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1. Introduction to Symmetry and Particles

Symmetry simplifies the description of physical phenomena. It plays a particularly impor-
tant role in particle physics, for without it there would be no clear understanding of the
relationships between particles. Historically, there has been an “explosion” in the number
of particles discovered in high energy experiments since the discovery that atoms are not
fundamental particles. Collisions in modern accelerators can produce cascades involving
hundreds of types of different particles: p, n,Π,K,Λ,Σ . . . etc.

The key mathematical framework for symmetry is group theory: symmetry transfor-
mations form groups under composition. Although the symmetries of a physical system are
not sufficient to fully describe its behaviour - for that one requires a complete dynamical
theory - it is possible to use symmetry to find useful constraints. For the physical systems
which we shall consider, these groups are smooth in the sense that their elements depend
smoothly on a finite number of parameters (called co-ordinates). These groups are Lie
groups, whose properties we will investigate in greater detail in the following lectures. We
will see that the important information needed to describe the properties of Lie groups is
encoded in “infinitessimal transformations”, which are close in some sense to the identity
transformation. The properties of these transformations, which are elements of the tangent
space of the Lie group, can be investigated using (relatively) straightforward linear algebra.
This simplifies the analysis considerably. We will make these rather vague statements more
precise in the next chapter.

Examples of symmetries include

i) Spacetime symmetries: these are described by the Poincaré group. This is only an
approximate symmetry, because it is broken in the presence of gravity. Gravity is the
weakest of all the interactions involving particles, and we will not consider it here.

ii) Internal symmetries of particles. These relate processes involving different types
of particles. For example, isospin relates u and d quarks. Conservation laws can be
found for particular types of interaction which constrain the possible outcomes. These
symmetries are also approximate; isospin is not exact because there is a (small) mass
difference between mu and md. Electromagnetic effects also break the symmetry.

iii) Gauge symmetries. These lead to specific types of dynamical theories describing
types of particles, and give rise to conserved charges. Gauge symmetries if present,
appear to be exact.

1.1 Elementary and Composite Particles

The fundamental particles are quarks, leptons and gauge particles.
The quarks are spin 1/2 fermions, and can be arranged into three families

Electric Charge (e)
u (0.3 GeV) c (1.6 GeV) t (175 GeV) 2

3

d (≈ 0.3 GeV) s (0.5 GeV) b (4.5 GeV) −1
3
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The quark labels u, d, s, c, t, b stand for up, down, strange, charmed, top and bottom.
The quarks carry a fractional electric charge. Each quark has three colour states. Quarks
are not seen as free particles, so their masses are ill-defined (the masses above are “effective”
masses, deduced from the masses of composite particles containing quarks).

The leptons are also spin 1/2 fermions and can be arranged into three families

Electric Charge (e)
e− (0.5 MeV) µ− (106 MeV) τ− (1.8 GeV) −1
νe (< 10 eV) νµ (< 0.16 MeV) ντ (< 18 MeV) 0

The leptons carry integral electric charge. The muon µ and taon τ are heavy unstable
versions of the electron e. Each flavour of charged lepton is paired with a neutral particle
ν, called a neutrino. The neutrinos are stable, and have a very small mass (which is taken
to vanish in the standard model).

All these particles have antiparticles with the same mass and opposite electric charge
(conventionally, for many particles, the antiparticles carry a bar above the symbol, e.g.
the antiparticle of u is ū). The antiparticles of the charged leptons are often denoted by
a change of − to +, so the positron e+ is the antiparticle of the electron e− etc. The
antineutrinos ν̄ differ from the neutrinos ν by a change in helicity (to be defined later...).

Hadrons are made from bound states of quarks (which are colour neutral singlets).

i) The baryons are formed from bound states of three quarks qqq; antibaryons are formed
from bound states of three antiquarks q̄q̄q̄

For example, the nucleons are given by

{
p = uud : 938 Mev

n = udd : 940 Mev

ii) Mesons are formed from bound states of a quark and an antiquark qq̄.

For example, the pions are given by
π+ = ud̄ : 140 Mev

π− = dū : 140 Mev

π0 = uū, dd̄ superposition : 135 Mev

Other particles are made from heavy quarks; such as the strange particles K+ = us̄

with mass 494 Mev , Λ = uds with mass 1115 Mev, and Charmonium ψ = cc̄ with mass
3.1 Gev.

The gauge particles mediate forces between the hadrons and leptons. They are bosons,
with integral spin.
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Mass (GeV) Interaction
γ (photon) 0 Electromagnetic

W+ 80 Weak
W− 80 Weak
Z0 91 Weak

g (gluon) 0 Strong

The gluons are responsible for interquark forces which bind quarks together in nucleons.
It is conjectured that a spin 2 gauge boson called the graviton is the mediating particle
for gravitational forces, though detecting this is extremely difficult, due to the weakness of
gravitational forces compared to other interactions.

1.2 Interactions

There are three types of interaction which are of importance in particle physics: the strong,
electromagnetic and weak interactions.

1.2.1 The Strong Interaction

The strong interaction is the strongest interaction.

• Responsible for binding of quarks to form hadrons (electromagnetic effects are much
weaker)

• Dominant in scattering processes involving just hadrons. For example, pp → pp is
an elastic process at low energy; whereas pp −→ ppπ+π− is an inelastic process at
higher energy.

• Responsible for binding forces between nucleons p and n, and hence for all nuclear
structure.

Properties of the Strong Interaction:

i) The strong interaction preserves quark flavours, although qq̄ pairs can be produced
and destroyed provided q, q̄ are the same flavour.

An example of this is:

d s

Σ
+

π+
K

+

d
u
u

u
u

s

u u

p
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The Σ+ and K+ particles decay, but not via the strong interaction, because of con-
servation of strange quarks.

ii) Basic strong forces are “flavour blind”. For example, the interquark force between
qq̄ bound states in the ψ = cc̄ (charmonium) and Υ = bb̄ (bottomonium) mesons are
well-approximated by the potential

V ∼ α

r
+ βr (1.1)

and the differences in energy levels for these mesons is approximately the same.

The binding energy differences can be attributed to the mass difference of the b and
c quarks.

iii) Physics is unchanged if all particles are replaced by antiparticles.

The dynamical theory governing the strong interactions is Quantum Chromodynamics
(QCD), which is a gauge theory of quarks and gluons. This is in good agreement with
experiment, however non-perturbative calculations are difficult.

1.2.2 Electromagnetic Interactions

The electromagnetic interactions are weaker than the strong interactions. They occur in
the interactions between electrically charged particles, such as charged leptons, mediated
by photons.

The simplest electromagnetic process consists of the absorption or emission of a photon
by an electron:

e

γ

This process cannot occur for a free electron, as it would violate conservation of 4-
momentum, rather it involves electrons in atoms, and the 4-momentum of the entire atom
and photon are conserved.

Other examples of electromagnetic interactions are electron scattering mediated by
photon exchange
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e

e

γ

and there are also smaller contributions to this process from multi-photon exchanges.
Electron-positron interactions are also mediated by electromagnetic interactions

e+

e−

e+

e−

γ

e−

e+

e−

e+

γ

+

Electron-positron annihilation can also produce particles such as charmonium or bot-
tomonium

e−

e+ H
A
D
R
O
N
S

γ ψ
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The dynamic theory governing electromagnetic interactions is Quantum Electrody-
namics (QED), which is very well tested experimentally.

Neutrinos have no electromagnetic or strong interactions.

1.2.3 The weak interaction

The weak interaction is considerably weaker than both the strong and electromagnetic
interactions, they are mediated by the charged and neutral vector bosons W± and Z0

which are very massive and produce only short range interactions. Weak interactions
occur between all quarks and leptons, however they are in general negligable when there
are strong or electromagnetic interactions present. Only in the absence of strong and
electromagnetic interactions is the weak interaction noticable.

Unlike the strong and electromagnetic interactions, weak interactions can involve neu-
trinos. Weak interactions, unlike strong interactions, can also produce flavour change in
quarks and neutrinos.

The gauge bosons W± carry electric charge and they can change the flavour of quarks.
Examples of W -boson mediated weak interactions are n −→ p+ e− + ν̄e:

e−

νe

W
−

d
d
u

u
d
u

n p

and µ− −→ e− + ν̄e + νµ:
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W
−

e−

νe

µ−

µν

and νµ + n→ µ− + p

νµ µ−

d
d
u

u
d
u

n p

W
+

The flavour changes within one family are dominant; e.g.

e− ↔ νe, µ− ↔ νµ
u ↔ d, c↔ s (1.2)

whereas changes between families, like u↔ s and u↔ b are “Cabibbo suppressed”.

The neutral Z0, like the photon, does not change quark flavour; though unlike the
photon, it couples to neutrinos. An example of a Z0 mediated scattering process is ν̄µe−

scattering:
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νµ νµ

Z
0

e− e−

In any process in which a photon is exchanged, it is possible to have a Z0 boson
exchange. At low energies, the electromagnetic interaction dominates; however at high
energies and momenta, the electromagnetic and weak interactions become comparable.
The unified theory of electromagnetic and weak interactions is Weinberg-Salam theory.

1.2.4 Typical Hadron Lifetimes

Typical hadron lifetimes (valid for most decays) via the three interactions are summarized
below:

Interaction Lifetime (s)
Strong 10−22 − 10−24

Electromagnetic 10−16 − 10−21

Weak 10−7 − 10−13

with the notable exceptional case being weak neutron decay, which has average lifetime
of 103s.

1.3 Conserved Quantum Numbers

Given a configuration of particles containing particle P , we define N(P ) to denote the
number of P -particles in the configuration. We define various quantum numbers associated
with leptons and hadrons.

Definition 1. There are three lepton numbers. The electron, muon and tauon numbers
are given by

Le = N(e−)−N(e+) +N(νe)−N(ν̄e)
Lµ = N(µ−)−N(µ+) +N(νµ)−N(ν̄µ)
Lτ = N(τ−)−N(τ+) +N(ντ )−N(ν̄τ ) (1.3)

In electromagnetic interactions, where there are no neutrinos involved, conservation
of L is equivalent to the statement that leptons and anti-leptons can only be created or
annihilated in pairs. For weak interactions there are more possibilities, so for example, an
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election e− and anti-neutrino ν̄e could be created. Lepton numbers are conserved in all
interactions.

There are also various quantum numbers associated with baryons.

Definition 2. The four quark numbers S, C, B̃ and T corresponding to strangeness,
charm, bottom and top are defined by

S = −(N(s)−N(s̄))
C = (N(c)−N(c̄))
B̃ = −(N(b)−N(b̄))
T = (N(t)−N(t̄)) (1.4)

These quark quantum numbers, together with N(u) − N(ū) and N(d) − N(d̄), are
conserved in strong and electromagnetic interactions, because in these interactions quarks
and antiquarks are only created or annihilated in pairs. The quark quantum numbers are
not conserved in weak interactions, because it is possible for quark flavours to change.

Definition 3. The baryon number B is defined by

B =
1
3

(N(q)−N(q̄)) (1.5)

where N(q) and N(q̄) are the total number of quarks and antiquarks. Baryons therefore
have B = 1 and antibaryons have B = −1; mesons have B = 0. B is conserved in all
interactions.

Note that one can write

B =
1
3

(N(u)−N(ū) +N(d)−N(d̄) + C + T − S − B̃) (1.6)

Definition 4. The quantum number Q is the total electric charge. Q is conserved in all
interactions

In the absence of charged leptons, such as in strong interaction processes, one can write

Q =
2
3

(N(u)−N(ū) + C + T )− 1
3

(N(d)−N(d̄)− S − B̃) (1.7)

Hence, for strong interactions, the four quark quantum numbers S, C, B̃, T together
with Q and B are sufficient to determine N(u)−N(ū) and N(d)−N(d̄).
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2. Elementary Theory of Lie Groups and Lie Algebras

2.1 Differentiable Manifolds

Definition 5. A n-dimensional real smooth manifold M is a (Hausdorff topological) space
which is equipped with a set of open sets Uα such that

1) For each p ∈M , there is some Uα with p ∈ Uα

2) For each Uα, there is an invertible homeomorphism xα : Uα → Rn onto an open
subset of Rn such that if Uα ∩ Uβ 6= ∅ then the map

xβ ◦ xα−1 : xα(Uα ∩ Uβ)→ xβ(Uα ∩ Uβ) (2.1)

is smooth (infinitely differentiable) as a function on Rn.
The open sets Uα together with the maps xα are called charts, the set of all charts

is called an atlas. The maps xα are local co-ordinates on M defined on the Uα, and have
components xiα for i = 1, . . . , n. So a smooth manifold looks locally like a portion of Rn.

A n-dimensional complex manifold is defined in an exactly analogous manner to a real
manifold, with Rn replaced by Cn throughout.

Definition 6. Suppose M is a m-dimensional smooth manifold, and N is a n-dimensional
smooth manifold, with charts (Uα, xα), (WA, yA) respectively. Then the Cartesian product
X = M×N is a m+n-dimensional smooth manifold, equipped with the standard Cartesian
product topology.

The charts are V α,A = Uα ×WA with corresponding local co-ordinates

zα,A = xα × yA : Uα ×WA → Rm+n (2.2)

Definition 7. Suppose M is a m-dimensional smooth manifold, and N is a n-dimensional
smooth manifold, with charts (Uα, xα), (WA, yA) respectively. Then a function f : M → N

is smooth if for every Uα and WA such that f(Uα) ∩WA 6= ∅, the map

yA ◦ f ◦ x−1
α : xα(Uα)→ yA(WA) (2.3)

is smooth as a function Rm → Rn.

Definition 8. A smooth curve on a manifold M is a map γ : (a, b) → M where (a, b) is
some open interval in R such that if U is a chart with local co-ordinates x then the map

x ◦ γ : (a, b)→ Rn (2.4)

may be differentiated arbitrarily often.

2.2 Lie Groups

Definition 9. A group G is a set equipped with a map • : G × G → G, called group
multiplication, given by (g1, g2)→ g1 •g2 ∈ G for g1, g2 ∈ G. Group multiplication satisfies
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i) There exists e ∈ G such that g • e = e • g = g for all g ∈ G. e is called an identity
element.

ii) For every g ∈ G there exists an inverse g−1 ∈ G such that g • g−1 = g−1 • g = e.

iii) For all g1, g2, g3 ∈ G; g1•(g2•g3) = (g1•g2)•g3, so group multiplication is associative.

It is elementary to see that the identity e is unique, and g has a unique inverse g−1.

Definition 10. A Lie group G is a smooth differentiable manifold which is also a group,
where the group multiplication • has the following properties

i) The map • : G×G→ G given by (g1, g2)→ g1 • g2 is a smooth map.

ii) The inverse map G→ G given by g → g−1 is a smooth map

Henceforth, we shall drop the • for group multiplication and just write g1 • g2 = g1g2.
Examples:
Many of the most physically interesting Lie groups are matrix Lie groups in various

dimensions. These are subgroups of GL(n,R) (or GL(n,C)), the n × n real (or complex)
invertible matrices. Group multiplication and inversion are standard matrix multiplication
and inversion.

Suppose that G is a matrix Lie group of dimension k. Let the local co-ordinates
be xi for i = 1, . . . , k. Then g ∈ G is described by its matrix components gAB(xi) for
A,B = 1, . . . , n. The gAB are smooth functions of the co-ordinates xi. Examples of matrix
Lie groups are (here F = R or F = C):

i) GL(n,F), the invertible n× n matrices over F. The co-ordinates of GL(n,F) are the
n2 real (or complex) components of the matrices.

ii) SL(n,F) = {M ∈ GL(n,F) : detM = 1}

iii) O(n) = {M ∈ GL(n,R) : MMT = In}

iv) U(n) = {M ∈ GL(n,C) : MM † = In}, where † is the hermitian transpose.

v) SO(n) = {M ∈ GL(n,R) : MMT = In and detM = 1}

vi) SU(n) = {M ∈ GL(n,C) : MM † = In and detM = 1}. SU(2) and SU(3) play a
particularly important role in the standard model of particle physics.

vii) SO(1, n− 1) = {M ∈ GL(n,R) : MT ηM = η and detM = 1}
where η = diag (1,−1,−1, · · · − 1) is the n-dimensional Minkowski metric.

There are other examples, some of which we will examine in more detail later. It can
be shown that any closed subgroup H of GL(n,F) (i.e. any subgroup which contains all
its accumulation points) is a Lie group.
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Some of these groups are related to each other by group isomorphism; a particularly
simple example is SO(2) ∼= U(1). Elements of U(1) consist of unit-modulus complex
numbers eiθ for θ ∈ R under multiplication, whereas SO(2) consists of matrices

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
(2.5)

which satisfyR(θ+φ) = R(θ)R(φ). The map T : U(1)→ SO(2) given by T (eiθ) = R(θ)
is a group isomorphism.

2.3 Compact and Connected Lie Groups

A lie group G is compact if G is compact as a manifold. Recall that a subset of U ⊂ Rn

is compact iff it is closed and bounded, or equivalently iff every sequence un ∈ U has a
subsequence which converges to some u ∈ U .

It is straightforward to see that SU(n) is compact, for if we denote the rows of M ∈
SU(n) by RA then R†ARB = δAB. Hence the components MAB are all bounded |MAB| ≤ 1.
So it follows that if Mn is a sequence of points in SU(n), then by repeated application of the
Bolzano-Weierstrass theorem, there is a subsequence Mnr which converges to some matrix
N . Moreover as the constraints detMnr = 1 and MnrM

†
nr = 1 are smooth functions of the

matrix components, one must also have detN = 1 and NN † = 1 in the limit as r → ∞,
i.e. N ∈ SU(n).

[There is a subtlety concerning convergence which we have glossed over, namely how
one actually defines convergence. We assume the existence of some matrix norm (for
example ||M ||sup = max(|MAB|)) with respect to which convergence is defined. As all
(finite-dimensional) matrix norms are equivalent, convergence with respect to one matrix
norm ensures convergence with respect to any norm].

In contrast, the Lorentz group SO(1, n− 1) is not compact. For example, consider for
simplicity SO(1, 1). One can define a sequence of elements Mn ∈ SO(1, 1) by

Mn =

(
coshn sinhn
sinhn coshn

)
(2.6)

As the components of Mn are unbounded, it follows that Mn cannot have a convergent
subsequence. Observe that as SO(1, n−1) is a Lie subgroup of both SL(n,R) and GL(n,R)
it must follow that SL(n,R) and GL(n,R) are also non-compact.

A Lie group G is said to be connected if any two points in the group can be linked
together by a continuous curve in G.

O(n) is not connected. To see this, observe that if M ∈ O(n) then MMT = 1 and on
taking the determinant this implies detM = ±1. Now take M ∈ O(n) with detM = −1,
so if O(n) is connected, there is a continuous curve γ : [0, 1] → O(n) with γ(0) = I and
γ(1) = M . We can then compute det γ(t) which must be a continuous real function of t
such that det γ(t) ∈ {−1, 1} for all t ∈ [0, 1] and det γ(0) = 1, det γ(1) = −1. This is not
possible.
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We shall say that two points in G are connected if they can be linked with a continuous
curve. This defines an equivalence relation on G, and hence partitions G into equivalence
classes of connected points; the equivalence class of g ∈ G is called the connected component
of g. The equivalence class of points of O(n) connected to I is SO(n), which is connected.

2.4 Tangent Vectors

Suppose that U is an open subset of a manifold M , and that the curve γ passes through
some p ∈ U with γ(t0) = p. Then the curve defines a tangent vector at p, denoted by γ̇p,
which maps smooth real functions f : U → R to R according to

γ̇p : f →
[ d
dt

(f ◦ γ(t))
]
t=t0

(2.7)

The components of the tangent vector are

γ̇mp =
[ d
dt

((x ◦ γ)m)
]
t=t0

= γ̇p(xm) (2.8)

Note that one can write (using the chain rule)

γ̇p(f) =
[ d
dt

(f ◦ γ(t))
]
t=t0

=
[ d
dt

(f ◦ x−1 ◦ x ◦ γ(t))
]
t=t0

=
n∑
i=1

∂

∂xi
(f ◦ x−1)|x(p)(

d

dt
(x ◦ γ)i)t=t0

=
n∑
i=1

∂

∂xi
(f ◦ x−1)|x(p)γ̇

i
p (2.9)

Proposition 1. The set of all tangent vectors at p forms a n-dimensional vector space
(where n = dim M), denoted by Tp(M).
Proof

Suppose that p lies in the chart U with local co-ordinates x. Suppose also that V ,
W ∈ Tp(M) are tangent vectors at p corresponding to the curves γ, σ, where without
loss of generality we can take γ : (a, b) → M , σ : (a, b) → M with a < t0 < b and
γ(t0) = σ(t0) = p

Take a, b ∈ R. Consider the curve ρ̂ in Rn defined by

ρ̂(t) = a(x ◦ γ)(t) + b(x ◦ σ)(t)− (a+ b− 1)x(p) (2.10)

where scalar multiplication and vector addition are the standard operations in Rn.
Note that ρ̂(t0) = x(p).

