Ay, Du ] = S[[Ap, 4], FY] = [Ay, [Ap, ]
1 v 17
= _5[[AM7AI/]5F“ ] - [AIM [A;L)F'LL H
=0 ( using the Jacobi identity) (6.41)

as required. W

6.3.1 The Yang-Mills Action
Definition 54. The non-abelian Yang-Mills Lagrangian is

1 v
E = @/ﬁ}(FMV, F’u ) (642)

where k is the Killing form of the compact matriz Lie group G.

Proposition 34. The non-Abelian Yang-Mills Lagrangian is gauge invariant
Proof
Under a gauge transformation

/{(Fuya FMV) - /ﬁ(ng,g_l,gF“Vg_l) (6'43)

Suppose that XY, Z € L(G). Then for t € R, compute

d
%H(etZXe_tZ,etZYoe_tZ) — H(—etZ[X, Z]e_tZ,etZY€_tZ) + H(etZXe_tZ, —etZ[Y, Z]e—tZ)
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k(—[e?Xe 2 7],y e ) 4 k(e Xe 2 —[e?Ye 2 7))
= —k(e?Xe 7 (7, 7Y e 7)) + (e XeH  — [P Ve 7))
=0 (6.44)

where we have used the associativity of the Killing form. Therefore

k(eZXe 2 efYe ) = k(X,Y) (6.45)

and hence it follows that
/{(gFWg_l, gF’“’g_l) = K(Fp, F) (6.46)

as required. W

Note that the coupling constant e plays an important role in the dynamics. If one
attempts to rescale A so that A, = eflu, it is possible to eliminate the explicit factor of e
from the Yang-Mills Lagrangian, and write

én(ij, FHvy = %ﬁ(ﬁw, FH) (6.47)
where here F = 8Mfll,—8,,flu+e[flu, /L,] Although the explicit e-dependence of the Yang-
Mills Lagrangian appears to have been removed, observe that the gauge field strength now
has an e-dependent term, which arises from the commutator which is quadratic in A. So the
dependence on e in the non-abelian theory cannot be removed by rescaling. If, nevertheless,
one performs this rescaling (and then drops the “on all terms), then the generic covariant
derivative is modified via D,® = 0,® + ed(A,)®, and the gauge potential transformation

L e‘laugg_l. Whether e appears as an overall

rule is also modified: A, — Aj, = gA; g~
factor in the Yang-Mills Lagrangian, or within the covariant derivative and gauge field
strength, depends on convention. Until stated otherwise, we shall however retain the ﬁ
outside the Lagrangian, and work with the un-rescaled gauge fields.

If the representation D of G is unitary, then one can couple addtional gauge invariant

scalar terms to the Yang-Mills Lagrangian:

1

1
£ = (B ) + 5(D,fp)fpﬂcb — V(o) (6.48)

where ® — D(g)® under a gauge transformation.

6.3.2 The Yang-Mills Equations

Consider a first order variation to the gauge potential A, — A, +0A,. Under this variation

Fuy — Fuy + (0,0A, + [A4,0AL]) — (0004, + [Ay,04,]) (6.49)
Hence, the first order variation of the Yang-Mills action S = é | &(F, FH Yd*z is given
by

B 1
2¢e2

6S / K(6F,, F*)d*s
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1 v
- / K(D,6A, + [Ay, 5A,], FH)d'e
= 7% k(6A,,0,F" + [AH,F“”])d‘L:c -+ surface terms (6.50)
&

where we have made use of the associativity of the Killing form. Neglecting the surface
terms (assuming that the solutions are sufficiently smooth and fall off sufficiently fast at
infinity), and requiring that §S = 0 for all variations A, we obtain the Yang-Mills field
equations
OuF*" + 1A, F*"] =0 (6.51)
or equivalently
D,F* =0 (6.52)

where here D), is the adjoint covariant derivative.