Then define the curve ρ on U by ρ = x−1 ◦ ρ̂, so that ρ(t0) = p.
If f is a smooth function on U then by (2.9) it follows that

ρ̇p(f) =
n∑
i=1

∂

∂xi
(f ◦ x−1)|x(p)(

d

dt
(x ◦ ρ)i)t=t0
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=
n∑
i=1

∂

∂xi
(f ◦ x−1)|x(p)(

d

dt
ρ̂i(t))t=t0

= a
n∑
i=1

∂

∂xi
(f ◦ x−1)|x(p)(

d

dt
(x ◦ γ)i)t=t0

+ b

n∑
i=1

∂

∂xi
(f ◦ x−1)|x(p)(

d

dt
(x ◦ γ)i)t=t0

= aγ̇p(f) + bσ̇p(f) (2.11)

So it follows that aγ̇p + bσ̇p is the tangent vector to ρ at p.
In order to compute the dimension of the vector space it suffices to compute a basis.
To do this, define n curves ρ(i) for i = 1, . . . , n passing through p by

(x ◦ ρ(i))(t)j = (x(p))j + tδji (2.12)

Using (2.9) it is straightforward to compute the tangent vectors to the curves ρ(i) at
p;

ρ̇(i)p(f) =
∂

∂xi
(f ◦ x−1)|x(p) (2.13)

and hence, if γ is a curve passing through p then (2.9) implies that

γ̇p(f) =
n∑
i=1

ρ̇(i)p(f)γ̇ip (2.14)

and hence it follows that γ̇p =
∑n

i=1 γ̇
i
pρ̇(i)p. Hence the tangent vectors to the curves

ρ(i) at p span Tp(M). �
Given the expression (2.13), it is conventional to write the tangent vectors to the curves

ρ(i) at p as

ρ̇(i)p =
( ∂
∂xi
)
p

(2.15)

Lemma 1. Suppose that M1, M2 are smooth manifolds of dimension n1, n2 respectively.
Let M = M1×M2 be the Cartesian product manifold and suppose p = (p1, p2) ∈M . Then
Tp(M) = Tp1(M1)

⊕
Tp2(M2).

Proof
Suppose Vp ∈ Tp(M). Then V is the tangent vector to a smooth curve γ(t), with

γ(t0) = p. Write γ(t) = (γ1(t), γ2(t)); γi(t) is then a smooth curve in Mi and γi(t0) = pi
for i = 1, 2.

Let f be a smooth function f : M → R. Suppose that xa are local co-ordinates on M1

for a = 1, . . . , n1 and ym are local co-ordinates on M2 for m = 1, . . . , n2 corresponding to
charts U1 ⊂M1 and U2 ⊂M2.

Then one has n1 + n2 local co-ordinates zα on M where if q = (q1, q2) ∈ U1 × U2,

z(q1, q2) =
(
x1(q1), . . . , xn1(q1), y1(q2), . . . , yn2(q2)

)
(2.16)
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Note that f1(q1) = f(q1, q2) is a smooth function of q1 when q2 is fixed, and f2(q2) =
f(q1, q2) is a smooth function of q2 when q1 is fixed.

Then using the chain rule

Vpf =
n1+n2∑
α=1

∂

∂zα
(f ◦ z−1)|z(p)

d

dt
((z ◦ γ)α(t))|t=t0

=
n1∑
a=1

∂

∂xa
(f1 ◦ x−1)|(x(p1),y(q2))

d

dt
((x ◦ γ1)a(t))|t=t0

+
n2∑
j=1

∂

∂yj
(f2 ◦ y−1)|(x(p1),y(q2))

d

dt
((y ◦ γ2)j(t))|t=t0

= (V (1)p + V (2)p)f (2.17)

where V (1)p is the tangent vector to γ1 at p, and V (2)p is the tangent vector to γ2 at
p. Hence Vp = V (1)p + V (2)p. Conversely, given two smooth curves γ1(t), γ2(t) in M1, M2

passing through p1 and p2 at t = t0, with associated tangent vectors V (1)p and V (2)p, one
can construct the smooth curve γ(t) = (γ1(t), γ2(t)) in M passing through p = (p1, p2) at
t = t0. Then (2.17) shows that V (1)p + V (2)p can be written as Vp ∈ Tp(M).

2.5 Vector Fields and Commutators

The tangent space of M , T (M) consists of the union

T (M) =
⋃
p∈M

Tp(M) (2.18)

A vector field V on M is a map V : M → T (M) such that V (p) = Vp ∈ Tp(M).
Note that T (M) is a vector space with addition and scalar multiplication defined by

(X + Y )(f) = X(f) + Y (f) (2.19)

where X,Y ∈ T (M) and f : M → R is smooth, and

(αX)(f) = αX(f) (2.20)

for constant α ∈ R.
At a point p ∈ M , one can decompose Vp into its components with respect to a

particular chart as

Vp = V i
p

( ∂
∂xi
)
p

(2.21)

It is conventional to write

V = V i(
∂

∂xi
) (2.22)

where V i = (V ◦ x−1)(xi) are functions Rn → R and ( ∂
∂xi

) is a locally defined vector
field which satisfies
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(
∂

∂xi
)xj = δji (2.23)

It follows that T (M) is n-dimensional with a local basis given by the ( ∂
∂xi

). The vector
field is called smooth if the functions V i are smooth functions on Rn.

Suppose now that f is a smooth function on M and that V , W are vector fields on M .
Then note that V f can be regarded as a function M → R defined by

(V f)(p) = Vpf (2.24)

Hence one can act on V f with Wp at some p ∈M to find

Wp(V f) = W i
p

( ∂
∂xi
)
p
(V f)

= W i
p

( ∂
∂xi
)
p
(V j ∂

∂xj
(f ◦ x−1))|x(p)

= W i
p

∂V j

∂xi
|x(p)(

∂

∂xj
(f ◦ x−1))|x(p)

+ W i
pV

j
p (

∂2

∂xi∂xj
(f ◦ x−1))|x(p) (2.25)

The fact that there are second order derivatives acting on f means that we cannot
write Wp(V f) = Zpf for some vector field Z.

However, these second order derivatives can be removed by taking the difference

Wp(V f)− Vp(Wf) =
(
W i
p

∂V j

∂xi
|x(p) − V i

p

∂W j

∂xi
|x(p)

)
(
∂

∂xj
(f ◦ x−1))|x(p) (2.26)

which can be written as Zpf where Z is a vector field called the commutator or alter-
natively the Lie bracket of W and V which we denote by [W,V ] with components

[W,V ]j = W i∂V
j

∂xi
− V i∂W

j

∂xi
(2.27)

Exercise:
Prove that the Lie bracket satisfies

i) Skew-symmetry: [X,Y ] = −[Y,X] for all smooth vector fields X, Y ∈ T (M).

ii) Linearity: [αX+βY, Z] = α[X,Z] +β[Y,Z] for α, β constants and X, Y , Z ∈ T (M).

iii) The Jacobi identity: [[X,Y ], Z]+[[Z,X], Y ]+[[Y, Z], X] = 0 for all X, Y , Z ∈ T (M).

Definition 11. Let V be a smooth vector field on M . An integral curve σ(t) of V is a
curve whose tangent vector at σ(t) is V |σ(t), i.e.

d

dt
(σi(t)) = V i

σ(t) (2.28)

where in a slight abuse of notation, σi(t) = (x ◦ σ)i(t) for some local co-ordinates x.
Such a curve is guaranteed to exist and to be unique (at least locally, given an initial
condition), by the standard existence and uniqueness theorems for ODE’s.
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2.6 Push-Forwards of Vector Fields

Suppose that M , N are two smooth manifolds and f : M → N is a smooth map. Then
there is an induced map

f∗ : T (M)→ T (N) (2.29)

which maps the tangent vector of a curve γ passing through a point p ∈ M to the
tangent vector of the curve f ◦ γ passing through f(p) ∈ N .

In particular, for each smooth function h on N , and if γ is a curve passing through
p ∈M with γ(0) = p, and if Vp ∈ Tp(M) is the tangent vector of γ at p then f∗Vp ∈ Tf(p)(N)
is given by

(f∗Vp)h =
d

dt

(
h ◦ (f ◦ γ)

)
t=0

= Vp(h ◦ f) (2.30)

Hence it is clear that the push-forward map f∗ is linear on the space of tangent vectors.
Note that if M , N and Q are manifolds, and f : M → N , g : N → Q are smooth

functions then if h : Q→ R is smooth and p ∈M ,

(
(g ◦ f)∗Vp

)
(h) = Vp(h ◦ (g ◦ f))

= Vp((h ◦ g) ◦ f)
= (f∗Vp)(h ◦ g)
=
(
g∗(f∗Vp)

)
(h) (2.31)

and hence

(g ◦ f)∗ = g∗ ◦ f∗ (2.32)

2.7 Left-Invariant Vector Fields

Suppose that G is a Lie group and a, g ∈ G. Define the operation of left-translation
La : G→ G by

Lag = ag (2.33)

La defined in this fashion is a differentiable invertible map from G onto G. Hence, one
can construct the push-forward La∗ of vector fields on G with respect to La.

Definition 12. A vector field X ∈ T (G) is said to be left-invariant if

La∗(X|g) = X|ag (2.34)

Given v ∈ Te(G) one can construct a unique left-invariant vector field X(v) ∈ T (G)
with the property that X(v)e = v using the push-forward by
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X(v)|g = Lg∗v (2.35)

To see that X(v) is left-invariant, note that

X(v)|ag = L(ag)∗v (2.36)

but from (2.32) it follows that as Lag = La ◦ Lg we must have

L(ag)∗v = (La ◦ Lg)∗v = La∗(Lg∗v) = La∗X(v)g (2.37)

so X(v) is left-invariant. Hence there is a 1-1 correspondence between elements of the
tangent space at e and the set of left-invariant vector fields.

Proposition 2. The set of left-invariant vector fields is closed under the Lie bracket, i.e.
if X, Y ∈ T (G) are left-invariant then so is [X,Y ].
Proof

Suppose that f : G→ R is a smooth function. Then

(
La∗[X,Y ]g

)
f = [X,Y ]g(f ◦ La)

= Xg(Y (f ◦ La))− Yg(X(f ◦ La)) (2.38)

But as X is left-invariant, La∗Xg = Xag so

Xagf = (La∗Xg)f = Xg(f ◦ La) (2.39)

so replacing f with Y f in the above we find

Xg((Y f) ◦ La) = Xag(Y f) (2.40)

Moreover, as Y is left-invariant, it is straightforward to show that

(
Y (f ◦ La)

)
g = Yg(f ◦ La)

= (La∗Yg)f
= Yag(f)
= (Y f)(ag)
=
(
(Y f) ◦ La)g (2.41)

so Y (f ◦ La) = (Y f) ◦ La
Hence

Xg(Y (f ◦ La))− Yg(X(f ◦ La)) = Xg((Y f) ◦ La)− Yg((Xf) ◦ La)
= Xag(Y f)− Yag(Xf)
= [X,Y ]agf (2.42)

So La∗[X,Y ]g = [X,Y ]ag, hence [X,Y ] is left-invariant. �
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2.8 Lie Algebras

Definition 13. Suppose that G is a Lie group. Then the Lie algebra L(G) associated
with G is Te(G), the tangent space of G at the origin, together with a Lie bracket [ , ] :
L(G)× L(G)→ L(G) which is defined by

[v, w] = [L∗v, L∗w]e (2.43)

for v, w ∈ Te(G), L∗v and L∗w denote the smooth vector fields on G obtained by pushing
forward v and w by left-multiplication (i.e. L∗v|g = Lg∗v), and [L∗v, L∗w] is the standard
vector field commutator. As the Lie bracket on L(G) is obtained from the commutator of
vector fields, it follows that the Lie bracket is

i) Skew-symmetric: [v, w] = −[w, v] for all v, w ∈ L(G).

ii) Linear: [αv1 + βv2, w] = α[v1, w] + β[v2, w] for α, β constants and v1, v2, w ∈ L(G),

iii) and satisfies the Jacobi identity: [[v, w], z] + [[z, v], w] + [[w, z], v] = 0 for all v, w,
z ∈ L(G).

where (ii) follows because the push forward map is linear on the space of vector fields,
and (iii) follows because as a consequence of Proposition 2, Lg∗[v, w] = [L∗v, L∗w]g.

More generically, one can also define a Lie algebra to be a vector space g equipped
with a map [ , ] : g× g→ g satisfying (i), (ii), (iii) above.

Definition 14. Suppose that {Ti : i = 1, . . . , n} is a basis for L(G). Then the Ti are called
generators of the Lie algebra. As [Ti, Tj ] ∈ L(G) it follows that there are constants cijk

such that

[Ti, Tj ] = cij
kTk (2.44)

The constants cijk are called the structure constants of the Lie algebra.
The structure constants are constrained by the antisymmetry of the Lie bracket to be

antisymmetric in the first two indices;

cij
k = −cjik (2.45)

Also, the Jacobi identity implies

[[Ti, Tj ], Tk] + [[Tj , Tk], Ti] + [[Tk, Ti], Tj ] = 0 (2.46)

which gives an additional constraint on the structure constants

cij
`c`k

m + cjk
`c`i

m + cki
`c`j

m = 0 (2.47)
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2.9 Matrix Lie Algebras

The Lie algebras of matrix Lie groups are of particular interest. Suppose that G is a matrix
Lie group, and V ∈ T (G) is a smooth vector field. Let f be a smooth function of the matrix
components gAB. Then if h ∈ G,

Vhf = V m
h

∂f

∂xm

= V m
h

∂gAB

∂xm
∂f

∂gAB

= V AB
h

∂f

∂gAB
(2.48)

where

V AB
h = V m

h

∂gAB

∂xm
(2.49)

defines a tangent matrix associated with the components V m
h of V at h. Each vector

field has a corresponding tangent matrix, and it will often be most convenient to deal with
these matrices instead of more abstract vector fields as differential operators.

In particular, if γ(t) is some curve in G with tangent vector V then

V f =
d

dt
(f ◦ γ(t))

=
dgAB

dt

∂f

∂gAB
(2.50)

hence the tangent vector to the curve corresponds to the matrix dgAB

dt . We will fre-
quently denote the identity element of a matrix Lie group by e = I

Examples of matrix Lie algebras are

• a) GL(n,R): the co-ordinates of GL(n,R) are the n2 components of the matrices, so
GL(n,R) is n2-dimensional. There is no restriction on tangent matrices to curves in
GL(n,R), the space of tangent vectors is Mn×n(R), the set of n× n real matrices.

• b) GL(n,C): the co-ordinates of GL(n,C) are the n2 components of the matrices, so
GL(n,C) is 2n2-dimensional when viewed as a real manifold. There is no restriction
on tangent matrices to curves in GL(n,C), the space of tangent vectors is Mn×n(C),
the set of n× n complex matrices.

• c) SL(n,R): Suppose that M(t) is a curve in SL(n,R) with M(0) = I. To compute
the restrictions on the tangent vectors to the curve note that

detM(t) = 1 (2.51)

so, on differentiating with respect to t,
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Tr
(
M−1(t)

dM(t)
dT

)
= 0 (2.52)

and so if we denote the tangent vector at the identity to be m = dM(t)
dt |t=0 then

Tr m = 0. The tangent vectors correspond to traceless matrices. Hence SL(n,R) is
n2 − 1 dimensional.

• d) O(n): suppose that M(t) is a curve in O(n) with M(0) = I. To compute the
restrictions on the tangent vectors to the curve note that

M(t)M(t)T = 1 (2.53)

so, on differentiating with respect to t,

dM(t)
dt

M(t)T +M(t)
dM(t)T

dt
= 0 (2.54)

and hence ifm = dM(t)
dt |t=0 thenm+mT = 0. The tangents to the curve at the identity

correspond to antisymmetric matrices. There are 1
2n(n − 1) linearly independent

antisymmetric matrices, hence O(n) is 1
2n(n− 1)-dimensional.

Note that the Lie algebra of SO(2) is 1-dimensional and is spanned by

T1 =

(
0 1

− 1 0

)
(2.55)

As [T1, T1] = 0 it follows trivially that the Lie bracket vanishes

• f) SO(n) the group of n × n real matrices such that if M ∈ SO(n) then MMT = 1
and detM = 1. By the reasoning in (c) and (e) it follows that the tangent matrices
at the identity are skew-symmetric matrices (these are automatically traceless).

As the skew symmetric matrices are automatically traceless, it follows that the Lie
algebra L(SO(n)) of SO(n) is identical to the Lie algebra of O(n). If v, w ∈ L(SO(n))
are skew-symmetric matrices it is straightforward to show that the matrix commu-
tator [v, w] is also skew symmetric, as [v, w]T = (vw − wv)T = wT vT − vTwT =
[w, v] = −[v, w]. Hence [v, w] ∈ L(SO(n)) as expected. We will show that vector
field commutation can be reduced to tangent matrix commutation for matrix Lie
groups.

Exercise
Show that the tangent vectors of U(n) at I consist of antihermitian matrices, and the

tangent vectors of SU(n) at I are traceless antihermitian matrices.
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Proposition 3. Suppose that G is a matrix Lie group and V is a smooth vector field on
G and a ∈ G is fixed. If V̂ denotes the tangent matrix associated with V , then the tangent
matrix associated with the push-forward La∗V is aV̂ .
Proof

Suppose h ∈ G, and f : G → R is a smooth function on G. Consider the tangent
vector La∗Vh defined at ah

Then

(La∗Vh)f = Vh(f ◦ La)
= Vhf̃ (2.56)

where f̃(g) = f(ag).
So

(La∗Vh)f = V AB
h

∂f̃

∂gAB
|h

= V AB
h

∂f

∂gPQ
|ah

∂

∂gAB
((ag)PQ)

= V AB
h

∂f

∂gPB
|ahaPA

= (aV̂ )AB
∂f

∂gAB
|ah (2.57)

So it follows that the tangent matrix associated with La∗Vh is aV̂ . �
Using this result, it is possible to re-interpret the commutator of two left-invariant

vector fields in terms of the matrix commutators of their associated matrices.

Proposition 4. Suppose that G is a matrix Lie group and that v, w ∈ Te(G) and V , W
are the left-invariant vector fields defined by Vg = Lg∗v, Wg = Lg∗w. Then the matrix
associated with [V,W ]e is the matrix commutator of [v̂, ŵ] where v̂ and ŵ are the matrices
associated with v and w.
Proof

By definition, the matrix associated with [V,W ] is

[V,W ]AB = [V,W ]m
∂gAB

∂xm

= V p∂W
m

∂xp
∂gAB

∂xm
−W p∂V

m

∂xp
∂gAB

∂xm

= V p ∂

∂xp
(
Wm∂g

AB

∂xm
)
−W p ∂

∂xp
(
V m∂g

AB

∂xm
)

= V p∂Ŵ
AB

∂xp
−W p∂V̂

AB

∂xp
(2.58)

where V̂ and Ŵ denote the matrices associated with V and W . But from the previous
proposition V̂g

AB
= gAC v̂CB and Ŵg

AB
= gACŵCB so
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[V,W ]ABe = V P ∂g
AC

∂xp
|eŵCB −WP ∂g

AC

∂xp
|ev̂CB

= v̂ACŵCB − ŵAC v̂CB

= [v̂, ŵ]AB (2.59)

as required. �
We have therefore shown that if G is a matrix Lie group then the elements L(G) can be

associated with matrices and the Lie bracket is then simply standard matrix commutation
by Proposition 4 (which can be directly checked satisfies all three of the Lie bracket for
Lie algebras). In the literature, it is often conventional to denote the Lie algebra of SO(n)
by so(n), su(n) is the Lie algebra of SU(n), u(n) the Lie algebra for U(n) etc. We will
however continue to use the notation L(G) for the Lie algebra of Lie group G.

Observe that the image [L(G),L(G)] under the Lie bracket need not be the whole of
L(G). This is clear for SO(2), as the Lie bracket vanishes identically in that case. Recall
that the Lie bracket on R viewed as a Lie group under addition vanishes identically as
well. If G is a connected 1-dimensional Lie group then G must either be isomorphic to R
or SO(2) (equivalently U(1)).

2.10 One Parameter Subgroups

Definition 15. A curve σ : R→ G is called a one-parameter subgroup if σ(s)σ(t) = σ(s+t)
for all s, t ∈ R.

Note that if σ(t) is a 1-parameter subgroup then σ(0) = e.
We shall show that these subgroups arise naturally as integral curves of left-invariant

vector fields.

Proposition 5. Suppose that V is a left-invariant vector field. Let σ(t) be the integral
curve of V which passes through e when t = 0.

Then σ(t) is a 1-parameter subgroup of G.
Proof

Let x denote some local co-ordinates.
Consider the curves χ1(t) = σ(s)σ(t) and χ2(t) = σ(s+ t) for fixed s.
These satisfy the same initial conditions χ1(0) = χ2(0) = σ(s).
By definition, χ2 satisfies the ODE

d

dt
((x ◦ χ2(t))n) =

d

d(s+ t)
((x ◦ σ(s+ t))n)

= Vσ(s+t)(x
n)

= Vχ2(t)(x
n) (2.60)

Consider

d

dt
((x ◦ χ1(t))n) =

d

dt

(
(x ◦ Lσ(s) ◦ σ(t))n

)
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=
d

dt

(
((x ◦ Lσ(s) ◦ x−1) ◦ (x ◦ σ)(t))n

)
=

∂

∂xm
(
(x ◦ Lσ(s) ◦ x−1)n

)
|x◦σ(t)

d

dt
((x ◦ σ(t))m) (2.61)

where we have used the chain rule. But by definition of σ(t),

d

dt
((x ◦ σ(t))m) = V m

σ(t) (2.62)

Hence, substituting this into the above:

d

dt
((x ◦ χ1(t))n) = V m

σ(t)

∂

∂xm
(
(x ◦ Lσ(s) ◦ x−1)n

)
|x◦σ(t)

= Vσ(t)((x ◦ Lσ(s))n)
= (Lσ(s)∗Vσ(t))(x

n) (by definition of push− forward)
= Vχ1(t)(x

n) (as V is left− invariant) (2.63)

So χ1, χ2 satisfy the same ODE with the same initial conditions.
Hence it follows that σ(s)σ(t) = σ(s+ t), i.e. σ defines a 1-parameter subgroup. �
The converse is also true: a 1-parameter subgroup σ(t) has left-invariant tangent

vectors

Proposition 6. Suppose σ(t) is a 1-parameter subgroup of G with tangent vector V . Sup-
pose Ve = v. Then Vσ(t) = Lσ(t)∗v, i.e. the tangent vectors are obtained by pushing forward
the tangent vector at the identity.
Proof

Suppose f : G→ R is a smooth function. Then

Vσ(t)f =
d

dt

(
(f ◦ σ)(t)

)
= lim

h→0

(f(σ(t+ h))− f(σ(t))
h

)
= lim

h→0

(f(σ(t)σ(h))− f(σ(t))
h

)
=

d

dt′
(f ◦ Lσ(t) ◦ σ(t′))|t′=0

= (Lσ(t)∗v)f (2.64)

so Vσ(t) = Lσ(t)∗v. �
From this we obtain the corollory

Corollory 1. Suppose that σ(t), µ(t) are two 1-parameter subgroups of G with tangent
vectors V , W respectively, with Ve = We = u. Then σ(t) = µ(t) for all t.
Proof

Note that

d

dt

(
(x ◦ σ(t))n

)
= Vσ(t)x

n
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= (Lσ(t)∗u)xn (2.65)

and also

d

dt

(
(x ◦ µ(t))n

)
= Wσ(t)x

n

= (Lµ(t)∗u)xn (2.66)

So x ◦ σ and x ◦ µ satisfy the same ODE and with the same initial conditions, hence
σ(t) = µ(t). �

2.11 Exponentiation

Definition 16. Suppose v ∈ Te(G), Then we define the exponential map exp : Te(G)→ G

by

exp(v) = σv(1) (2.67)

where σv(t) denotes the 1-parameter subgroup generated by X(v), and X(v) is the
left-invariant vector field obtained via the push-forward X(v)g = Lg∗v

Note that exp(0) = e.

Proposition 7. If v ∈ Te(G) and t ∈ R then

exp(tv) = σv(t) (2.68)

and hence exp((t1 + t2)v) = exp(t1v)exp(t2v).
Proof

Take a ∈ R, a 6= 0. Note that σv(at) and σav(t) are both 1-parameter subgroups of G.
The tangent vector to σav(t) at the origin is av.

We also compute the tangent vector to σv(at) at e via

d

dt

(
(x ◦ σ(at))n

)
t=0

= a
d

d(at)
(
(x ◦ σ(at))n

)
at=0

= avn (2.69)

So σv(at) and σav(t) have the same tangent vector av at the origin. Therefore σv(at) =
σav(t).

Hence

exp(tv) = σtv(1) = σv(t) (2.70)

as required. �

– 29 –



2.12 Exponentiation on matrix Lie groups

Suppose that G is a matrix Lie group, and v ∈ Te(G) is some tangent matrix. The
exponential exp(tv) produces a curve in G with d

dt(exp(tv))|t=0 = v satisfying exp((t1 +
t2)v) = exp(t1v) exp(t2v)

It is then straightforward to show that

d

dt
(exp(tv))|t=t0 = lim

t→0

(
t−1(exp((t0 + t)v)− exp(t0v))

)
= lim

t→0

(
t−1(exp(tv)− I) exp(t0v)

)
= v exp(t0v) (2.71)

Similarly, one also finds d
dt(exp(tv))|t=t0 = exp(t0v)v, so v commutes with exp(tv).

It is clear that d
dt exp(tv) = v exp(tv) implies that exp(tv) is infinitely differentiable (as

expected as the integral curve is smooth by construction). Then by elementary analysis,
one can compute the power series expansion for exp(tv) as

exp(tv) =
∞∑
n=0

tnvn

n!
(2.72)

with a remainder term which converges to 0 (with respect to the supremum norm on
matrices, for example). Hence, for matrix Lie groups, the Lie group exponential operator
corresponds to the usual operation of matrix exponentiation.

Comment: Suppose that G1 and G2 are Lie groups. Then G = G1×G2 is a Lie group,
and by Lemma 1, L(G) = L(G1)

⊕
L(G2).

Conversely, suppose Lie groups G, G1, G2 are such that L(G) = L(G1)
⊕
L(G2). Then

by exponentiation, it follows that, at least in a local neighbourhood of e, G has the local
geometric structure of G1×G2. However, as it is not in general possible to reconstruct the
whole group in this fashion, one cannot say that G = G1×G2 globally (typically there will
be some periodic identification somewhere in the Cartesian product group).

In general, one cannot reconstruct the entire Lie group by exponentiating elements of
the Lie algebra. Consider for example, SO(2) and O(2). Both L(O(2)) and L(SO(2)) are
generated by

T1 =

(
0 1

− 1 0

)
(2.73)

however it is straightforward to show that

eθT1 =

(
cos θ sin θ

− sin θ cos θ

)
(2.74)

which always has determinant +1. So SO(2) = exp(L(SO(2))) butO(2) 6= exp(L(O(2))).
However, there do exist neighbourhoods B0 of 0 ∈ L(G) and B1 of I ∈ G such that the
map exp : B0 → B1 is invertible. (The inverse is called log by convention).
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2.13 Integration on Lie Groups

Suppose that G is a matrix Lie group, and let V be a left-invariant vector field on G, and
suppose that the associated tangent matrix to V at the identity is v̂.

Then if x are some local co-ordinates on G, we know that

g(x)v̂ = V m
g(x)

∂g(x)
∂xm

(2.75)

From this formula, it is clear that if h ∈ G is a constant matrix then

V m
g(x) = V m

hg(x) (2.76)

If H = {h1, . . . , hr} is a finite group, and f : H → R is a function, then the integral of
f over H is simply

r∑
i=1

f(hi) (2.77)

and note that if h ∈ H is fixed then

r∑
i=1

f(hi) =
r∑
i=1

f(hhi) (2.78)

We wish to construct an analogous integral over a matrix Lie group G. Suppose that
x, y are co-ordinates on G and define

dnx = dx1 . . . dxn, dny = dy1 . . . dyn (2.79)

Note that dnx and dny are related by

dnx = J−1dny (2.80)

where J is the Jacobian J = det
( ∂yi
∂xj

)
.

Now suppose that µi for i = 1, . . . , n is a basis of left-invariant vector fields. Then

µi|g(x) = µji,g(x)

∂

∂xj
(2.81)

Then we have

µji,g(x)

∂

∂xj
= µji,g(x)

∂yk

∂xj
∂

∂yk
= µji,g(y)

∂

∂yj
(2.82)

so

µji,g(y) = µki,g(x)

∂yj

∂xk
(2.83)

and hence

det
(
µji,g(x)

)
= J−1 det

(
µji,g(y)

)
(2.84)

Motivated by this, we make the
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Definition 17. The Haar measure is defined by

dnx
(

det(µji,g(x))
)−1 (2.85)

Then by the previous reasoning,

dnx
(

det(µji,g(x))
)−1 = dny

(
det(µji,g(y))

)−1 (2.86)

so the measure is invariant under changes of co-ordinates.
Also, if h is a constant matrix, then as the µi are left-invariant, µji,g(x) = µji,hg(x), and

so
dnx

(
det(µji,g(x))

)−1 = dnx
(

det(µji,hg(x))
)−1 (2.87)

It follows that if f : G→ R, then∫
dnx

(
det(µji,g(x))

)−1
f(g(x)) =

∫
dnx

(
det(µji,g(x))

)−1
f(hg(x)) (2.88)

It can be shown that the Haar measure (up to multiplication by a non-zero constant)
is the unique measure with this property.

Example: SL(2,R)
Consider g ∈ SL(2,R),

g =

(
a b

c d

)
(2.89)

for a, b, c, d ∈ R constrained by ad− bc = 1. Note that

g−1 =

(
d −b
−c a

)
(2.90)

We take co-ordinates x1 = b, x2 = c, x3 = d (in some neighbourhood of the identity).
Then

g−1 ∂g

∂x1
=

(
c d

− c2

d −c

)
, g−1 ∂g

∂x2
=

(
0 0
1
d 0

)
, g−1 ∂g

∂x3
=

(
−a −b
ac
d a

)
(2.91)

Take

v1 =

(
1 0
0 −1

)
, v2 =

(
0 0
1 0

)
, v3 =

(
0 1
0 0

)
(2.92)

to be a basis for L(SL(2,R)). Then note that

v1 = −bg−1 ∂g

∂x1
+ cg−1 ∂g

∂x2
− dg−1 ∂g

∂x3
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v2 = dg−1 ∂g

∂x2

v3 = ag−1 ∂g

∂x1
+ cg−1 ∂g

∂x3
(2.93)

It follows that the left-invariant vector fields obtained from pushing-forward the vector
fields associated with v1, v2, v3 at the identity with L∗ are

µ1 = −b ∂

∂x1
+ c

∂

∂x2
− d ∂

∂x3

µ2 = d
∂

∂x2

µ3 = a
∂

∂x1
+ c

∂

∂x3
(2.94)

So the matrix µji is

(µji ) =

 −b c −d
0 d 0
a 0 c

 (2.95)

As det(µji ) = d it follows that the Haar measure in these co-ordinates is 1
d db dc dd.

2.14 Representations of Lie Groups

Definition 18. Let V be a finite dimensional vector space (over R or C) and let GL(V )
denote the space of invertible linear transformations V → V . Then a representation of a
Lie group G acting on V is a map D : G→ GL(V ) such that

D(g1g2) = D(g1)D(g2) (2.96)

for all g2, g2 ∈ G. (i.e. D is a homomorphism). The dimension of the representation is
given by dim D = dim V .

Lemma 2. If D is a representation of G then D(e) = 1 where 1 ∈ GL(V ) is the identity
transformation, and if g ∈ G then D(g−1) = (D(g))−1.
Proof

Note that D(e) = D(ee) = D(e)D(e) and so it follows that D(e) = 1 where 1 ∈ GL(V )
is the identity transformation.

If g ∈ G then 1 = D(e) = D(gg−1) = D(g)D(g−1), so D(g−1) = (D(g))−1. �
If M(V ) denotes the set of all linear transformations V → V , and D : G → M(V )

satisfies D(e) = 1 together with the condition (2.96) then it follows from the reasoning
used in the Lemma above that D(g) is invertible for all g ∈ G, with inverse D(g−1), and
hence D is a representation.

We next define some useful representations

Definition 19. The trivial representation is defined by D(g) = 1 for all g ∈ G
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Definition 20. If G is a matrix Lie group which is a subgroup of GL(n,R) or GL(n,C)
then the group elements themselves act directly on n-component vectors. The fundamental
representation is then defined by D(g) = g.

Definition 21. If G is a matrix Lie group then the adjoint representation Ad : G →
GL(L(G)) is defined by

(Ad(g))X = gXg−1 (2.97)

for g ∈ G and X ∈ L(G) is a tangent matrix.

Lemma 3. Ad(g) as defined above is a representation
Proof

We first verify that if X ∈ L(g) then Ad(g)X ∈ L(G).
Fix g ∈ G. Next, recall that if X ∈ L(G) then there is some smooth curve in G, γ(t)

such that X = dγ(t)
dt |t=0. Define a new smooth curve in G by ρ(t) = gγ(t)g−1, then the

tangent matrix to ρ(t) at t = 0 is given by dρ(t)
dt |t=0 = g dγ(t)

dt |t=0g
−1 = gXg−1.

Hence Ad(g)X ∈ L(G).
It is clear that Ad(g) is a linear transformation on X ∈ L(G).
Note that Ad(e)X = eXe−1 = X, so Ad(e) = 1. Also, if g1, g2 ∈ G then

Ad(g1g2)X = (g1g2)X(g1g2)−1

= g1g2Xg
−1
2 g−1

1

= g1(g2Xg
−1
2 )g−1

1

= g1(Ad(g2)X)g−1
1

= Ad(g1)Ad(g2)X (2.98)

hence Ad(g1g2) = Ad(g1)Ad(g2).
It then follows that Ad(g)Ad(g−1) = Ad(gg−1) = Ad(e) = 1 so Ad(g) is invertible. �

Definition 22. Suppose D is a representation of G acting on V . A subspace W ⊂ V is
called an invariant subspace if D(g)w ∈W for all g ∈ G and w ∈W .

Definition 23. Suppose D is a representation of G acting on V . Then D is reducible if
there is an invariant subspace W of V with W 6= 0 and W 6= V . If the only invariant
subspaces of V are 0 and V then D is called irreducible.

Definition 24. A representation D is called totally reducible if there exists a direct sum de-
composition of V into subspaces Wi, V = W1

⊕
W2
⊕
...
⊕
Wk where the Wi are invariant

subspaces with respect to D and D restricted to Wi is irreducible.
In terms of matrices, if D is totally reducible, then there is some basis of V in which

D has a block diagonal form

D(g) =

D1(g) 0
0 D2(g)

. . .

 (2.99)
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Di(g) denotes D(g) restricted to Wi.

Definition 25. A representation D of G acting on V is faithful if D(g) = 1 only if g = e.

Definition 26. Suppose that D is a representation of G acting on V where V is a vector
space over C equipped with an inner product. Then D is a unitary representation if D(g) :
V → V satisfies D(g)D(g)† = 1 for all g ∈ G.

Proposition 8. A finite dimensional unitary representation is totally reducible
Proof

If D is irreducible then we are done. Otherwise, suppose that W is an invariant
subspace. Write V = W ⊕W⊥. Suppose v ∈W⊥. Then if w ∈W and g ∈ g,

〈D(g)v, w〉 = 〈v,D(g)†w〉
= 〈v,D(g)−1w〉
= 〈v,D(g−1)w〉
= 0 (2.100)

as D(g−1)w ∈W because W is an invariant subspace.
Hence it follows that if v ∈ W⊥ then D(g)v ∈ W⊥ and so W⊥ is also an invariant

subspace. Repeating this process by considering D restricted to the invariant subspaces W
and W⊥ one obtains a direct sum decomposition of V into invariant (orthogonal) subspaces
Wi such that D restricted to Wi is irreducible. �

Proposition 9. Let V1, V2 be finite dimensional vector spaces. Suppose D is a represen-
tation of G acting on V1, and A : V1 → V2 is an invertible linear transformation. Define
D̃(g) = AD(g)A−1. Then D̃ is a representation of G on V2.
Proof

As D̃ is a composition of invertible linear transformations, D̃ is also an invertible linear
transformation on V2.

Also, if g1, g2 ∈ G

D̃(g1g2) = AD(g1g2)A−1

= AD(g1)D(g2)A−1

= AD(g1)A−1AD(g2)A−1

= D̃(g1)D̃(g2) (2.101)

and hence D̃ is also a representation. �

Definition 27. Suppose D is a representation of G acting on V1, and A : V1 → V2 is an
invertible linear transformation. Define D̃(g) = AD(g)A−1. Then D and D̃ are said to be
equivalent representations.
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Proposition 10. Schur’s First Lemma: Suppose that D1 and D2 are two irreducible rep-
resentations of G acting on V1 and V2 respectively and there exists a linear transformation
A : V1 → V2 such that

AD1(g) = D2(g)A (2.102)

for all g ∈ G. Then either D1 and D2 are equivalent representations, or A = 0.
Proof First note that

Ker A = {ψ ∈ V1 : Aψ = 0} (2.103)

is an invariant subspace of D1, because if ψ ∈ Ker A then

AD1(g)ψ = D2(g)Aψ = 0 (2.104)

so D1(g)ψ ∈ Ker A for all g ∈ G. But D1 is irreducible on V1, so one must have
Ker A = 0 or Ker A = V1, so A is 1-1 or A = 0.

Similarly,

Im A = {φ ∈ V2 : φ = Aψ for some ψ ∈ V1} (2.105)

is an invariant subspace of D2, because if φ ∈ Im A then there is some ψ ∈ V1 such
that φ = Aψ and hence

D2(g)φ = D2(g)Aψ = AD1(g)ψ (2.106)

and hence D2(g)φ ∈ Im A for all g ∈ G. But D2 is irreducible on V2, so one must have
Im A = 0 or Im A = V2, i.e. A = 0 or A is onto.

Hence either A = 0 or A is both 1-1 and onto i.e. A is invertible. If A is invertible
then D1 and D2 are equivalent. �

Proposition 11. Schur’s Second Lemma: Suppose that D is an irreducible representation
of G on V , where V is a vector space over C, and A : V → V is a linear transformation
such that

AD(g) = D(g)A (2.107)

for all g ∈ G. Then A = λ1 for some λ ∈ C.
Proof

As V is over C, A has at least one eigenvalue. Let λ ∈ C be an eigenvalue of A, with
corresponding eigenspace U (U 6= 0). Then U is an invariant subspace of V with respect
to D, for if ψ ∈ U then

Aψ = λψ (2.108)

and if g ∈ G, then
AD(g)ψ = D(g)Aψ = D(g)(λψ) = λD(g)ψ (2.109)

so D(g)ψ ∈ U .
But D is irreducible on V , so this implies U = V (as U 6= 0).
Hence it follows that A = λ1. �

– 36 –



Definition 28. Suppose that D1 and D2 are representations of the Lie group G over vector
spaces V1 and V2 respectively. Let V = V1

⊗
V2 be the standard tensor product vector space

of V1 and V2 consisting of elements v1 ⊗ v2 (v1 ∈ V1 and v2 ∈ V2) in the vector space dual
to the space of bilinear forms on V1 × V2. If v1 ⊗ v2 ∈ V then v1 ⊗ v2 acts linearly on
bilinear forms Ω via v1⊗v2Ω = Ω(v1, v2). V is equipped with pointwise addition and scalar
multiplication which satisfy (v1 +w1)⊗ (v2 +w2) = v1 ⊗ v2 + v1 ⊗w2 +w1 ⊗ v2 +w1 ⊗w2

and α(v1 ⊗ v2) = (αv1)⊗ v2 = v1 ⊗ (αv2).
Then the tensor product representation D is defined as a linear map on V satisfying

D(g)v1 ⊗ v2 = D1(g)v1 ⊗D2(g)v2 (2.110)

for g ∈ G and v1 ∈ V1 and v2 ∈ V2

Proposition 12. The tensor product representation defined above is a representation.
Proof

The map D(g) is linear by construction, also

D(e)v1 ⊗ v2 = D1(e)v1 ⊗D2(e)v2 = v1 ⊗ v2 (2.111)

because D1(e) = 1 and D2(e) = 1. Hence D(e) = 1. And if g1, g2 ∈ G then

D(g1g2)v1 ⊗ v2 = D1(g1g2)v1 ⊗D2(g1g2)v2

= D1(g1)D1(g2)v1 ⊗D2(g1)D2(g2)v2

= D(g1)(D1(g2)v1 ⊗D2(g2)v2)
= D(g1)D(g2)v1 ⊗ v2 (2.112)

so D(g1g2) = D(g1)D(g2). Hence, this together with D(e) = 1 implies that D(g) is
invertible. So D(g) is a representation. �

Note that if D1 is irreducible on V1 and D2 is irreducible on V2 then D = D1
⊗
D2 is

not generally irreducible on V = V1
⊗
V2. Indeed, we shall be particularly interested in

decomposing D into irreducible components in several explicit examples.

2.15 Representations of Lie Algebras

Definition 29. Let V be a finite dimensional vector space (over R or C) and let M(V )
denote the space of linear transformations V → V . Suppose that L(G) is the Lie algebra of a
Lie group G. Then a representation of L(G) acting on V is a linear map d : L(G)→M(V )
satisfying

d([X,Y ]) = d(X)d(Y )− d(Y )d(X) (2.113)

for all X,Y ∈ L(G). The dimension of the representation is the dimension of V .

Definition 30. The trivial representation of L(G) on V is given by d(X) = 0 for all
X ∈ L(G)
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Definition 31. If G is a matrix Lie group and hence L(G) is a matrix Lie algebra, then
the tangent vectors can be regarded as matrices acting directly on n-component vectors.
Then we define the fundamental representation of L(G) on V by d(X) = X

There is a particularly natural representation associated with any Lie algebra.

Definition 32. Let L(G) be a Lie algebra. Then the adjoint representation is a represen-
tation of L(G) over the vector space L(G), ad : L(G)→M(L(G)) defined by

(ad v)w = [v, w] (2.114)

for v, w ∈ L(G).
It is clear from the above that (ad v)w is linear in w , hence ad v ∈ M(L(G)), and

ad v is also linear in v.
Moreover, if v1, v2, w ∈ L(G) then

(ad [v1, v2])w = [[v1, v2], w]
= [v1, [v2, w]]− [v2, [v1, w]] (using the Jacobi identity)
= (ad v1)[v2, w]− (ad v2)[v1, w]
= (ad v1)(ad v2)w − (ad v2)(ad v1)w (2.115)

so ad is indeed a representation.

2.16 The Baker-Campbell-Hausdorff (BCH) Formula

The BCH formula states that the product of two exponentials can be written as an expo-
nential:

exp(v) exp(w) = exp(v + w +
1
2

[v, w] +
1
12

[v, [v, w]] +
1
12

[[v, w], w] + ...) (2.116)

where ... indicates terms of higher order in v and w. For simplicity we shall consider
only matrix Lie groups, in which case the Lie algebra elements are square matrices.