6.3.3 The Bianchi Identity

There is a non-abelian generalization of the identity e’\“”pau fvp = 0 in electromagnetism.
Let D, be the adjoint covariant derivative. Consider

DyFyp = 0u(0uA, — 0p Ay + [Au, Ap]) + [Ap, 0 Ay — 0p Ay + [Ay, Ap]]
= 8#(61/14/? - 8pAV) - ([Auv apAV] + [Ap’ 8MAV])
+ [Ap, 00 Apl + [Av, 0pAp] + [Ap, [Av, Ap]] (6.53)

Consider the contraction e*? D, F,,. As the terms ([4,,0,A,]+[A,,0,A4,]) are sym-
metric in p, p and the terms [A4,, 0, A, +[Ay, 0,A4,] are symmetric in p, v, these terms give
no contribution to e PD,F,,. Also,

MPIA,, Ay, Al =0 (6.54)
from the Jacobi identity, and just as for electromagnetism,
NP9, (8,4, — 9,A,) =0 (6.55)

because the partial derivatives commute with each other. Hence we find M PD,F,, =0,
or equivalently
D}LFV/) + DVFPH + DpF;u/ =0 (656)

This equation is called the Bianchi identity.

This can be used to prove a Jacobi identity for all covariant derivatives. Suppose that
D,, is the covariant derivative associated with the representation D, and ® € V transforms
under the representation D as ® — ® = D(g)®. Let d be the induced representation of
L(G).

Then note that

D,Dx® = D, (0x + d(A\)®)
— 0,(00D + d(A\)D) + d(A,)0zD + d(A,)d(Ar)D
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= 0,0\® + d(A))0,® + d(A,)O\D + (d(0,Ay) + d(A,)d(A))) @ (6.57)

and hence
[Dy, DN]® = d(F,\)® (6.58)
Then
[Dy, [Dy, DN]]® = Dyu(d(Fy2)®) — d(Fyx) D, ®

=D
Ou(d(F\)®) + d(AL)d(Fon)® — d(F,0)(0,® + d(A,)P)
= (0ud(F») + [d(AL), d(F,))]) @
(DadJFy,\) (6.59)

where Dzdj denotes the adjoint covariant derivative.
Hence

<[DM, [Dy, D)\]] + [Dy, [Dx, D]l + [Da, [Dy, Dyn> ® = d(D'F,\ + DM Fy, + DYV F,,)®
=0 (6.60)

using the Bianchi identity on F. As this must hold for all & we obtain the Jacobi
identity for covariant derivatives:

[D;u [Dw DAH + [Dua [DAa Du“ + [D>\7 [D/MDVH =0 (6-61)

6.4 Yang-Mills Energy-Momentum

The energy momentum tensor of the Yang-Mills field strength is

1
1wt (Epe, %) (6.62)

This differs from the canonical energy-momentum tensor by a total derivative. Observe

Ty = 6(Fun, F,) —

that T),, is gauge invariant by construction.

Proposition 35. If the Yang-Mills field strength F' satisfies the Yang-Mills field equations,
the energy-momentum tensor satisfies

T, =0 (6.63)

Proof
1
aMT,uV - au( ( u)uF /\)) - 48 ( (Fpan ))

= k(0" F\, F,) + k(F0, 0" F, ) — iﬁ(aprg,Fp”)
= k(D"F,) — [A*, F,,), F,*) + 6(F,\, DFF,> — [A*, F,)
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1
— SA(DuFpr = [Ays Fyo] F77) (6.64)

where here D), is the adjoint covariant derivative. Note that by the Bianchi identity
K(Fux, D*F,) = K(Fyux, =D, FM* — DAF#,)
= w(Fun, =Dy FM) = k(F, D'F) (6.65)
and so

1
Kk(F,\, D'F, ) = 5n(lm,DVFM) (6.66)

Hence

Ty = k(DM E,, F) — w([A", En, EY) — 6(Fu, [A%, FN)
1
+ 5&([AZ,,FPU],F"”) (6.67)

However, using the associativity of the Killing form

K([Av, Fpol, F*7) = K(Ay, [Fpo, F77]) = 0 (6.68)
and
K([AY, Fipl, B + w(Fs (A%, B = ,([A%, Fonl, ) + w([F, AY, F2Y)
=0 (6.69)
hence
" Ty = k(DMFyy, F,Y) =0 (6.70)

from the Yang-Mills field equations, as required. l

6.5 The QCD Lagrangian

The QCD Lagrangian consists of a non-abelian Yang-Mills gauge theory coupled to fermions.
The gauge group is G = SU(3)coiour- Take generators Ty, of G; as G is compact, these
may be chosen so that the Killing form has components