To obtain the first few terms in this formula, consider etvetw as a function of t and set

eZ(t) = etvetw (2.117)

At t = 0 we must have eZ(0) = I, which is solved by taking Z(0) = 0 (this solution is
unique if we limit ourselves to the neighbourhood of the identity on which exp is invertible).
Hence we can write Z(t) as a power series

Z(t) = tP +
1
2
t2Q+O(t3) (2.118)

where we determine the matrices P and Q by expanding out (2.117) in powers of t:

I + t(v + w) +
1
2
t2(w2 + v2 + 2vw) +O(t3) = I + tP +

1
2
t2(Q+ P 2) +O(t3) (2.119)

from which we find P = v + w and Q = [v, w].
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Proposition 13. All higher order terms in the power series expansion of Z(t) in the BCH
formula depend only on sums of compositions of commutators on v and w.
Proof

Suppose that Z(y) is an arbitrary square matrix. Consider

f1(x, y) =
∂

∂y
(exZ(y)) (2.120)

and

f2(x, y) =
∫ 1

1−x
e(x−1+t)Z(y)∂Z(y)

∂y
e(1−t)Z(y)dt (2.121)

These both satisfy

∂fi
∂x

=
∂Z(y)
∂y

exZ(y) + Z(y)fi(x, y) (2.122)

and fi(0, y) = 0 for i = 1, 2. Hence f1(x, y) = f2(x, y).
Now suppose that Z(t) is the matrix appearing in the BCH formula, i.e.

eZ(t) = etvetw (2.123)

Then consider the identity f1(1, t) = f2(1, t). This implies that

v + etvwe−tv =
∫ 1

0
eyZ(t)∂Z(t)

∂t
e−yZ(t)dy (2.124)

Now consider the function

g(t) = etvwe−tv (2.125)

this satisfies g(0) = Y and

dng

dtn
= etv(ad v)nwe−tv (2.126)

hence the power series expansion of g(t) is given by

etvwe−tv = w +
∞∑
n=1

tn

n!
(ad v)nw (2.127)

Applying this expression to both sides of (2.124) and performing the y-integral, one
finds

v + w +
∞∑
n=1

tn

n!
(ad v)nw =

dZ

dt
+
∞∑
n=1

1
(n+ 1)!

(ad Z(t))n
dZ

dt
(2.128)

Then by expanding out Z(t) =
∑∞

n=1 Znt
n (as we know that Z(0) = 0), it follows by

induction using the above equation that the Zn can be written as sums of compositions of
commutators on v and w. �

Exercise: Suppose that [v, w] = 0. Show that evew = ev+w.
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Proposition 14. Suppose that D is a representation of the matrix Lie group G acting on
V . Then there is a representation d of L(G) also on V defined via

d(v) =
d

dt

(
D(exp(tv))

)
|t=0 (2.129)

for v ∈ L(G).
Proof

It is convenient to expand out up to O(t3) by

D(etv) = 1 + td(v) + t2h(v) +O(t3) (2.130)

Note that as D is a representation we must have D(e(t1+t2)v) = D(et1v)D(et2v)
Hence

1 + (t1 + t2)d(v) + (t1 + t2)2h(v) +O(t3i ) = (1 + t1d(v) + t21h(v))(1 + t2d(v) + t22h(v)) +O(t3i )
(2.131)

and so on equating the t1t2 coefficient we find h(v) = 1
2d(v)2.

Next consider for v, w ∈ L(G)

D(e−tve−twetvetw) = (1− td(v) +
1
2
t2d(v)2)(1− td(w) +

1
2
t2d(w)2)

× (1 + td(v) +
1
2
t2d(v)2)(1 + td(w) +

1
2
t2d(w)2) +O(t3)

= 1 + t2(d(v)d(w)− d(w)d(v)) +O(t3) (2.132)

But using the BCH formula

e−tve−twetvetw = e−t(v+w)+ 1
2
t2[v,w]+O(t3)et(v+w)+ 1

2
t2[v,w]+O(t3)

= et
2[v,w]+O(t3) (2.133)

and so

D(e−tve−twetvetw) = D(et
2[v,w]+O(t3)) = 1 + t2d([v, w]) +O(t3) (2.134)

Comparing (2.132) with (2.134) we find that

d([v, w]) = d(v)d(w)− d(w)d(v) (2.135)

as required.
To show that d is linear, suppose v, w ∈ L(G) and α, β are constants. Then

D(etαvetβw) = D(etαv)D(etβw)
= (1 + tαd(v) +O(t2))(1 + tβd(w) +O(t2))
= 1 + t(αd(v) + βd(w)) +O(t2) (2.136)
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But by the BCH formula

D(etαvetβw) = D(et(αv+βw)+O(t2)) = 1 + td(αv + βw) +O(t2) (2.137)

Hence, comparing the O(t) terms in (2.136) and (2.137) it follows that d(αv + βw) =
αd(v) + βd(w). �

Proposition 15. If G is a matrix Lie group, then the representation Ad : G→ GL(L(G))
induces the representation ad : L(G)→M(L(G)).
Proof

If v, w ∈ L(G) then

Ad (etv)w = etvwe−tv

= (1 + tv +O(t2))w(1− tv +O(t2))
= w + t[v, w] +O(t2)
= (I + tad v +O(t2))w (2.138)

and hence it follows that

d

dt
(Ad(etv))|t=0 = ad v (2.139)

as required. �
We have seen that a representation D of the matrix Lie group G acting on V gives rise

to a representation d of the Lie algebra L(G) on V . A partial converse is true.

Definition 33. Suppose that G is a matrix Lie group. Let d denote a representation of
L(G) on V . Then a representation D is induced locally on G via

D(g) = ed(v) (2.140)

for those g ∈ G such that g = ev.
Here we assume that the representation d(v) is realized as a matrix linear transforma-

tion on V , so that the standard matrix exponentiation ed(v) may be taken. The represen-
tation D induced by d is generally not globally well-defined, but it is locally well-defined
on the neighbourhood of the identity on which exp is invertible.

Proposition 16. The map D given in (2.140) which is locally induced by the representation
d of L(G) on V defines a representation.
Proof

Clearly, D(g) defines a linear transformation on V .
As I = e0 it follows that D(e) = ed(0) = e0 = 1 where d(0) = 0 follows from the

linearity of d.
Also, suppose that g1, g2 have g1 = ev1 , g2 = ev2 . Then by the BCH formula we have

g1g2 = ev1+v2+ 1
2

[v1,v2]+... (2.141)
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where . . . denotes a sum of higher order nested commutators by Proposition 13. Hence

D(g1g2) = ed(v1+v2+ 1
2

[v1,v2]+... )

= ed(v1)+d(v2)+ 1
2
d([v1,v2])+d(... ) (by the linearity of d)

= ed(v1)+d(v2)+ 1
2

[d(v1),d(v2)]+... (using (2.113))
= ed(v1)ed(v2)

= D(g1)D(g2) (2.142)

So D is at least locally a representation. Note that we have made use of the fact that all
higher order terms in the BCH expansion can be written as sums of commutators, together
with the property (2.113) of representations of L(G) in proceeding from the second to the
third line of the above equation. �

Proposition 17. Suppose that G is a matrix Lie group. If D is a unitary representation
of G on V then the induced representation d of L(G) on V is antihermitian.

Conversely, suppose d is a antihermitian representation of L(G) on V , then the (lo-
cally) induced representation D of G on V is unitary.
Proof

First suppose that D is a unitary representation.
Recall that d satisfies D(etX) = I + td(X) +O(t2) for t ∈ R and X ∈ L(G).
As D is unitary it follows that D(etX)D(etX)† = I.
Hence (I + td(X) +O(t2))(I + td(X) +O(t2))† = I, so expanding out, the O(t) terms

imply d(X) + d(X)† = 0, i.e. d is antihermitian.
Conversely, suppose that d is an antihermitian representation of L(G) on V . Let D

denote the (locally) induced representation of G on V .
Suppose that g ∈ G is given by g = eX for X ∈ L(G). Then

D(g) = ed(X) (2.143)

Then

D(g)D(g)† = ed(X)(ed(X))†

= ed(X)ed(X)†

= ed(X)e−d(X)

= 1 (2.144)

Hence D(g) is unitary �.
There are directly analogous definitions for irreducibility of representations of Lie al-

gebras

Definition 34. Suppose d is a representation of L(G) acting on V . A subspace W ⊂ V is
called an invariant subspace if d(X)ω ∈W for all X ∈ L(G) and ω ∈W .

Definition 35. Suppose d is a representation of L(G) acting on V . Then d is reducible
if there is an invariant subspace W of V with W 6= 0 and W 6= V . If the only invariant
subspaces of V are 0 and V then d is called irreducible.
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Definition 36. A representation d of L(G) is called totally reducible if there exists a direct
sum decomposition of V into subspaces Wi, V = W1

⊕
W2
⊕
...
⊕
Wk where the Wi are

invariant subspaces with respect to d and d restricted to Wi is irreducible.

Proposition 18. Suppose that G is a matrix Lie group. If D is a representation of G on V
with invariant subspace W , then W is an invariant subspace of the induced representation
d of L(G) on V

Conversely, suppose d is a representation of L(G) on V with invariant subspace W ;
then W is an invariant subspace of the (locally) induced representation D of G on V .
Proof

Suppose that D is a representation of G on V with invariant subspace W with respect
to D. Let d be the induced representation of L(G) on V . If w ∈W and X ∈ L(G) then

d(X)w =
d

dt
(D(etX))t=0w =

d

dt
(D(etX)w)t=0 (2.145)

As D(etX)w ∈W for all t ∈ R it follows that d(X)w ∈W .
Conversely, suppose that d is a representation of L(G) on V , and W is an invariant

subspace of V with respect to d. Let D be the locally defined representation of G induced
by d. Then if g ∈ G is given by g = eX for some X ∈ L(G) then if w ∈W ,

D(g)w = ed(X)w =
∞∑
n=0

1
n!
dn(X)w (2.146)

However, as W is an invariant subspace of V with respect to d, it follows that dn(X)w ∈W
for all n ∈ N. Hence D(g)w ∈W . �

Note that in this proof we made implicit use of the closure of W .
There is also a natural concept of equivalent representations of Lie algebras.

Definition 37. Suppose d is a representation of L(G) acting on V1, and B : V1 → V2 is
an invertible linear transformation. Define d̃(X) = Bd(X)B−1 for X ∈ L(G). Then d and
d̃ are said to be equivalent representations.

Exercise: Show that d̃ defined above is a representation of L(G). Also show that if D1,
D2 are equivalent representations of G on vector spaces V1 and V2 then the corresponding
induced representations d1 and d2 on V1 and V2 are equivalent; and conversely, if d1 and
d2 are equivalent representations of L(G) on V1 and V2 then the locally defined induced
representations D1 and D2 of G are equivalent.

Note that Schur’s lemmas may be applied to representations of Lie algbras in exactly
the same way as to representations of Lie groups.

Hence we have shown that there is (at least locally) a 1-1 correspondence between
irreducible representations of the Lie group G and the Lie algebra L(G). This is useful,
because it enables us to map the analysis of representations of G to those of L(G), and
thus the problem reduces to one of linear algebra.

Proposition 19. Suppose that d1 and d2 are representations of L(G) acting on V1 and
V2 and let V = V1

⊗
V2. Define d = d1 ⊗ 1 + 1 ⊗ d2 as a linear map on V . Then d is a

representation of L(G) acting on V .
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Proof
If w1, w2 ∈ L(V ) and α, β are scalars and v1 ⊗ v2 ∈ V then

d(αw1 + βw2)v1 ⊗ v2 = d1(αw1 + βw2)v1 ⊗ v2 + v1 ⊗ d2(αw1 + βw2)v2

= (αd1(w1) + βd1(w2))v1 ⊗ v2 + v1 ⊗ (αd2(w1) + βd2(w2))v2

= αd1(w1)v1 ⊗ v2 + βd1(w2)v1 ⊗ v2

+ αv1 ⊗ d2(w1)v2 + βv1 ⊗ d2(w2)v2

= α(d1(w1)v1 ⊗ v2 + v1 ⊗ d2(w1)v2)
+ β(βd1(w2)v1 ⊗ v2 + v1 ⊗ d2(w2)v2)
= αd(w1)v1 ⊗ v2 + βd(w2)v2 ⊗ v2 (2.147)

so d is linear on L(G). Also

d([w1, w2])v1 ⊗ v2 = d1([w1, w2])v1 ⊗ v2 + v1d2([w1, w2])v2

= (d1(w1)d1(w2)− d1(w2)d1(w1))v1 ⊗ v2

+ v1 ⊗ (d2(w1)d2(w2)− d2(w2)d2(w1))v2

= d1(w1)d1(w2)v1 ⊗ v2 − d1(w2)d1(w1)v1 ⊗ v2

+ v1 ⊗ d2(w1)d2(w2)v2 − v1 ⊗ d2(w2)d2(w1)v2 (2.148)

Also note that

d(w1)d(w2)v1 ⊗ v2 = d(w1)
(
d1(w2)v1 ⊗ v2 + v2 ⊗ d2(w2)v2

)
= d1(w1)d1(w2)v1 ⊗ v2 + d1(w2)v1 ⊗ d2(w1)v2

+ d1(w1)v1 ⊗ d2(w2)v2 + v1 ⊗ d2(w1)d2(w2)v2 (2.149)

where the sum of the second and third terms in this expression is symmetric in w1 and w2.
Hence

d(w1)d(w2)v1 ⊗ v2 − d(w2)d(w1)v1 ⊗ v2 = d1(w1)d1(w2)v1 ⊗ v2 − d1(w2)d1(w1)v1 ⊗ v2

+ v1 ⊗ d2(w1)d2(w2)v2 − v1 ⊗ d2(w2)d2(w1)v2

= d([w1, w2])v1 ⊗ v2 (2.150)

as required �.

Proposition 20. Suppose that D1 and D2 are representations of matrix Lie group G on
V1 and V2 with induced representations of L(G) on V1 and V2 denoted by d1 and d2. Let
D = D1

⊗
D2 denote the representation of G on the tensor product V1

⊗
V2. Then the

corresponding induced representation of L(G) on V1
⊗
V2 is d = d1 ⊗ 1 + 1⊗ d2.

Proof Suppose w ∈ L(G), then expanding out in powers of t;

D(etw)v1 ⊗ v2 = D1(etw)v1 ⊗D2(etw)v2
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= (v1 + td1(w)v1 +O(t2))⊗ (v2 + td2(w)v2 +O(t2))
= v1 ⊗ v2 + t

(
d1(w)v1 ⊗ v2 + v1 ⊗ d2(w)v2

)
+O(t2)

= v1 ⊗ v2 + t(d1 ⊗ 1 + 1⊗ d2)v1 ⊗ v2 +O(t2) (2.151)

and hence from the O(t) term we find the induced representation d = d1 ⊗ 1 + 1⊗ d2

as required �.

2.17 The Killing Form and the Casimir Operator

Definition 38. Suppose that G is a matrix Lie group with Lie algebra L(G). Then for
X ∈ L(G), ad X can be realized as a matrix linear transformation on L(G). The Killing
form κ is defined by

κ(X,Y ) = Tr (ad Xad Y ) (2.152)

Suppose that Ta is a basis for L(G). Then from the Killing form one obtains a sym-
metric matrix

κab = κ(Ta, Tb) (2.153)

Denote the matrix elements of ad Ta by (ad Ta)bc; then note that

(ad Ta)Tb = [Ta, Tb] = cab
cTc

= (ad Ta)bcTc (2.154)

Hence (ad Ta)bc = cab
c. So it follows that

κab = cad
ecbe

d (2.155)

Lemma 4. The Killing form is associative: κ(X, [Y,Z]) = κ([X,Y ], Z)
Proof

κ(X, [Y,Z]) = Tr (ad Xad [Y,Z])
= Tr (ad X(ad Y ad Z − ad Zad Y ))
= Tr (ad Xad Y ad Z)− Tr (ad Xad Zad Y )
= Tr (ad Xad Y ad Z)− Tr (ad Y ad Xad Z)
= Tr ((ad Xad Y − ad Y ad X)ad Z)
= Tr (ad [X,Y ]ad Z)
= κ([X,Y ], Z) (2.156)

as required. �.
As κab is symmetric, one can always choose an adapted basis for L(G) in which κab is

a diagonal matrix, and by rescaling the Lie algebra generators, the diagonal entries can be
set to +1, 0 or −1.

Definition 39. The Killing form is non-degenerate if κab has no zero diagonal entries in
the adapted basis. The Lie algebra L(G) is then called semi-simple. If all the diagonal
entries are −1 then L(G) is said to be a compact Lie algebra.
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Lemma 5. Suppose that L(G) is semi-simple. Define cabc = cab
dκdc (i.e. lower the last

index of the structure constants with the Killing form). Then cabc is totally antisymmetric
in a, b, c.
Proof

Note that

κ(Ta, [Tb, Tc]) = cbc
dκ(Ta, Td) = cbc

dκad = cbca (2.157)

and

κ([Ta, Tb], Tc) = cab
dκ(Td, Tc) = cab

dκdc = cabc = −cbac (2.158)

But by associativity of κ, (2.157) and (2.158) are equal. Hence cbca = −cbac. As cabc is
skew symmetric in both the first two and the last two indices, it follows that cabc is totally
antisymmetric. �

Definition 40. Suppose that L(G) is a Lie algebra with non-degenerate Killing form, and
d is a representation of L(G) on V . The Casimir operator C of L(G) is defined by

C = −
∑
a,b

(κ−1)abd(Ta)d(Tb) (2.159)

where κ−1 denotes the inverse of the Killing form.

Proposition 21. The Casimir operator commutes with d(X) for all X ∈ L(G)
Proof

It suffices to show that [C, d(Ta)] = 0 for all Ta.
Note that

[d(Ta), C] = −
∑
b,c

(κ−1)bc
(
[d(Ta), d(Tb)d(Tc)]

)
= −

∑
b,c

(κ−1)bc
(
[d(Ta), d(Tb)]d(Tc) + d(Tb)[d(Ta), d(Tc)]

)
= −

∑
b,c

(κ−1)bc
(
d[Ta, Tb]d(Tc) + d(Tb)d[Ta, Tc]

)
= −

∑
b,c

(κ−1)bc
(
cab

`d(T`)d(Tc) + cac
`d(Tb)d(T`)

)
= −cac`d(T`)d(Tc)− cac`d(Tc)d(T`)
= 0 (2.160)

where we have defined
ca
bc =

∑
`

(κ−1)b`ca`c (2.161)

and we note that cabc is antisymmetric in b, c. �
Note that if d is irreducible then by Schur’s second lemma, C must be a scalar multiple

of the identity.

– 46 –



If L(G) is compact, then working in the adapted basis, C takes a particularly simple
form

C =
∑
a

d(Ta)d(Ta) (2.162)
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3. SU(2) and Isospin

3.1 Lie Algebras of SO(3) and SU(2)

We have shown that the Lie algebra of SO(3) consists of the 3 × 3 antisymmetric real
matrices.

A basis for L(SO(3)) is given by

T1 =

 0 0 0
0 0 −1
0 1 0

 T2 =

 0 0 1
0 0 0
−1 0 0

 T3 =

 0 −1 0
1 0 0
0 0 0

 (3.1)

Exercise: Show that
[Ta, Tb] = εabcTc (3.2)

where εabc is totally antisymmetric and ε123 = 1.
Next consider SU(n). Let M(t) be a smooth curve in SU(n) with M(0) = I . Then

M(t) must satisfy

detM(t) = 1 M(t)M(t)† = I (3.3)

Differentiating these constraints we obtain

Tr
(
M(t)−1dM(t)

dt

)
= 0

dM(t)
dt

M(t)† +M(t)
dM(t)†

dt
= 0 (3.4)

Setting t = 0 we find
Tr m = 0 m+m† = 0 (3.5)

where m = dM(t)
dt |t=0. Hence L(SU(n)) consists of the traceless antihermitian matrices.

Exercise: Verify that if X and Y are traceless antihermitian square matrices then so is
[X,Y ].

It is convenient to make use of the Pauli matrices σa defined by

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(3.6)

which satisfy σaσb = δabI + iεabcσc.
Then a basis of traceless antihermitian 2× 2 matrices is given by taking Ta = − i

2σa.
It follows that

[Ta, Tb] = εabcTc (3.7)

Comparing (3.2) and (3.7) it is clear that SO(3) and SU(2) have the same Lie algebra.
We might therefore expect SO(3) and SU(2) to be similar, at least near to the identity.
We shall see that this is true.

Exercise: Using this basis, show that the Lie algebra L(SU(2)) is of compact type.
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3.2 Relationship between SO(3) and SU(2)

Proposition 22. The manifold SU(2) can be identified with S3.
Proof

Consider

U =

(
α µ

β ν

)
∈ SU(2) (3.8)

for α, β, µ, ν ∈ C.

Then UU † = I implies that

(
α

β

)
be orthogonal to

(
µ

ν

)
with respect to the standard

inner product on C2. As the orthogonal complement to

(
α

β

)
in C2 is a 1-dimensional

complex vector space spanned by

(
−β̄
ᾱ

)
it follows that µ = −σβ̄, ν = σᾱ for σ ∈ C.

We also require that

(
α

β

)
and

(
µ

ν

)
have unit norm, which fixes

|σ|2 = |α|2 + |β|2 = 1 (3.9)

Finally, the constraint detU = 1 fixes σ = 1.
Hence we have shown that

U =

(
α −β̄
β ᾱ

)
(3.10)

where αᾱ+ ββ̄ = 1. Such U is automatically an element of SU(2). Hence this is the form
of the most generic element of SU(2).

Set α = y0 + iy3, β = −y2 + iy1 for y0, y1, y2, y3 ∈ R. Then it is straightforward to see
that

U = y0I + iynσn (3.11)

and αᾱ+ ββ̄ = 1 is equivalent to y2
0 + y2

1 + y2
2 + y2

3 = 1, i.e. y ∈ S3.
This establishes a smooth invertible map between SU(2) and S3. �
Note that this map provides an explicit way of seeing that SU(2) is connected, because

S3 is connected.

Proposition 23. There is a 2− 1 correspondence R : SU(2)→ SO(3) between SU(2) and
SO(3). The map R is a group homomorphism.
Proof Suppose U ∈ SU(2). Define a 3× 3 matrix R(U) via

R(U)mn =
1
2

Tr
(
σmUσnU

†) (3.12)

By writing U = y0I+iymσm for y0, ym ∈ R satisfying y2
0 +ypyp = 1, it is straightforward

to show that

Rmn = (y2
0 − ypyp)δmn + 2εmnqy0yq + 2ymyn (3.13)
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(here we have written Rmn = R(U)mn).
It is clear that if yp = 0 for p = 1, 2, 3 so that U = ±I, then R = I, so R ∈ SO(3).
More generally, suppose that ypyp 6= 0. Then one can set y0 = cosα, yp = sinαzp for

0 < α < 2π and α 6= π. Then the constraint y2
0 + ypyp = 1 implies that zpzp = 1, i.e z is a

unit vector in R3. The expression (3.13) can be rewritten as

Rmn = cos 2αδmn + sin 2αεmnqzq + (1− cos 2α)zmzn (3.14)

It is then apparent that

Rmnzn = zm (3.15)

and if x is orthogonal to z then

Rmnxn = cos 2αxm + sin 2αεmnqxnzq (3.16)

The transformation R therefore corresponds to a rotation of angle 2α in the plane with
unit normal vector z.

It is clear that any non-trivial rotation in SO(3) can be written in this fashion. How-
ever, the correspondence is not 1 − 1. To see this explicitly, suppose that two rotations
corresponding to y ∈ S3 and u ∈ S3 are equal. Then

(y2
0 − ypyp)δmn + 2εmnqy0yq + 2ymyn = (u2

0 − upup)δmn + 2εmnqu0uq + 2umun (3.17)

where y2
0 + ypyp = u2

0 + upup = 1.
From the antisymmetric portion of this matrix we find y0yp = u0up.
From the diagonal elements with n = m, we see that

y2
0 − ypyp + 2(ym)2 = u2

0 − upup + 2(um)2 (3.18)

where p is summed over but m is fixed. Summing over m we find

3y2
0 − ypyp = 3u2

0 − upup (3.19)

where p is summed over; which together with y2
0 + ypyp = u2

0 + upup = 1 implies that
y2

0 = u2
0 and ypyp = upup (sum over p). Substituting back into (3.18) we find y2

m = u2
m for

each m = 1, 2, 3.
Suppose first that y0 6= 0, then u0 6= 0, and it follows that y0 = ±u0 and yp = ±up for

each p = 1, 2, 3 (with the same sign throughout).
Next, suppose y0 = 0. Then u0 = 0 also, and ymyn = umun for each m,n = 1, 2, 3.

Contracting with yn we get (ynyn)ym = (ynun)um for m = 1, 2, 3. As ynyn = 1, this implies
that ym = λum for m = 1, 2, 3 where λ is constant. Hence, (1− λ2)umun = 0. Contracting
over m and n then gives 1 − λ2 = 0, so λ = ±1. Therefore yp = ±up for p = 1, 2, 3 (with
the same sign throughout).
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Hence, we have shown that each R ∈ SO(3) corresponds to two elements U and
−U ∈ SU(2). These two elements correspond to antipodal points±y ∈ S3. This establishes
the correspondence.

It remains to check that R(U1U2) = R(U1)R(U2) for U1, U2 ∈ SU(2). Note that on
writing

U1 = y0I2 + iynσn, U2 = w0 + iwnσn (3.20)

for y0, yp, w0, wp ∈ R satisfying y2
0 + ypyp = w2

0 + wpwp = 1 then

U1U2 = u0I2 + iunσn (3.21)

where u0 = y0w0− ypwp and um = y0wm +w0ym− εmpqypwq satisfy u2
0 +upup = 1. It then

suffices to evaluate directly

R(U1U2)mn = (u2
0 − upup)δmn + 2εmnqu0uq + 2umun (3.22)

and compare this with

R(U1)mpR(U2)pn =
[
(y2

0−y`y`)δmp+2εmpqy0yq+2ymyp
][

(w2
0−wrwr)δpn+2εpnrw0wr+2wpwn

]
(3.23)

On expanding out these two expressions in terms of y and w it becomes an exercise in
algebra to show that R(U1U2)mn = R(U1)mpR(U2)pn as required. �

Exercise: Verify the identity R(U1U2)mn = R(U1)mpR(U2)pn.
It is conventional to write SU(2) = S3 and SO(3) = S3/Z2, where S3/Z2 is the 3-

sphere with antipodal points identified. SU(2) is called the double cover of SO(3); and
there is an isomorphism SO(3) ∼= SU(2)/Z2.

It can be shown (using topological methods outside the scope of this course) that
SU(2) and SO(3) are not homeomorphic. This is because SU(2) and SO(3) have different
fundamental groups π1. In particular, as SU(2) ∼= S3, and S3 is simply connected, it
follows that π1(SU(2)) is trivial. However, it can be shown that π1(SO(3)) = Z2.

3.3 Irreducible Representations of SU(2)

The standard basis of L(SU(2)) which we have been using is Ta = − i
2σa. Suppose that

d is a finite-dimensional irreducible representation of L(SU(2)) on V , where V is a vector
space over C.

Define

J3 = id(T3), J± =
i√
2

(d(T1)± id(T2)) (3.24)

Then

[J3, J±] = ±J±, [J+, J−] = J3 (3.25)

As V is a complex vector space, there exists an eigenstate |φ〉 of J3 with some eigenvalue
λ, and using (3.25) it follows that
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J3J± |φ〉 = (λ± 1)J± |φ〉 (3.26)

and so by simple induction

J3(J±)n |φ〉 = (λ± n)(J±)n |φ〉 (3.27)

for non-negative integer n; i.e. J± are the standard raising and lowering operators.
The eigenvalues of J3 are called weights. We have therefore shown that (J±)n |φ〉 either
vanishes or is a J3 eigenstate with eigenvalue λ± n.

Consider the states (J+)n |φ〉. If non-vanishing, these states are linearly independent
(as they have different J3 eigenvalues). Hence, as V is finite dimensional, there exists a J3

eigenstate (J+)n |φ〉 which we will refer to as |j, j〉 with eigenvalue j such that J+ |j, j〉 = 0.

Definition 41. j is called the highest weight of the representation. In the context of particle
physics, it is called the spin.

Note that by acting on |j, j〉 with J− other distinct eigenstates of J3 are obtained. As
we are interested in finite dimensional representations, it follows that (J−)N |j, j〉 = 0 for
some positive integer N (otherwise one could just keep going and the representation would
be infinite dimensional). Let k+ 1 be the smallest positive integer for which this happens,
and set |ψk〉 = (J−)k |j, j〉, so, by construction, J− |ψk〉 = 0.

Define for ` = 0, . . . , k

|ψ`〉 = (J−)` |j, j〉 (3.28)

Then |ψ`〉 are (non-vanishing) j − ` eigenvectors of J3.
Note that

J+ |ψ`〉 = J+(J−)` |j, j〉
= (J+J−)(J−)`−1 |j, j〉
=
(
[J+, J−] + J−J+

)
(J−)`−1 |j, j〉

=
(
J3 + J−J+

)
(J−)`−1 |j, j〉

= (j − (`− 1))(J−)`−1 |j, j〉+ J−J+(J−)`−1 |j, j〉 (3.29)

Repeating this process, one finds by induction

J+ |ψ`〉 =
(
j − (`− 1) + j − (`− 2) + · · ·+ j − 1 + j

)
|ψ`−1〉

= `(j − 1
2

(`− 1)) |ψ`−1〉 (3.30)

In order to constrain j recall that J− |ψk〉 = 0, so

0 = J+J− |ψk〉
=
(
[J+, J−] + J−J+

)
|ψk〉
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=
(
J3 + J−J+

)
|ψk〉

= (j − k) |ψk〉+ J−
(
k(j − 1

2
(k − 1))

)
|ψk−1〉

=
(
j − k + k(j − 1

2
(k − 1))

)
|ψk〉

=
1
2

(k + 1)(2j − k) |ψk〉 (3.31)

As k is non-negative, it follows that k = 2j
Using this it is straightforward to prove the following

Proposition 24. V = span{Jk− |j, j〉 , Jk−1
− |j, j〉 , . . . , |j, j〉} and the highest weight state is

unique.
Proof

Consider the vector space V ′ spanned by |ψi〉 for i = 0, . . . , k. This is an invariant
subspace of V with respect to the representation d. As the representation is irreducible on
V it follows that V = V ′. In particular, J3 is diagonalizable on V and each eigenspace is
1-dimensional.

To prove uniqueness suppose that |φ〉 ∈ V satsfies J+ |φ〉 = 0. As |φ〉 ∈ V it follows
that we can write

|φ〉 =
2j∑
i=0

ai(J−)i |j, j〉 (3.32)

for constants ai. Applying (J+)2j to both sides of this equation implies a2j = 0. Then,
applying (J+)2j−1 implies a2j−1 = 0. Continuing in this way, we obtain a1 = a2 = · · · =
a2j−1 = a2j = 0, and so |φ〉 = a0 |j, j〉. So the highest weight state in an irreducible
representation of L(SU(2)) is unique (up to scaling). �.

Hence, we have shown that j is half (non-negative) integer, and the representation is
2j + 1-dimensional. The irreducible representations are therefore completely characterized
by the value of the weight j.

It is possible to go further, and prove the following theorem (the proof given is that
presented in [Samelson]):

Theorem 1. **NON-EXAMINABLE** Suppose that d is a representation of L(SU(2))
on a complex vector space V . Then V can be decomposed as V = V1 ⊕ · · · ⊕ Vp where Vi
are invariant subspaces of V such that d restricted to Vi is irreducible.
Proof Given in Appendix A.

Note that we have not as yet assumed that the representation originates from a unitary
representation of the Lie group. However, in order to compute normalized states, it will
be convenient to assume this; so in particular, the d(Ta) are antihermitian and hence

J†3 = J3, J†± = J∓ (3.33)

We will assume that the highest weight state |j, j〉 is normalized to 1.
Exercise:
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Show using (3.30) that 〈ψ`|ψ`〉 = `
2(2j − `+ 1) 〈ψ`−1|ψ`−1〉, and hence that

N` ≡ 〈ψ`|ψ`〉 =
(2j)!`!

2`(2j − `)!
(3.34)

It is conventional to define normalized states |j,m〉 for m = −j, . . . , j via

|j,m〉 =
1√
Nj−m

|ψj−m〉 (3.35)

the first label denotes the highest weight value j, the m label denotes the eigenstate
of J3, J3 |j,m〉 = m |j,m〉. These satisfy (check!)

J− |j,m〉 =
1√
2

√
(j +m)(j −m+ 1) |j,m− 1〉

J+ |j,m− 1〉 =
1√
2

√
(j +m)(j −m+ 1) |j,m〉 (3.36)

Exercise: Show that the Casimir operator C is given by C = −1
2(J+J−+J−J+ +(J3)2)

and satisfies

C |j,m〉 = −1
2
j(j + 1) |j,m〉 (3.37)

3.3.1 Examples of Low Dimensional Irreducible Representations

It is useful to consider several low-dimensional representations.

i) j = 1
2 . A normalized basis is given by |12 ,

1
2〉 and |12 ,−

1
2〉, with

J+ |
1
2
,
1
2
〉 = 0

J+ |
1
2
,−1

2
〉 =

1√
2
|1
2
,
1
2
〉 (3.38)

and

J− |
1
2
,
1
2
〉 =

1√
2
|1
2
,−1

2
〉

J− |
1
2
,−1

2
〉 = 0 (3.39)

ii) j = 1. A normalized basis of states is |1, 1〉, |1, 0〉 and |1,−1〉 with

J+ |1, 1〉 = 0
J+ |1, 0〉 = |1, 1〉

J+ |1,−1〉 = |1, 0〉 (3.40)
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and

J− |1, 1〉 = |1, 0〉
J− |1, 0〉 = |1,−1〉

J− |1,−1〉 = 0 (3.41)

iii) j = 3
2 . A normalized basis of states is |32 ,

3
2〉, |

3
2 ,

1
2〉, |

3
2 ,−

1
2〉 and |32 ,−

3
2〉. with

J+ |
3
2
,
3
2
〉 = 0

J+ |
3
2
,
1
2
〉 =

√
3
2
|3
2
,
3
2
〉

J+ |
3
2
,−1

2
〉 =
√

2 |3
2
,
1
2
〉

J+ |
3
2
,−3

2
〉 =

√
3
2
|3
2
,−1

2
〉 (3.42)

and

J− |
3
2
,
3
2
〉 =

√
3
2
|3
2
,
1
2
〉

J− |
3
2
,
1
2
〉 =
√

2 |3
2
,−1

2
〉

J− |
3
2
,−1

2
〉 =

√
3
2
|3
2
,−3

2
〉

J− |
3
2
,−3

2
〉 = 0 (3.43)

3.4 Tensor Product Representations

Suppose that d1 and d2 are two irreducible representations of L(SU(2)) over vector spaces
V (1), V (2). Let V = V (1)

⊗
V (2) be the tensor product, and d = d1 ⊗ 1 + 1⊗ d2 be the

representation on V .
We wish to decompose V into irreducible representations of d (i.e. invariant subspaces

of V on which the restriction of d is irreducible).
Denote the states of V (1) by |j1,m〉 for m = −j1, . . . , j1 and those of V (2) by |j2, n〉

for n = −j2, . . . , j2, where j1 and j2 are the highest weights of V (1) and V (2) respectively.
Note that |j1,m〉 ⊗ |j2, n〉 for m = −j1, . . . , j1 and n = −j2, . . . , j2 provides a basis for V .

Set
J3(1) = id1(T3), J±(1) =

i√
2

(d1(T1)± id1(T2)) (3.44)

and
J3(2) = id2(T3), J±(2) =

i√
2

(d2(T1)± id2(T2)) (3.45)
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with
J3 = J3(1)⊗ 1 + 1⊗ J3(2), J± = J±(1)⊗ 1 + 1⊗ J±(2) (3.46)

Exercise: Check that J± and J3 satisfy J†3 = J3, J†± = J∓ and

[J3, J±] = ±J±, [J+, J−] = J3 (3.47)

In order to construct the decomposition of V into irreducible representations, first note
that if |ψ(1)〉 ∈ V (1) is a state of weight m1 with respect to J3(1), and |ψ(2)〉 ∈ V (2) is
a state of weight m2 with respect to J3(2) then |ψ(1)〉 ⊗ |ψ(2)〉 ∈ V is a state of weight
m1 +m2 with respect to J3, i.e. weights add in the tensor product representation.

Using this, it is possible to compute the degeneracy of certain weight states in the
tensor product representation. In particular, the maximum possible weight must be j1 + j2
which corresponds to |j1, j1〉 ⊗ |j1, j2〉.

Consider the weight j1 + j2 − k for k > 0. In general, j1 + j2 − k can be written as a
sum of two integers m1 +m2, for m1 ∈ {−j1, ..., j1} and m2 ∈ {−j2, ..., j2} in k + 1 ways:

j1 + j2 − k = (j1 − k) + j2
= (j1 − k + 1) + (j2 − 1)
. . .

= (j1 − 1) + (j2 − k + 1)
= j1 + (j2 − k) (3.48)

provided that j1 − k ≥ −j1 and j2 − k ≥ −j2, or equivalently

k ≤ 2min(j1, j2) = j1 + j2 − |j1 − j2| (3.49)

Consider the state of weight j1 + j2. There is only one such state, and there is no state
of higher weight. Hence it must be a highest weight state of a subspace of V on which
the tensor product representation is irreducible. This irreducible subspace has dimension
2(j1 + j2) + 1, and is denoted by Vj1+j2 Write V = V ′ ⊕ Vj1+j2 .

Next consider the states in V ′. The highest possible weight is j1 + j2 − 1. In V there
were two linearly independent states of this weight, however one of these lies in Vj1+j2 , and
does not lie in V ′. The remaining state of weight j1 + j2 − 1 is of highest weight in V ′ and
hence must be a highest weight state of a subspace (of dimension 2(j1 + j2)− 1) of V ′, on
which the tensor product representation is irreducible. Denote this subspace by Vj1+j2−1.
Note that by construction Vj1+j2 ∩ Vj1+j2−1 = {0}.

One can continue inductively in this fashion: for each j = |j1−j2|, |j1−j2|+1, . . . j1+j2
there is a subspace Vj (of dimension 2j+1) on which the tensor product representation is ir-
reducible, with highest weight j, and Vj∩Vk = {0} if j 6= k. In fact these subspaces account
for all of the elements in V . To see this, compute the dimension of V|j1−j2|

⊕
· · ·
⊕
Vj1+j2 :

We find

dim V|j1−j2|
⊕
· · ·
⊕

Vj1+j2 =
j1+j2∑

j=|j1−j2|

(2j + 1)
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=
j1+j2−|j1−j2|∑

n=0

(2(|j1 − j2|+ n) + 1)

= (1 + 2j1)(1 + 2j2)
= dim V (3.50)

Hence we have decomposed V = V|j1−j2|
⊕
· · ·
⊕
Vj1+j2 into irreducible subspaces Vj

where Vj has highest weight j and is of dimension 2j + 1.

3.4.1 Examples of Tensor Product Decompositions

We shall consider two simple spin combinations which are of physical interest.
Firstly, take the spin 1/2 ⊗ spin 1/2 composite system. As j1 = j2 = 1

2 there are two
possible values for the composite spin, j = 1 or j = 0, and the tensor product space is
4-dimensional.

For the j = 1 states, the highest weight state can be written as

|1, 1〉 = |1
2
,
1
2
〉 ⊗ |1

2
,
1
2
〉 (3.51)

Applying J− to both sides we find

|1, 0〉 =
1√
2

(
|1
2
,−1

2
〉 ⊗ |1

2
,
1
2
〉+ |1

2
,
1
2
〉 ⊗ |1

2
,−1

2
〉
)

(3.52)

and applying J− once more

|1,−1〉 = |1
2
,−1

2
〉 ⊗ |1

2
,−1

2
〉 (3.53)

The remaining possible spin is j = 0. This has only one state, which must have the
form

|0, 0〉 = c0 |
1
2
,
1
2
〉 ⊗ |1

2
,−1

2
〉+ c1 |

1
2
,−1

2
〉 ⊗ |1

2
,
1
2
〉 (3.54)

for constants c0, c1 to be fixed. Applying J+ to both sides we get

(c0 + c1) |1
2
,
1
2
〉 ⊗ |1

2
,
1
2
〉 = 0 (3.55)

so c1 = −c0. Then on making the appropriate normalization we find

|0, 0〉 =
1√
2

(
|1
2
,−1

2
〉 ⊗ |1

2
,
1
2
〉 − |1

2
,
1
2
〉 ⊗ |1

2
,−1

2
〉
)

(3.56)

Next, take the spin 1 ⊗ spin 1/2 composite system. As j1 = 1, j2 = 1
2 there are two

possible values for the composite spin, j = 1
2 or j = 3

2 , and the tensor product space is
6-dimensional.

For the j = 3
2 states, the state with greatest weight is

|3
2
,
3
2
〉 = |1, 1〉 ⊗ |1

2
,
1
2
〉 (3.57)
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Applying J− to both sides gives

|3
2
,
1
2
〉 =

√
2
3
|1, 0〉 ⊗ |1

2
,
1
2
〉+

1√
3
|1, 1〉 ⊗ |1

2
,−1

2
〉 (3.58)

Further applications of J− give

|3
2
,−1

2
〉 =

1√
3
|1,−1〉 ⊗ |1

2
,
1
2
〉+

√
2
3
|1, 0〉 ⊗ |1

2
,−1

2
〉 (3.59)

and
|3
2
,−3

2
〉 = |1,−1〉 ⊗ |1

2
,−1

2
〉 (3.60)

For the j = 1
2 states, the state with maximal weight can be written as a linear combi-

nation
|1
2
,
1
2
〉 = c0 |1, 1〉 ⊗ |

1
2
,−1

2
〉+ c1 |1, 0〉 ⊗ |

1
2
,
1
2
〉 (3.61)

for some constants c0, c1 to be determined. Then

0 = J+ |
1
2
,
1
2
〉 = (c1 +

1√
2
c0) |1, 1〉 ⊗ |1

2
,
1
2
〉 (3.62)

so c1 = − 1√
2
c0. On making a unit normalization, we also fix c0 and find

|1
2
,
1
2
〉 = −

√
2
3
|1, 1〉 ⊗ |1

2
,−1

2
〉+

1√
3
|1, 0〉 ⊗ |1

2
,
1
2
〉 (3.63)

and applying J− to both sides this gives

|1
2
,−1

2
〉 = − 1√

3
|1, 0〉 ⊗ |1

2
,−1

2
〉+

√
2
3
|1,−1〉 ⊗ |1

2
,
1
2
〉 (3.64)

3.5 SU(2) weight diagrams

One can plot the weights of an irreducible L(SU(2)) representation on the real line; for
example:

The spin j=4 SU(2) irreducible representation

6543210−1−2−3−4−5−6

The weight diagrams of irreducible representations have the following properties

i) The diagram is reflection symmetric about the origin.

ii) The weights are all half integer; and are distributed with unit distance between each
weight. The highest weight is j for 2j ∈ N, and the lowest weight is −j, and there
are no “holes” in the weight diagram- −j,−j + 1, . . . , j − 1, j are all weights.
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iii) Each weight has multiplicity 1.