Rab = _5ab (6.71)

where a =1,...,8 (SU(3) is an 8-dimensional Lie group).
The Lagrangian is given by

8 6 6
1 e - _
Loop = —7 S OFL P 40y U (5450, 4+ €A% (To) aP) Vg = > mpUiUas (6.72)
a=1 f=1 f=1
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Here we have decomposed the non-abelian gluon field strength £’ and potential A into

components
F = F,Ta, Ay =ALT, (6.73)
where
Ff, = 0,A% — 0,A% + e[A,, A" = 0, A% — 9, A% + ecyp" AL AS (6.74)
The indices f = 1,...,6 are flavour indices; whereas the indices A,B = 1,2,3 are

SU (3)colour indices. The SU(3)colour structure constants are cq3°. my is the mass of the f-
flavour quark. The SU(3) gauge coupling is e; observe that the gauge potentials have been
re-scaled as mentioned previously in order to remove the gauge coupling factor from the
Yang-Mills action; although this means that e now appears in the fundamental covariant
derivative via 9, + eA,, and also in the gauge transformations via

1

Ay — gAug — e_laﬂgg_1 (6.75)

where g € G.

The W,4s are fermionic fields associated to the quarks- they are 4-component Dirac
spinors. We set \I/? = 4BV g4, and \i!;} = (\I/?)Tfyo.

Gauge Invariance

The Yang-Mills term —% >0 F% F%" = 15(F,,, F*) in the QCD action is auto-
matically gauge invariant by construction.

It remains to consider the terms involving fermions: the fermions transform under the
fundamental representation of SU (3)coiour Via

Uap— ga®(x) Vg (6.76)

where g(x) € SU(3). It is then straightforward to see that the covariant derivative
(6480, + e(A,) aP)V s then transforms as

(5ABau + e(Au)AB)‘I’Bf - 9A0(5CBau + e(Au)CB)‘I’Bf (6.77)
Also, the \TJ? transform as
U — Ugor64 (%) p@ (6.78)
Hence we see that under these gauge transformations
T4y — ?Qf5AP(9*)PQgAC\I’Cf
= U 0%Wcy
= UFW (6.79)

where g € SU(3) implies 047 (¢*) p@ga® = 69C.
Similarly, under this transformation

W (0470, + e(A)a%)WBp — Vapd™(g")p29a (670 + e(A)c”) Vay
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= @?(5A38u + e(AH)AB)\I/Bf (6.80)

It follows that all terms in the Lagrangian are gauge invariant.
Equations of Motion

There are two sets of equations of motion. Varying the gauge potentials A% we obtain
the variation of the action

6

08 = /d4x SAL (8, F™ + e[Ay, F'™)* + e Z \II?VV(TG)AB\I/Bf) (6.81)
f=1
from which we obtain
6 —
OuF ™ + ecp " ALF +ie> Uiy (Tu)aPUps =0 (6.82)
f=1
Defining
8 6
TV =—ieY > Uiy (Tu) A"V psTa (6.83)
a=1 f=1
this can be rewritten as
D, F" = J¥ (6.84)

Observe that D, J# = 0 as a consequence of Lemma 14.

There are also fermionic equations of motion; these may be obtained by varying \Tlf
and Upy in the action. These can be varied independently; from the variation of \Il? (not
varying W) we obtain the equation:

" (6470 + eAU(To) A ) Upr —myWa; =0 (6.85)

Next vary g (not varying \Ilj})— then the action variation is

08 = /d4x (i\IJ?'y“ (5,438“ + eAZ(Ta)AB) - mf\Il]]cS> Vg
= / d'z ( — 10, U547 + ey AL (T,) 4" — m fxpf>5x113 ;r (6.86)
Hence we obtain

—i0, U647 + ieT AL (T) AP — mypBF = (6.87)
Take the hermitian transpose of the above equation we obtain
"0, U F — ey AL (T AP T — mpy " =0 (6.88)

where we have made use of the identity v*f = ~94#70. As T, is anti-hermitian, we
therefore recover (6.85).
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