One can also plot the weight diagram of a generic (not necessarily irreducible) represen-
tation. For example, the weight diagram of the tensor product (j1 = 1

2)⊗(j2 = 1
2)⊗(j3 = 1

2)
eight dimensional tensor product representation is

 3210−1−2−3

This has a highest weight j = 3
2 and a lowest weight −3

2 both with multiplicity 1, and
weights ±1

2 each with multiplicity 3. In general, a non-irreducible representation will have
a highest weight, but it need not be of multiplicity 1. For a generic weight diagram

i) The diagram (together with weight multiplicities) is reflection symmetric about the
origin.

ii) The weights are all half-integer.

iii) Each weight need not be of multiplicity 1. However, as one proceeds from a particular
weight towards the origin (in unit steps from either the left or the right), the weight
multiplicities do not decrease.

3.6 SU(2) in Particle Physics

3.6.1 Angular Momentum

The orbital angular momentum operators La acting on wavefunctions are given by

La = −iεabcxb
∂

∂xc
(3.65)

These operators satisfy
[La, Lb] = iεabcLc (3.66)

and hence correspond to a (complexified) representation of SU(2). Particles also carry a
spin angular momentum S, which commutes with the orbital angular momentum [L,S] = 0.
The total angular momentum is defined by J = L + S.

3.6.2 Isospin Symmetry

It is observed that the proton and neutron have similar mass, and also that the strong
nuclear forces between nucleons are similar. Heisenberg introduced the concept of a SU(2)
isospin symmetry to systematize this. Particles are grouped into multiplets of isospin
value I (previously called j) and labelled by the weights, which are the eigenvalues of I3.
Originally, this was formulated for nucleons, but later extended to describe all mesons and
baryons.

Particles in the same isospin multiplet have the same baryon number, the same content
of non-light quarks, the same spin and parity and almost the same mass. Isospin is a
conserved quantum number in all known processes involving only strong interactions: it is
related to the quark content by
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I3 =
1
2

(N(u)−N(ū)− (N(d)−N(d̄))) (3.67)

Isospin symmetry arises in the quark model because of the very similar properties of
the u and d quarks.

Examples:

i) Nucleons have isospin I = 1
2 ; the proton has I3 = 1

2 , and the neutron has I3 = −1
2 :

n = |1
2
,−1

2
〉

p = |1
2
,
1
2
〉 (3.68)

ii) The pions have I = 1 with

π− = |1,−1〉
π0 = |1, 0〉
π+ = |1, 1〉 (3.69)

iii) The strange baryons have I = 0 and I = 1

Σ− = |1,−1〉
Σ0 = |1, 0〉
Σ+ = |1, 1〉 (3.70)

and

Λ0 = |0, 0〉 (3.71)

iv) The strange mesons lie in two multiplets of I = 1
2

K0 = |1
2
,−1

2
〉

K+ = |1
2
,
1
2
〉 (3.72)

and

K− = |1
2
,−1

2
〉

K̄0 = |1
2
,
1
2
〉 (3.73)

K± are antiparticles with the same mass, but are in different isospin multiplets
because of their differing quark content.
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v) The light quarks have I = 1
2

d = |1
2
,−1

2
〉

u = |1
2
,
1
2
〉 (3.74)

and all other quarks are isospin singlets I = 0.

3.6.3 Pauli’s Generalized Exclusion Principle and the Deuteron

Consider first NN nucleon-nucleon bound states. From the previously obtained decompo-
sition of the (I1 = 1/2)⊗ (I2 = 1/2) tensor product we find the following isospin states

|1, 1〉 = pp, |1, 0〉 =
1√
2

(np+ pn), |1,−1〉 = nn (3.75)

which are are symmetric under exchange of isospin degrees of freedom, and the remaining
state is

|0, 0〉 =
1√
2

(np− pn) (3.76)

which is anti-symmetric under exchange of isospin degrees of freedom.
The deuteron d is a pn bound state, which has no pp or nn partners. There is therefore

only one possibility; d = |0, 0〉.
In general, the total wavefunction for a NN state can be written as a product of space,

spin, and isospin functions

ψ = ψ(space)ψ(spin)ψ(isospin) (3.77)

The generalized Pauli exclusion principle requires allowed NN wave-functions be anti-
symmetric under exchange of all degrees of freedom. As ψ(isospin) is anti-symmetric,
ψ(space)ψ(spin) must be symmetric- in fact ψ(space) is symmetric (the nucleons in the d
are in a ` = 0 angular momentum state), and ψ(spin) as also symmetric, as d is a spin 1
particle.

3.6.4 Pion-Nucleon Scattering and Resonances

Isospin can be used to investigate scattering processes; consider for example pion-nucleon
scattering processes. From the decomposition of the (I1 = 1)⊗ (I2 = 1/2) tensor product
we find

|3
2
,
3
2
〉 = π+p

|3
2
,
1
2
〉 =

√
2
3
π0p+

1√
3
π+n

|3
2
,−1

2
〉 =

1√
3
π−p+

√
2
3
π0n
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|3
2
,−3

2
〉 = π−n (3.78)

and

|1
2
,
1
2
〉 =

1√
3
π0p−

√
2
3
π+n

|1
2
,−1

2
〉 =

√
2
3
π−p− 1√

3
π0n (3.79)

These equations can be inverted to give

π+p = |3
2
,
3
2
〉

π0p =

√
2
3
|3
2
,
1
2
〉+

1√
3
|1
2
,
1
2
〉

π+n =
1√
3
|3
2
,
1
2
〉 −

√
2
3
|1
2
,
1
2
〉

π−p =
1√
3
|3
2
,−1

2
〉+

√
2
3
|1
2
,−1

2
〉

π0n =

√
2
3
|3
2
,−1

2
〉 − 1√

3
|1
2
,−1

2
〉

π−n = |3
2
,−3

2
〉 (3.80)

Consider πN scattering. The scattering is described by a S-matrix, which, in processes
dominated by strong interactions is taken to be isospin invariant: [Ij , S] = 0 and so by
Schur’s lemma

〈I ′,m′|S |I,m〉 = φ(I)δII′δmm′ (3.81)

The cross sections of the scattering processes are given by

σ(in→ out) = K| 〈in|S |out〉 |2 (3.82)

for constant K. Hence

σ(π+p→ π+p) = K|φ(
3
2

)|2 (3.83)

σ(π0n→ π−p) =
2
9
K|φ(

3
2

)− φ(
1
2

)|2 (3.84)

σ(π−p→ π−p) =
1
9
K|φ(

3
2

) + 2φ(
1
2

)|2 (3.85)

For all three of these processes, a marked resonance is measured at approximately 1236
Mev. The ratio of the cross-sections of these resonances is

σ(π+p→ π+p) : σ(π0n→ π−p) : σ(π−p→ π−p) = 1 :
2
9

:
1
9

(3.86)

which is consistent with the supposition that the resonance corresponds to a particle of
isospin 3

2 (and so |φ(3
2)| � |φ(1

2)|). This particle is the ∆ particle, which lies in an
isospin I = 3

2 multiplet with states ∆−, ∆0, ∆+, ∆++ having weights I3 = −3
2 ,−

1
2 ,

1
2 ,

3
2

respectively.
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3.7 The semi-simplicity of (complexified) L(SU(n+ 1))

To proceed, define the n+ 1× n+ 1 square matrices Eij by (Ei,j)pq = δipδjq. Recall that
L(SU(n+1)) consists of the traceless antihermitian matrices, and is therefore spanned over
R by i(Ei,i − En+1,n+1) for i = 1, . . . , n and Ei,j − Ej,i, i(Ei,j + Ej,i) for i < j. Hence, on
complexification, the Lie algebra is spanned by traceless diagonal matrices together with
the Ei,j for i 6= j.

Suppose that h = diag (a1, a2, . . . , an+1),
∑
ai = 0 is a traceless diagonal matrix.

Then if i 6= j, observe that [h,Ei,j ] = (ai − aj)Ei,j .

Proposition 25. Complexified L(SU(n+ 1)) is semi-simple.
Proof

Note by direct computation that

[Ei,j , Er,s] = δjrEi,s − δisEr,j (3.87)

so
(ad Ep,q ad Ei,j)Er,s = δjrδiqEp,s − δjrδpsEi,q − δisδqrEp,j + δisδpjEr,q (3.88)

and hence the component of (ad Ep,q ad Ei,j)Er,s in the E`,t direction is

δjrδiqδp`δst − δjrδpsδi`δqt − δisδqrδp`δjt + δisδpjδr`δqt (3.89)

There are various cases to consider

i) κ(Ep,q, Ei,j) for p 6= q, i 6= j. We must compute Tr (ad Ep,q ad Ei,j). If r 6= s then
the component of (ad Ep,q ad Ei,j)Er,s in the Er,s direction is

δjrδiqδpr − δjrδpsδirδqs − δisδqrδprδjs + δisδpjδqs = δjrδiqδpr + δisδpjδqs (3.90)

(as i 6= j and p 6= q). So the contribution to the trace from these terms is

n+1∑
r=1,s=1,r 6=s

δjrδiqδpr + δisδpjδqs = 2nδiqδpj (3.91)

We also compute the component of (ad Ep,q ad Ei,j)Er,s in the direction Ek,k −
En+1,n+1 for k = 1, . . . , n. Observe that the component of δiqEp,s − δpsEiq in this
direction is δiqδps(δpk − δik) (if i 6= q or p 6= s then the diagonal components of
δiqEp,s−δpsEiq vanish). Hence the component of (ad Ep,q ad Ei,j)Er,s in the direction
Ek,k − En+1,n+1 for k = 1, . . . , n is

δjrδiqδps(δpk − δik) + δisδpjδrq(δrk − δpk) (3.92)

It follows that the component of (ad Ep,q ad Ei,j)(Ek,k − En+1,n+1) along (Ek,k −
En+1,n+1) is

δjkδiqδpk(δpk − δik) + δikδpjδqk(1− δpk)
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−
(
δj,n+1δiqδp,n+1(δpk − δik)− δi,n+1δpjδq,n+1δpk

)
(3.93)

which can be simplified using i 6= j and p 6= q to

δjkδiqδpk + δikδpjδqk + δj,n+1δiqδp,n+1δik + δi,n+1δpjδq,n+1δpk (3.94)

On taking the sum from k = 1, . . . , n this gives a contribution to the trace of

2δiqδpj (3.95)

and so

κ(Ep,q, Ei,j) = 2(n+ 1)δiqδpj (3.96)

ii) κ(Ep,q, h) for h = diag (a1, a2, . . . , an+1) with
∑

i ai = 0 and p 6= q. The only
contribution to the trace Tr (ad Ep,q ad h) comes from terms

(ad Ep,q ad h)Ei,j = ad Ep,q(ai − aj)Ei,j = (ai − aj)(δqiEp,j − δp,jEi,q) (3.97)

for i 6= j. The component of this matrix along the Ei,j direction is

(ai − aj)(δqiδpi − δp,jδq,j) = 0 (3.98)

as p 6= q. Hence

κ(Ep,q, h) = 0 (3.99)

iii) κ(h, g) where h = diag (a1, a2, . . . , an+1) and g = diag (b1, b2, . . . , bn+1) and
∑

i ai =∑
i bi = 0,

The only contribution to the trace Tr (ad h ad g) is from the terms

(ad h ad g)Ei,j (3.100)

for i 6= j. But
(ad h ad g)Ei,j = (ai − aj)(bi − bj)Ei,j (3.101)

so taking the sum over i and j (i 6= j) we obtain

κ(h, g) = 2(n+ 1)
∑
i

aibi (3.102)

Hence κ is negative definite over the span over R of i(Er,r−En+1,n+1) for r = 1, . . . , n;
and this span is orthogonal to the span of the Ei,j − Ej,i and i(Ei,j + Ej,i) (i 6= j).
Furthermore, κ is diagonal and negative definite over the span over R of the Ei,j−Ej,i and
i(Ei,j + Ej,i). κ is therefore non-degenerate. �

We also have the immediate corollory:

Corollory 2. The Lie algebra of SU(n+ 1) (as a real Lie algebra) is compact.
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4. SU(3) and the Quark Model

The Lie algebra of SU(3) consists of the traceless antihermitian 3 × 3 complex matrices.
It is convenient to define the following matrices

h1 =

 1
2 0 0
0 −1

2 0
0 0 0

 h2 =


1

2
√

3
0 0

0 1
2
√

3
0

0 0 − 1√
3


e1

+ =

 0 1√
2

0

0 0 0
0 0 0

 e1
− =

 0 0 0
1√
2

0 0

0 0 0


e2

+ =

 0 0 0
0 0 1√

2

0 0 0

 e2
− =

 0 0 0
0 0 0
0 1√

2
0


e3

+ =

 0 0 1√
2

0 0 0
0 0 0

 e3
− =

 0 0 0
0 0 0
1√
2

0 0

 (4.1)

Then ih1, ih2 and i(em+ +em− ), em+−em− for m = 1, 2, 3 form a basis for the antihermitian
traceless 3 × 3 matrices (over R), and hence are a basis for L(SU(3)). Suppose that d is
the irreducible representation of L(SU(3)) acting on a complex vector space V which is
induced from an irreducible representation of SU(3) acting on V .

It is convenient to set

H1 = d(h1), H2 = d(h2), Em± = d(em± ) for m = 1, 2, 3 (4.2)

Then we find the following commutators:

[H1, H2] = 0

[H1, E
1
±] = ±E1

±, [H1, E
2
±] = ∓1

2
E2
±, [H1, E

3
±] = ±1

2
E3
±

[H2, E
1
±] = 0, [H2, E

2
±] = ±

√
3

2
E2
±, [H2, E

3
±] = ±

√
3

2
E3
± (4.3)

and

[E1
+, E

1
−] = H1

[E2
+, E

2
−] =

√
3

2
H2 −

1
2
H1

[E3
+, E

3
−] =

√
3

2
H2 +

1
2
H1 (4.4)

The remaining commutation relations are

[E1
+, E

2
+] =

1√
2
E3

+, [E1
−, E

2
−] = − 1√

2
E3
−
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[E1
+, E

3
−] = − 1√

2
E2
−, [E1

−, E
3
+] =

1√
2
E2

+

[E2
+, E

3
−] =

1√
2
E1
−, [E2

−, E
3
+] = − 1√

2
E1

+ (4.5)

and

[E1
+, E

2
−] = [E1

−, E
2
+] = [E1

+, E
3
+] = [E1

−, E
3
−] = [E2

+, E
3
+] = [E2

−, E
3
−] = 0 (4.6)

Note in particular that H1, H2 commute. The subalgebra of L(SU(3)) spanned by
ih1 and ih2 is called the Cartan subalgebra. It is the maximal commuting subalgebra of
L(SU(3)).

4.1 Raising and Lowering Operators: The Weight Diagram

The Lie algebra of L(SU(3)) can be used to obtain three sets of L(SU(2)) algebras. In
particular, we find that

[H1, E
1
±] = ±E1

±, [E1
+, E

1
−] = H1 (4.7)

and

[
√

3
2
H2 −

1
2
H1, E

2
±] = ±E2

±, [E2
+, E

2
−] =

√
3

2
H2 −

1
2
H1 (4.8)

and

[
√

3
2
H2 +

1
2
H1, E

3
±] = ±E3

±, [E3
+, E

3
−] =

√
3

2
H2 +

1
2
H1 (4.9)

In particular, there are three pairs of raising and lowering operators Em± .
For simplicity, consider a representation d of L(SU(3)) obtained from a unitary repre-

sentation D of SU(3) such that d is an anti-hermitian representation- so that H1 and H2

are hermitian, and hence diagonalizable with real eigenvalues. Hence, H1 and
√

3
2 H2± 1

2H1,
can be simultaneously diagonalized, and the eigenvalues are real. (In fact the same can be
shown without assuming unitarity!)

Suppose then that |φ〉 is an eigenstate of H1 with eigenvalue p and also an eigenstate
of H2 with eigenvalue q. It is convenient to order the eigenvalues as points in R2 with
position vectors (p, q) where p is the eigenvalue of H1 and q of H2. (p, q) is then referred
to as a weight.

From the commutation relations we have the following properties

i) Either E1
± |φ〉 = 0 or E1

± |φ〉 is an eigenstate of H1 and H2 with eigenvalue (p, q)±(1, 0)

ii) Either E2
± |φ〉 = 0 or E2

± |φ〉 is an eigenstate with eigenvalue (p, q)± (−1
2 ,
√

3
2 )

iii) Either E3
± |φ〉 = 0 or E3

± |φ〉 is an eigenstate with eigenvalue (p, q)± (1
2 ,
√

3
2 )

Moreover, from the properties of L(SU(2)) representations we know that

2p = m1,
√

3q − p = m2,
√

3q + p = m3 (4.10)
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for m1, m2, m3 ∈ Z. It follows that 2
√

3q ∈ Z. It is particularly useful to plot the
sets of eigenvalues (p, q) as points in the plane. The resulting plot is known as the weight
diagram. As the representation is assumed to be irreducible, there can only be finitely
many points on the weight diagram, though it is possible that a particular weight may
correspond to more than one state. Moreover, as 2p ∈ Z, 2

√
3q ∈ Z, the weights are

constrained to lie on the points of a lattice. From the effect of the raising and lowering
operators on the eigenvalues, it is straightforward to see that this lattice is formed by the
tessalation of the plane by equilateral triangles of side 1. This is illustrated in Figure 1,
where the effect of the raising and lowering operators is given (in this diagram (0, 0) is a
weight, though this need not be the case generically).

E1

E2

E
3

E2

E1

E
3

+
+

+

−

−

−

The weight diagram has three axes of symmetry. To see this, recall that if m is a weight
of a state in an irreducible representation of L(SU(2)) then so is −m. In the context of
the three L(SU(2)) algebras contained in L(SU(3)) this means that from the properties
of the algebra in (4.7), if (p, q) is a weight then so is (−p, q), i.e. the diagram is reflection
symmetric about the line θ = π

2 passing through the origin. Also, due to the symmetry of
the L(SU(2)) algebra in (4.8), the weight diagram is reflection symmetric about the line
θ = π

6 passing through the origin: so if (p, q) is a weight then so is (1
2(p+

√
3q), 1

2(
√

3p−q)).
And due to the symmetry of the L(SU(2)) algebra in ((4.9) the weight diagram is reflection
symmetric about the line θ = 5π

6 passing through the origin: so if (p, q) is a weight then so
is (1

2(p−
√

3q), 1
2(−
√

3p− q)).
Using this symmetry, it suffices to know the structure of the weight diagram in the

sector of the plane π
6 ≤ θ ≤

π
2 . The remainder is fixed by the reflection symmetry.

Motivated by the treatment of SU(2) we make the definition:

Definition 42. |ψ〉 is called a highest weight state if |ψ〉 is an eigenstate of both H1 and
H2, and Em+ |ψ〉 = 0 for m = 1, 2, 3.

Note that there must be a highest weight state, for otherwise one could construct
infinitely many eigenstates by repeated application of the raising operators Em+ . Given

– 67 –



a highest weight state, let V ′ be the vector space spanned by |ψ〉 and states obtained by
acting with all possible products of lowering operators Em− on |ψ〉. As there are only finitely
many points on the weight diagram, there can only be finitely many such terms. Then, by
making use of the commutation relations, it is clear that V ′ is an invariant subspace of V .
As the representation is irreducible on V , this implies that V ′ = V , i.e. V is spanned by
|ψ〉 and a finite set of states obtained by acting with lowering operators on |ψ〉. Suppose
that (p, q) is the weight of |ψ〉. Then V is spanned by a basis of eigenstates of H1 and H2

with weights confined to the sector given by π ≤ θ ≤ 5π
3 relative to (p, q)- all points on the

weight diagram must therefore lie in this sector.

Lemma 6. The highest weight state is unique.

Proof Suppose that |ψ〉 and |ψ′〉 are two highest weight states with weights (p, q), (p′, q′)
respectively. Then (p′, q′) must make an angle π ≤ θ ≤ 5π

3 relative to (p, q) and (p, q) must
make an angle π ≤ θ ≤ 5π

3 relative to (p′, q′). This implies that p = p′, q = q′.

Next suppose that |ψ1〉 and |ψ2〉 are two linearly independent highest weight states
(both with weight (p, q)). Let V1 and V2 be the vector spaces spanned by the states
obtained by acting with all possible products of lowering operators Em− on |ψ1〉 and |ψ2〉
respectively; one therefore obtains bases for V1 and V2 consisting of eigenstates of H1 and
H2. By the reasoning given previously, as V1 and V2 are invariant subspaces of V and the
representation is irreducible on V , it must be the case that V1 = V2 = V . In particular, we
find that |ψ2〉 ∈ V1. However, the only basis element of V1 which has weight (p, q) is |ψ1〉,
hence we must have |ψ2〉 = c |ψ1〉 for some constant c, in contradiction to the assumption
that |ψ1〉 and |ψ2〉 are linearly independent. �

Having established the existence of a unique highest weight state |ψ〉, we can proceed
to obtain the generic form for the weight diagram. Recall that the highest weight j of an
irreducible representation of L(SU(2)) is always non-negative. By acting on |ψ〉 with the
lowering operators Em− , one obtains three irreducible representations of L(SU(2)). Non-
negativity of the highest weight corresponding to the L(SU(2)) irreducible representation
generated by E1

− implies that the highest weight must lie in the half-plane to the right of
the line θ = π

2 , or on the line θ = π
2 :

Non-negativity of the highest weight corresponding to the L(SU(2)) irreducible represen-
tation generated by E2

− implies that the highest weight must lie in the half-plane above
the line θ = π

6 , or on the line θ = π
6 :
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Finally, non-negativity of the highest weight corresponding to the L(SU(2)) irreducible
representation generated by E3

− implies that the highest weight must lie in the half-plane
above the line θ = 5π

6 , or on the line θ = 5π
6 :

As the highest weight must lie in all three of these regions, it must lie in the sector
π
6 ≤ θ ≤

π
2 relative to (0, 0), or at the origin:

Lemma 7. If the highest weight is (0, 0), then there is only one state in the representation,
which is called the singlet.
Proof

Let |ψ〉 be the highest weight state with weight (0, 0). Suppose that Em− |ψ〉 6= 0 for
somem. Then by the reflection symmetry of the weight diagram, it follows that Em+ |ψ〉 6= 0,
in contradiction to the fact that Ei+ |ψ〉 = 0 for i = 1, 2, 3, as |ψ〉 is the highest weight
state. Hence Em± |ψ〉 = 0 for m = 1, 2, 3. Also H1 |ψ〉 = H2 |ψ〉 = 0. It follows that the
1-dimensional subspace V ′ spanned by |ψ〉 is an invariant subspace of V , and therefore
V = V ′ as the representation is irreducible. �

There are then three possible locations for the highest weight state |ψ〉.

4.1.1 Triangular Weight Diagrams (I)

Suppose that the highest weight lies on the line θ = π
2 . In this case, by applying powers of

E2
− the states of the L(SU(2)) representation given in (4.8) are generated. These form a

line orthogonal to the axis of reflection θ = π
6 , about which they are symmetric, and there
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are no states outside this line, as these points cannot be reached by applying lowering
operators. Then, by using the reflection symmetry, it follows that the outermost states
from an equilateral triangle with horizontal base. Each lattice point inside the triangle
corresponds to (at least) one state which has this weight, because each lattice point in the
triangle lies at some possible weight within the L(SU(2)) representation given in (4.7),
and from the properties of L(SU(2)) representations, we know that this has a state with
this weight (i.e. as the L(SU(2)) weight diagram has no “holes” in it, neither does the
L(SU(3)) weight diagram).

This case is illustrated by

Proposition 26. Each weight in this triangle corresponds to a unique state.
Proof

Note that all of the states on the right edge of the triangle correspond to unique states,
because these weights correspond to states which can only be obtained by acting on |ψ〉
with powers of E2

−. It therefore follows by the reflection symmetry that all of the states on
the edges of the triangle have multiplicity one.

Now note the commutation relation

[E1
−, E

2
−] = − 1√

2
E3
− (4.11)

This implies that products of lowering operators involving E3
− can be rewritten as

linear combinations of products of operators involving only E1
− and E2

− (in some order).
In particular, we find

(E1
−)(E2

−)n |ψ〉 = [E1
−, E

2
−](E2

−)n−1 |ψ〉+ E2
−E

1
−(E2

−)n−1 |ψ〉

= − 1√
2
E3
−(E2

−)n−1 |ψ〉+ E2
−E

1
−(E2

−)n−1 |ψ〉
. . .
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= − n√
2
E3
−(E2

−)n−1 |ψ〉 (4.12)

by simple induction, where we have used the fact that E1
− |ψ〉 = 0 and [E2

−, E
3
−] = 0.

A generic state of some fixed weight in the representation can be written as a linear
combination of products of E2

− and E1
− lowering operators acting on |ψ〉 of the form

Π(E1
−, E

2
−) |ψ〉 (4.13)

where Π(E1
−, E

2
−) contains m powers of E2

− and ` powers of E1
− where m, ` are uniquely

determined by the weight of the state- only the order of the operators is unfixed.

Using (4.12), commute the E1
− states in this product to the right as far as they will

go. Then either one finds that the state vanishes (due to an E1
− acting directly on |ψ〉), or

one can eliminate all of the E1
− terms and is left with a term proportional to

(E2
−)m−`(E3

−)` |ψ〉 (4.14)

where we have used the commutation relations [E2
−, E

3
−] = [E1

−, E
3
−] = 0.

Hence, it follows that all weights in the diagram can have at most multiplicity 1.
However, from the property of the L(SU(2)) representations, as the weights in the outer
layers have multiplicity 1, it follows that all weights in the interior have multiplicity at
least 1.

Hence, all the weights must be multiplicity 1. �

4.1.2 Triangular Weight Diagrams (II)

Suppose that the highest weight lies on the line θ = π
6 . In this case, by applying powers of

E1
− the states of the L(SU(2)) representation given in (4.7) are generated. These form a

horizontal line orthogonal to the axis of reflection θ = π
2 , about which they are symmetric,

and there are no states outside this line, as these points cannot be reached by applying
lowering operators. Then, by using the reflection symmetry, it follows that the outermost
states from an inverted equilateral triangle with horizontal upper edge. Each lattice point
inside the triangle corresponds to (at least) one state which has this weight, because each
lattice point in the triangle lies at some possible weight within the L(SU(2)) representation
given in (4.7), and from the properties of L(SU(2)) representations, we know that this has
a state with this weight (i.e. as the L(SU(2)) weight diagram has no “holes” in it, neither
does the L(SU(3)) weight diagram).

This case is illustrated by
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Proposition 27. Each weight in this triangle corresponds to a unique state.
Proof

Note that all of the states on the horizontal top edge of the triangle correspond to
unique states, because these weights correspond to states which can only be obtained by
acting on |ψ〉 with powers of E1

−. It therefore follows by the reflection symmetry that all
of the states on the edges of the triangle have multiplicity one.

Now, using (4.11) it is straightforward to show that

E2
−(E1

−)n |ψ〉 =
n√
2
E3
−(E1

−)n−1 |ψ〉 (4.15)

for n ≥ 1, where we have used E2
− |ψ〉 = 0.

Now consider a state of some fixed weight in the representation; this can be written as
a linear combination of terms of the form

Π(E1
−, E

2
−) |ψ〉 (4.16)

where Π(E1
−, E

2
−) contains m powers of E1

− and ` powers of E2
− in an appropriate order,

where m and ` are determined uniquely by the weight of the state in question.
Using (4.15), commute the E2

− states in this product to the right as far as they will
go. Then either one finds that the state vanishes (due to an E2

− acting directly on |ψ〉), or
one can eliminate all of the E1

− terms and is left with a term proportional to

(E1
−)m−`(E3

−)` |ψ〉 (4.17)

where we have used the commutation relations [E2
−, E

3
−] = [E1

−, E
3
−] = 0.

Hence, it follows that all weights in the diagram can have at most multiplicity 1.
However, from the property of the L(SU(2)) representations, as the weights in the outer
layers have multiplicity 1, it follows that all weights in the interior have multiplicity at
least 1.

Hence, all the weights must be multiplicity 1. �
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4.1.3 Hexagonal Weight Diagrams

Suppose that the highest weight lies in the sector π
6 < θ < π

2 . In this case, by applying
powers of E1

− the states of the L(SU(2)) representation given in (4.7) are generated. These
form a horizontal line extending to the left of the maximal weight which is orthogonal
to the line θ = π

2 , about which they are symmetric, There are no states above, as these
points cannot be reached by applying lowering operators. Also, by applying powers of E2

−
the states of the L(SU(2)) representation given in (4.8) are generated. These form a line
extending to the right of the maximal weight which is orthogonal to the axis of reflection
θ = π

6 , about which they are symmetric, and there are no states to the right of this line,
as these points cannot be reached by applying lowering operators.

Then, by using the reflection symmetry, it follows that the outermost states form a
hexagon. Each lattice point inside the hexagon corresponds to (at least) one state which
has this weight, because each lattice point in the hexagon lies at some possible weight
within the L(SU(2)) representation given in (4.7), and from the properties of L(SU(2))
representations, we know that this has a state with this weight (i.e. as the L(SU(2)) weight
diagram has no “holes” in it, neither does the L(SU(3)) weight diagram).

This case is illustrated by

The multiplicities of the states for these weight diagrams are more complicated than
for the triangular diagrams. In particular, the weights on the two edges of the hexagon
leading off from the highest weight have multiplicity 1, because these states can only be
constructed as (E1

−)n |ψ〉 or (E2
−)m |ψ〉. So by symmetry, all of the states on the outer layer

of the hexagon have multiplicity 1. However, if one proceeds to the next layer, then the
multiplicity of all the states increases by 1. This happens until the first triangular layer is
reached, at which point all following layers have the same multiplicity as the first triangular
layer.
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Suppose that the top horizontal edge leading off the maximal weight is of length m,
and that the other outer edge is of length n, with m ≥ n. This situation is illustrated
below
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n

m

The highest weight is then at (m2 ,
1

2
√

3
(m + 2n)). The outer n layers are hexagonal,

whereas the n + 1-th layer is triangular, and all following layers are also triangular. As
one goes inwards through the outer n+ 1 layers the multiplicity of the states in the layers
increases from 1 in the first outer layer to n+ 1 in the n+ 1-th layer. Then all the states
in the following triangular layers have multiplicity n+ 1 as well.

We will prove this in several steps.

Proposition 28. States with weights on the k-th hexagonal layer for k = 1, . . . , n or the
k = n+ 1-th layer (the first triangular layer) have multiplicity not exceeding k.
Proof

In order to prove this, consider first a state on the upper horizontal edge of the k-th
layer for k ≤ n + 1. The length of this edge is m − k + 1. A general state on this edge is
obtained via

Π(E2
−, E

1
−) |ψ〉 (4.18)

where Π(E2
−, E

1
−) contains (in some order) k − 1 powers of E2

− and ` powers of E1
− for

` = k − 1, . . . ,m.
Now use the commutation relation (4.11) to commute the powers of E2

− to the right as
far as they will go. Then the state can be written as a linear combination of the k vectors

|vi〉 = (E3
−)i−1(E1

−)`−i+1(E2
−)k−i |ψ〉 (4.19)

for i = 1, . . . , k.
It follows that this state has multiplicity ≤ k.
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Next consider a state again on the k-th level, but now on the edge leading off to the
right of the horizontal edge which we considered above; this edge is parallel to the outer
edge of length n. Take k ≤ n+ 1, so the edge has length n− k+ 1. A state on this edge is
obtained via

Π̂(E1
−, E

2
−) |ψ〉 (4.20)

where Π̂(E1
−, E

2
−) contains (in some order) k − 1 powers of E1

− and ` powers of E2
− where

` = k − 1, . . . , n. Now use the commutation relation (4.11) to commute the powers of E1
−

to the right as far as they will go. Then the state can be written as a linear combination
of the k vectors

|wi〉 = (E3
−)i−1(E2

−)`−i+1(E1
−)k−i |ψ〉 (4.21)

for i = 1, . . . , k.
So these states also have multiplicity ≤ k. By using the reflection symmetry, it follows

that the all the states on the k-th hexagonal layer have multiplicity k. �
We also have the

Proposition 29. The states with weights in the triangular layers have multiplicity not
exceeding n+ 1.
Proof

Consider a state on the k-th row of the weight diagram for m+ 1 ≥ k ≥ n+ 1 which
lies inside the triangular layers. Such a state can also be written as

Π(E2
−, E

1
−) |ψ〉 (4.22)

where Π(E2
−, E

1
−) contains (in some order) k − 1 powers of E2

− and ` powers of E1
− for

` = k − 1, . . . ,m. and hence by the reasoning above, it can be rewritten as a linear
combination of the k vectors |vi〉 in (4.19), however for i < k−n, |vi〉 = 0 as (E2

−)k−i |ψ〉 = 0.
The only possible non-vanishing vectors are the n + 1 vectors |vk−n〉 , |vk−n+1〉 , . . . , |vk〉.
Hence these states have multiplicity ≤ n+ 1. �

Next note the lemma

Lemma 8. Define |wi,k〉 = (E3
−)i−1(E1

−)k−i(E2
−)k−i |ψ〉 for i = 1, . . . , k, k = 1, . . . , n+ 1.

Then the sets Sk = {|w1,k〉 , . . . , |wk,k〉} are linearly independent for k = 1, . . . , n+ 1.
Proof

By using the commutation relations, it is straightforward to prove the identities

E3
+ |wi,k〉 = (i− 1)

(√3
2
q +

1
2
p+

i

2
+ 1− k

)
|wi−1,k−1〉

− 1√
2

(k − i)2
(√3

2
q − 1

2
p+

i

2
+

1
2
− k

2
|wi,k−1〉

E2
+ |wi,k〉 = E1

−
( 1√

2
(i− 1) |wi−1,k−1〉

+ (k − i)
(√3

2
q − 1

2
p− 1

2
(k − i− 1)

)
|wi,k−1〉

)
(4.23)

(with obvious simplifications in the cases when i = 1 or i = k)
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Note that S1 = {|ψ〉} is linearly independent. Suppose that Sk−1 is linearly indepen-
dent (k ≥ 2). Consider Sk. Suppose

k∑
i=1

ci |wi,k〉 = 0 (4.24)

for some constants ci. Applying E3
+ to (4.24) and using the linear independence of

Sk−1 we find the relation

i(
√

3
2

+
1
2
p+

i

2
+

3
2
− k)ci+1 −

1√
2

(k − i)2(
√

3
2
q − 1

2
p+

i

2
+

1
2
− 1

2
k)ci = 0 (4.25)

for i = 1, . . . , k − 1. Applying E2
+ to (4.24) another recursion relation is obtained

1√
2
ici+1 + (k − i)(

√
3

2
q − 1

2
p+

i

2
+

1
2
− 1

2
k)ci = 0 (4.26)

Combining these relations we find ci+1 = 0 for i = 1, . . . , k−1. If
√

3
2 q−

1
2p+ i

2 + 1
2−

1
2k 6= 0

when i = 1 then one also has c1 = 0. This holds if k ≤ n+ 1, however if k = n+ 2 then c1

is not fixed by these equations. The induction stops at this point. �
These results are sufficient to fix the multiplicity of all the states. This is because the

vectors in Sk for 1 ≤ k ≤ k + 1 correspond to states with weight (p, q) − (k − 1)(1
2 ,
√

3
2 )

which are at the top right hand corner of the k-th hexagonal (or outermost triangular for
k = n + 1) layer. We have shown therefore that these weights have multiplicity both less
than or equal to, and greater than or equal to k. Hence these weights have multiplicity
k. Next consider the states on the level k edges which are obtained by acting with the
L(SU(2)) lowering operators E1

− and E2
− on the “corner weight” states. Observe the

following:

Lemma 9. Let d be a representation of L(SU(2)) on V be such that a particular L(SU(2))
weight m > 0 has multiplicity p. Then all weights m′ such that |m′| ≤ m have multiplicity
≥ p

whose proof is left as an exercise.
By this lemma, all the states on the k-th layer obtained in this fashion have multi-

plicity k also. Then the reflection symmetry implies that all states on the k-th layer have
multiplicity k.

In particular, the states on the outer triangular layer have multiplicity n + 1. We
have shown that the states on the triangular layers must have multiplicity not greater than
n+ 1, but by the lemma above together with the reflection symmetry, they must also have
multiplicity ≥ n + 1. Hence the triangular layer weights have multiplicity n + 1, and the
proof is complete.

This was rather long-winded. There exist general formulae constraining multiplicities
of weights in more general Lie group representations, but we will not discuss these here.
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4.1.4 Dimension of Irreducible Representations

Using the multiplicity properties of the weight diagram, it is possible to compute the
dimension of the representation. We consider first the hexagonal weight diagram for m ≥ n.

Then there are 1+ · · ·+(m−n)+(m−n+1) = 1
2(m−n+1)(m−n+2) weights in the

interior triangle. Each of these weights has multiplicity (n+ 1) which gives 1
2(n+ 1)(m−

n + 1)(m − n + 2) linearly independent states corresponding to weights in the triangle.
Consider next the k-th hexagonal layer for k = 1, . . . , n. This has 3((m + 1 − (k − 1)) +
(n+ 1− (k − 1))− 2) = 3(m+ n+ 2− 2k) weights in it, and each weight has multiplicity
k, which gives 3k(m+ n+ 2− 2k) linearly independent states in the k-th hexagonal layer.

The total number of linearly independent states is then given by

1
2

(n+1)(m−n+1)(m−n+2)+
n∑
k=1

3k(m+n+2−2k) =
1
2

(m+1)(n+1)(m+n+2) (4.27)

This formula also applies in the case for m ≤ n and also for the triangular weight diagrams
by taking m = 0 or n = 0. The lowest dimensional representations are therefore 1,3,6,8,10...

4.1.5 The Complex Conjugate Representation

Definition 43. Let d be a representation of a Lie algebra L(G) acting on V . If v ∈ L(G),
then viewing d(v) as a matrix acting on V , the complex representation d̄ is defined by

d̄(v)u = (d(v))∗u (4.28)

for u ∈ V , where ∗ denotes matrix complex conjugation.
Note that as d(v) is linear in v over R, it follows that (d(v))∗ is also linear in v over

R. Also, as
d([v, w]) = d(v)d(w)− d(w)d(v) (4.29)

for v, w ∈ L(G), so taking the complex conjugate of both sides we find

d̄([v, w]) = d̄(v)d̄(w)− d̄(w)d̄(v) (4.30)

i.e. d̄ is indeed a Lie algebra representation.
Suppose that Ta are the generators of L(G) with structure constants cabc. Then as d

is a representation,
[d(Ta), d(Tb)] = cab

cd(Tc) (4.31)

Taking the complex conjugate, and recalling that cabc are real, we find

[d̄(Ta), d̄(Tb)] = cab
cd̄(Tc) (4.32)

i.e. the d(Ta) and d̄(Ta) satisfy the same commutation relations.
In the context of representations of L(SU(3)), the conjugate operators to iH1, iH2,

i(Em+ +Em− ) and Em+ −Em− are denoted by iH̄1, iH̄2, i(Ēm− +Ēm+ ), and Ēm+ −Ēm− respectively
and are given by

iH̄1 = (iH1)∗
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iH̄2 = (iH2)∗

i(Ēm− + Ēm+ ) = (i(Em+ + Em− ))∗

Ēm+ − Ēm− = (Em+ − Em− )∗ (4.33)

which implies

H̄1 = −(H1)∗, H̄2 = −(H2)∗, Ēm± = −(Em∓ )∗ (4.34)

Then H̄1, H̄2 and Ēm± satisfy the same commutation relations as the unbarred opera-
tors, and also behave in the same way under the hermitian conjugate. One can therefore
plot the weight diagram associated with the conjugate representation d̄, the weights being
the (real) eigenvalues of H̄1 and H̄2. But as H̄1 = −(H1)∗ and H̄2 = −(H2)∗ it follows
that if (p, q) is a weight of the representation d, then (−p,−q) is a weight of the represen-
tation d̄. So the weight diagram of d̄ is obtained from that of d by inverting all the points
(p, q) → −(p, q). Note that this means that the equilateral triangular weight diagrams N
and H of equal length sides are conjugate to each other.

4.2 Some Low-Dimensional Irreducible Representations of L(SU(3))

4.2.1 The Singlet

The simplest representation has only one state, which is the highest weight state with
weight (0, 0). This representation is denoted 1.

4.2.2 3-dimensional Representations

Take the fundamental representation. Then as h1 and h2 are already diagonalized, it is
straightforward to compute the eigenstates and weights.
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State Weight1
0
0

 (1
2 ,

1
2
√

3
)

0
1
0

 (−1
2 ,

1
2
√

3
)

0
0
1

 (0,− 1√
3
)

The state of highest weight is

1
0
0

 which has weight (1
2 ,

1
2
√

3
). The weight diagram is

d u

s

This representation is denoted 3. It will be convenient to define the following states
in the 3 representation.

u =

1
0
0

 , d =

0
1
0

 , s =

0
0
1

 (4.35)

so that u has weight (1
2 ,

1
2
√

3
), d has weight (−1

2 ,
1

2
√

3
) and s has weight (0,− 1√

3
).

The lowering operators have the following effect: d =
√

2e1
−u, s =

√
2e3
−u and s =√

2e2
−d.
The complex conjugate of this representation is called 3̄ and the weights are obtained

by multiplying the weights of the 3 representation by −1.
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State Weight1
0
0

 (−1
2 ,−

1
2
√

3
)

0
1
0

 (1
2 ,−

1
2
√

3
)

0
0
1

 (0, 1√
3
)

The state of highest weight is

0
0
1

 which has weight (0, 1√
3
). The weight diagram is

s

u d

It will be convenient to define the following states in the 3̄ representation.

ū =

1
0
0

 , d̄ =

0
1
0

 , s̄ =

0
0
1

 (4.36)

so that ū has weight (−1
2 ,−

1
2
√

3
), d̄ has weight (1

2 ,−
1

2
√

3
) and s̄ has weight (0, 1√

3
).

The lowering operators have the following effect: ū = −
√

2ē3
−s̄, d̄ = −

√
2ē2
−s̄ and

ū = −
√

2ē1
−d̄; where ēm± = −(em∓ )∗.

Exercise: Verify that all other lowering operators ēm− (except those given above) an-
nihilate ū, d̄, s̄. Also compute the effect of the raising operators ēm+ .
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4.2.3 Eight-Dimensional Representations

Consider the adjoint representation defined on the complexified Lie algebra L(SU(3)), i.e.
ad(v)w = [v, w]. Then the weights of the states can be computed by evaluating the
commutators with h1 and h2:

State v [h1, v] [h2, v] Weight
h1 0 0 (0, 0)
h2 0 0 (0, 0)
e1

+ e1
+ 0 (1, 0)

e1
− −e1

− 0 (−1, 0)
e2

+ −1
2e

2
+

√
3

2 e
2
+ (−1

2 ,
√

3
2 )

e2
−

1
2e

2
− −

√
3

2 e
2
− (1

2 ,−
√

3
2 )

e3
+

1
2e

3
+

√
3

2 e
3
+ (1

2 ,
√

3
2 )

e3
− −1

2e
3
− −

√
3

2 e
3
− (−1

2 ,−
√

3
2 )

The highest weight state is e3
+ with weight (1

2 ,
√

3
2 ). All weights have multiplicity 1

except for (0, 0) which has multiplicity 2. The weight diagram is a regular hexagon:

4.3 Tensor Product Representations

Suppose that d1, d2 are irreducible representations of L(SU(3)) acting on V1, V2 respec-
tively. Then let V = V1

⊗
V2 and d = d1⊗ 1 + 1⊗ d2 be the tensor product representation

of L(SU(3)) on V . In general d is not irreducible on V , so we want to decompose V into
a direct sum of invariant subspaces on which the restriction of d is irreducible.

To do this, recall that one can choose a basis of V1 which consists entirely of eigenstates
of both d1(h1) and d1(h2). Similarly, one can also choose a basis of V2 which consists entirely
of eigenstates of both d2(h1) and d2(h2). Then the tensor product of the basis eigenstates
produces a basis of V1

⊗
V2 which consists of eigenstates of d(h1) and d(h2).

Explicitly, suppose that |φi〉 ∈ Vi is an eigenstate of di(h1) and di(h2) with weight
(pi, qi) (i.e. di(h1) |φi〉 = pi |φi〉 and di(h2) |φi〉 = qi |φi〉) for i = 1, 2. Define |φ〉 =
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|φ1〉 ⊗ |φ2〉. Then

d(h1) |φ〉 = (d1(h1) |φ1〉)⊗ |φ2〉+ |φ1〉 ⊗ (d2(h1) |φ2〉)
= (p1 |φ1〉)⊗ |φ2〉+ |φ1〉 ⊗ (p2 |φ2〉)
= (p1 + p2) |φ〉 (4.37)

and similarly

d(h2) |φ〉 = (q1 + q2) |φ〉 (4.38)

So the weight of |φ〉 is (p1 + p2, q1 + q2); the weights add in the tensor product repre-
sentation.

Using this, one can plot a weight diagram consisting of the weights of all the eigenstates
in the tensor product basis of V , the points in the weight diagram are obtained by adding
the pairs of weights from the weight diagrams of d1 and d2 respectively, keeping careful
track of the multiplicities (as the same point in the tensor product weight diagram may be
obtained from adding weights from different states in V1

⊗
V2.)

Once the tensor product weight diagram is constructed, pick a highest weight, which
corresponds to a state which is annihilated by the tensor product operators Em+ for m =
1, 2, 3. (Note that as the representation is finite-dimensional such a state is guaranteed
to exist, though as the representation is no longer irreducible, it need not be unique). If
there are multiple highest weight states corresponding to the same highest weight, one
can without loss of generality take them to be mutually orthogonal. Picking one of these,
generate further states by acting on a highest weight state with all possible combinations
of lowering operators. The span of these (finite number) of states produces an invariant
subspace W1 of V on which d is irreducible. Remove these weights from the tensor product
weight diagram. If the multiplicity of one of the weights in the original tensor product
diagram is k, and the multiplicity of the same weight in the W1 weight diagram is k′ then
on removing the W1 weights, the multiplicity of that weight must be reduced from k to
k − k′.

Repeat this process until there are no more weights left. This produces a decomposition
V = W1

⊕
...
⊕
Wk of V into invariant subspaces Wj on which d is irreducible.

Note that one could also perform this process on triple (and higher order) tensor
products e.g. V1

⊗
V2
⊗
V3. In this case, one would construct the tensor product weight

diagram by adding triplets of weights from the weight diagrams of d1 on V1, d2 on V2 and
d3 on V3 respectively.

This process can be done entirely using the weight diagrams, because we have shown
that for irreducible representations, the location of the highest weight fixes uniquely the
shape of the weight diagram and the multiplicities of its states.

We will see how this works for some simple examples:

4.3.1 3⊗ 3 decomposition.

Consider the 3⊗ 3 tensor product. Adding the weights together one obtains the following
table of quark content and associated weights
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Quark content and weights for 3⊗ 3

Quark Content Weight

u⊗ u (1, 1√
3
)

d⊗ d (−1, 1√
3
)

s⊗ s (0,− 2√
3
)

u⊗ d, d⊗ u (0, 1√
3
)

u⊗ s, s⊗ u (1
2 ,−

1
2
√

3
)

d⊗ s, s⊗ d (−1
2 ,−

1
2
√

3
)

Plotting the corresponding weight diagram gives

The raising and lowering operators are Em± = em± ⊗ 1 + 1 ⊗ em± . The highest weight state
is u ⊗ u with weight (1, 1√

3
). Applying lowering operators to u ⊗ u it is clear that a

six-dimensional irreducible representation is obtained. The (unit-normalized) states and
weights are given by

States and weights for the 6 in 3⊗ 3

State Weight

u⊗ u (1, 1√
3
)

d⊗ d (−1, 1√
3
)

s⊗ s (0,− 2√
3
)

1√
2
(d⊗ u+ u⊗ d) (0, 1√

3
)

1√
2
(u⊗ s+ s⊗ u) (1

2 ,−
1

2
√

3
)

1√
2
(d⊗ s+ s⊗ d) (−1

2 ,−
1

2
√

3
)
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which has the following weight diagram

This representation is called 6. Removing the (non-vanishing) span of these states
from the tensor product space, one is left with a 3-dimensional vector space. The new
highest weight is at (0, 1√

3
) with corresponding state 1√

2
(d⊗ u− u⊗ d) (this is the unique

linear combination- up to overall scale- of d⊗ u and u⊗ d which is annihilated by all the
raising operators). This generates a 3̄. The states and their weights are

States and weights for the 3̄ in 3⊗ 3

State Weight
1√
2
(d⊗ u− u⊗ d) (0, 1√

3
)

1√
2
(d⊗ s− s⊗ d) (−1

2 ,−
1

2
√

3
)

1√
2
(s⊗ u− u⊗ s) (1

2 ,−
1

2
√

3
)

Hence 3 ⊗ 3 = 6 ⊕ 3̄. The states in the 6 are symmetric, whereas those in the 3̄ are
antisymmetric.

4.3.2 3⊗ 3̄ decomposition

For this tensor product the quark content/weight table is as follows:
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Quark content and weights for 3⊗ 3̄

Quark Content Weight

u⊗ s̄ (1
2 ,
√

3
2 )

u⊗ d̄ (1, 0)

d⊗ s̄ (−1
2 ,
√

3
2 )

u⊗ ū, d⊗ d̄, s⊗ s̄ (0, 0)

d⊗ ū (−1, 0)

s⊗ ū (−1
2 ,−

√
3

2 )

s⊗ d̄ (1
2 ,−

√
3

2 )

with weight diagram

ds us

du dd,uu,ss ud

su sd

The raising and lowering operators are Em± = em± ⊗ 1 + 1 ⊗ ēm± All weights have
multiplicity 1, except for (0, 0) which has multiplicity 3. The highest weight state is u⊗ s̄
with weight (1

2 ,
√

3
2 ). Acting on this state with all possible lowering operators one obtains

an 8 with the following states and weights

States and weights for the 8 in 3⊗ 3̄

State Weight

u⊗ s̄ (1
2 ,
√

3
2 )

u⊗ d̄ (1, 0)

d⊗ s̄ (−1
2 ,
√

3
2 )

1√
2
(d⊗ d̄− u⊗ ū), 1√

6
(d⊗ d̄+ u⊗ ū− 2s⊗ s̄) (0, 0)

d⊗ ū (−1, 0)

s⊗ ū (−1
2 ,−

√
3

2 )

s⊗ d̄ (1
2 ,−

√
3

2 )
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Removing these weights from the weight diagram, one is left with a singlet 1 with
weight (0, 0), corresponding to the state

1√
3

(u⊗ ū+ s⊗ s̄+ d⊗ d̄) (4.39)

which is the unique linear combination- up to an overall scale- of u⊗ū, s⊗ s̄ and d⊗d̄ which
is annihilated by the raising operators Em+ . Hence we have the decomposition 3⊗3̄ = 8⊕1.

4.3.3 3⊗ 3⊗ 3 decomposition.

For this tensor product the quark content/weight table is as follows:

Quark content and weights for 3⊗ 3⊗ 3

Quark Content Weight

u⊗ u⊗ u (3
2 ,
√

3
2 )

s⊗ s⊗ s (0,−
√

3)

d⊗ d⊗ d (−3
2 ,
√

3
2 )

u⊗ u⊗ s, u⊗ s⊗ u, s⊗ u⊗ u (1, 0)

u⊗ u⊗ d, u⊗ d⊗ u, d⊗ u⊗ u (1
2 ,
√

3
2 )

s⊗ s⊗ u, s⊗ u⊗ s, u⊗ s⊗ s (1
2 ,−

√
3

2 )

s⊗ s⊗ d, s⊗ d⊗ s, d⊗ s⊗ s (−1
2 ,−

√
3

2 )

d⊗ d⊗ s, d⊗ s⊗ d, s⊗ d⊗ d (−1, 0)

d⊗ d⊗ u, d⊗ u⊗ d, u⊗ d⊗ d (−1
2 ,
√

3
2 )

u⊗ d⊗ s, u⊗ s⊗ d, d⊗ u⊗ s,
d⊗ s⊗ u, s⊗ u⊗ d, s⊗ d⊗ u (0, 0)

with weight diagram

ddd ddu duu uuu

dds
dus

uus

dss uss

sss

The raising and lowering operators are Em± = em± ⊗ 1 ⊗ 1 + 1 ⊗ em± ⊗ 1 + 1 ⊗ 1 ⊗ em± .
There are six weights of multiplicity 3, and the weight (0, 0) has multiplicity 6. The highest
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weight is u⊗ u⊗ u with weight (3
2 ,
√

3
2 ). By applying lowering operators to this state, one

obtains a triangular 10-dimensional irreducible representation denoted by 10, which has
normalized states and weights:

States and weights for 10 in 3⊗ 3⊗ 3

State Weight

u⊗ u⊗ u (3
2 ,
√

3
2 )

s⊗ s⊗ s (0,−
√

3)

d⊗ d⊗ d (−3
2 ,
√

3
2 )

1√
3
(u⊗ u⊗ s+ u⊗ s⊗ u+ s⊗ u⊗ u) (1, 0)

1√
3
(u⊗ u⊗ d+ u⊗ d⊗ u+ d⊗ u⊗ u) (1

2 ,
√

3
2 )

1√
3
(s⊗ s⊗ u+ s⊗ u⊗ s+ u⊗ s⊗ s) (1

2 ,−
√

3
2 )

1√
3
(s⊗ s⊗ d+ s⊗ d⊗ s+ d⊗ s⊗ s) (−1

2 ,−
√

3
2 )

1√
3
(d⊗ d⊗ s+ d⊗ s⊗ d+ s⊗ d⊗ d) (−1, 0)

1√
3
(d⊗ d⊗ u+ d⊗ u⊗ d+ u⊗ d⊗ d) (−1

2 ,
√

3
2 )

1√
6
(u⊗ d⊗ s+ u⊗ s⊗ d+ d⊗ u⊗ s+
d⊗ s⊗ u+ s⊗ u⊗ d+ s⊗ d⊗ u) (0, 0)

The 10 weight diagram is

ddd ddu duu uuu

dds dus uus

dss uss

sss

Removing the (non-vanishing) span of these states from the tensor product space, one
is left with a 17-dimensional vector space. The new weight diagram is
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ddu duu

dds
dus

uus

dss uss

Note that the highest weight is now (1
2 ,
√

3
2 ). This weight has has multiplicity 2. It

should be noted that the subspace consisting of linear combinations of d⊗ u⊗ u, u⊗ d⊗ u
and u ⊗ u ⊗ d which is annihilated by all raising operators Em+ is two-dimensional and
is spanned by the two orthogonal states 1√

6
(d ⊗ u ⊗ u + u ⊗ d ⊗ u − 2u ⊗ u ⊗ d) and

1√
2
(d ⊗ u ⊗ u − u ⊗ d ⊗ u). By acting on these two states with all possible lowering

operators, one obtains two 8 representations whose states are mutually orthogonal.

The states and weights of these two 8 representations are summarized below:

States and weights for an 8 in 3⊗ 3⊗ 3

State Weight
1√
6
(d⊗ u⊗ u+ u⊗ d⊗ u− 2u⊗ u⊗ d) (1

2 ,
√

3
2 )

1√
6
(s⊗ u⊗ u+ u⊗ s⊗ u− 2u⊗ u⊗ s) (1, 0)

1√
6
(2d⊗ d⊗ u− d⊗ u⊗ d− u⊗ d⊗ d) (−1

2 ,
√

3
2 )

1
2
√

3
(s⊗ d⊗ u+ s⊗ u⊗ d+ d⊗ s⊗ u

+u⊗ s⊗ d− 2d⊗ u⊗ s− 2u⊗ d⊗ s),
1

2
√

3
(2s⊗ d⊗ u+ 2d⊗ s⊗ u− s⊗ u⊗ d
−d⊗ u⊗ s− u⊗ s⊗ d− u⊗ d⊗ s) (0, 0)
1√
6
(s⊗ d⊗ d+ d⊗ s⊗ d− 2d⊗ d⊗ s) (−1, 0)

1√
6
(2s⊗ s⊗ u− s⊗ u⊗ s− u⊗ s⊗ s) (1

2 ,−
√

3
2 )

1√
6
(2s⊗ s⊗ d− s⊗ d⊗ s− d⊗ s⊗ s) (−1

2 ,−
√

3
2 )
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States and weights for another 8 in 3⊗ 3⊗ 3

State Weight
1√
2
(d⊗ u⊗ u− u⊗ d⊗ u) (1

2 ,
√

3
2 )

1√
2
(s⊗ u⊗ u− u⊗ s⊗ u) (1, 0)

1√
2
(d⊗ u⊗ d− u⊗ d⊗ d) (−1

2 ,
√

3
2 )

1
2(s⊗ d⊗ u+ s⊗ u⊗ d− d⊗ s⊗ u− u⊗ s⊗ d),
1
2(s⊗ u⊗ d+ d⊗ u⊗ s− u⊗ s⊗ d− u⊗ d⊗ s) (0, 0)

1√
2
(s⊗ d⊗ d− d⊗ s⊗ d) (−1, 0)

1√
2
(s⊗ u⊗ s− u⊗ s⊗ s) (1

2 ,−
√

3
2 )

1√
2
(s⊗ d⊗ s− d⊗ s⊗ s) (−1

2 ,−
√

3
2 )

Removing these weights from the weight diagram, we are left with a singlet 1 with
weight (0, 0). The state corresponding to this singlet is

1√
6

(s⊗ d⊗ u− s⊗ u⊗ d+ d⊗ u⊗ s− d⊗ s⊗ u+ u⊗ s⊗ d− u⊗ d⊗ s) (4.40)

which is the only linear combination-up to overall scale- of u⊗ d⊗ s, u⊗ s⊗ d, d⊗ u⊗ s,
d⊗ s⊗ u, s⊗ u⊗ d and s⊗ d⊗ u which is annihilated by all the raising operators.

Hence we have the decomposition 3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1 where the states in 10
are symmetric, but the state in 1 is antisymmetric. The 8 states have mixed symmetry.

4.4 The Quark Model

It is possible to arrange the baryons and the mesons into SU(3) multiplets; i.e. the states
lie in Hilbert spaces which are tensor products of vector spaces equipped with irreducible
representations of L(SU(3)). To see examples of this, it is convenient to group hadrons into
multiplets with the same baryon number and spin. We plot the hypercharge Y = S + B

where S is the strangeness and B is the baryon number against the isospin eigenvalue I3

for these particles.

4.4.1 Meson Multiplets

The pseudoscalar meson octet has B = 0 and J = 0. The (I3, Y ) diagram is
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Y

I3

+  −

−

1/2

1

−1/2

−1

Mass(Mev)
495

137

549

495

K K

K K
0

0 +  

π π π0

η−1 −1/2 1/2 1

There is also a J = 0 meson singlet η′.

The vector meson octet has B = 0 and J = 1. The (I3, Y ) diagram is

Y

I3

+  −

−

1/2

1

−1/2

−1

Mass(Mev)
892

770

783

892

K K

K K
0

0 +  

0

∗ ∗

∗ ∗

ρ ρ ρ

ω−1 −1/2 1/2 1

There is also a J = 1 meson singlet, φ.

4.4.2 Baryon Multiplets

The baryon decuplet has B = 1 and J = 3
2 with (I3, Y ) diagram
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Y

I3

1/2

  1

−1/2

−1

−3/2

  −2

∆ ∆ ∆ ∆

Σ Σ Σ

Ξ Ξ

Ω

+

+

++0

0

0

−

−

−

−

∗ ∗ ∗

∗ ∗

Mass (Mev)

1235

1385

1530

1670

 −3/2       −1      −1/2                   1/2        1        3/2

There is also an antibaryon decuplet with (I3, Y )→ −(I3, Y ).
The baryon octet has B = 1, J = 1

2 with (I3, Y ) diagram

Y

I3

n p

Σ Σ

Ξ Ξ

+  

+  

Σ−

−

Λ

0

0

1/2

1

−1/2

−1

Mass(Mev)
939

1193

1116

1318

−1/2 11/2−1

and there is also a J = 1
2 baryon singlet Λ0∗.

4.4.3 Quarks: Flavour and Colour

On making the identification (p, q) = (I3,
√

3
2 Y ) the points on the meson and baryon octets

and the baryon decuplet can be matched to points on the weight diagrams of the 8 and 10
of L(SU(3)).

Motivated by this, it is consistent to consider the (light) meson states as lying within
a 3 ⊗ 3̄; as 3 ⊗ 3̄ = 8 ⊕ 1, the meson octets are taken to correspond to the 8 states, and
the meson singlets correspond to the singlet 1 states. The light baryon states lie within a
3⊗ 3⊗ 3; the baryon decuplet corresponds to the 10 in 3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1; the
baryon octet corresponds to appropriate linear combinations of elements in the 8 irreps,
and the baryon singlet corresponds to the 1.
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In this model, the fundamental states in the 3 are quarks, with basis states u (up),
d (down) and s (strange). The basis labels u, d, s are referred to as the flavours of the
quarks. The 3̄ states are called antiquarks with basis ū, d̄, s̄. Baryons are composed of
bound states of three quarks qqq, mesons are composed of bound states of pairs of quarks
and antiquarks qq̄. The quarks have J = 1

2 and B = 1
3 whereas the antiquarks have J = 1

2

and B = −1
3 which is consistent with the values of B and J for the baryons and mesons.

The quark and antiquark flavours can be plotted on the (I3, Y ) plane:

Y

I3

1/3

−2/3

d u

s

−1/2                                                                    1/2
I3−1/2                                                                    1/2

Y
2/3

−1/3

s

u d

We have shown that mesons and baryons can be constructed from qq̄ and qqq states
respectively. But why do qq particles not exist? This problem is resolved using the notion
of colour. Consider the ∆++ particle in the baryon decuplet. This is a u⊗u⊗u state with
J = 3

2 . The members of the decuplet are the spin 3
2 baryons of lowest mass, so we assume

that the quarks have vanishing orbital angular momentum. Then the spin J = 3
2 is obtained

by having all the quarks in the spin up state, i.e. u ↑ ⊗u ↑ ⊗u ↑. However, this violates the
Pauli exclusion principle. To get round this problem, it is conjectured that quarks possess
additional labels other than flavour. In particular, quarks have additional charges called
colour charges- there are three colour basis states associated with quarks called r (red), g
(green) and b (blue). The quark state wave-functions contain colour factors which lie in
a 3 representation of SU(3) which describes their colour; the colour of antiquark states
corresponds to a 3̄ representation of SU(3) (colour). This colour SU(3) is independent of
the flavour SU(3).

These colour charges are also required to remove certain discrepancies (of powers of
3) between experimentally observed processes such as the decay π0 → 2γ and the cross
section ratio between the processes e+e− → hadrons and e+e− → µ+µ− and theoretical
predictions. However, although colour plays an important role in these processes, it seems
that one cannot measure colour directly experimentally- all known mesons and baryons
are SU(3) colour singlets (so colour is confined). This principle excludes the possibility
of having qq particles, as there is no singlet state in the SU(3) (colour) tensor product
decomposition 3 ⊗ 3, though there is in 3 ⊗ 3 ⊗ 3 and 3 ⊗ 3̄. Other products of 3 and 3̄
can also be ruled out in this fashion.

Nevertheless, the decomposition of 3⊗3 is useful because it is known that in addition
to the u, d and s quark states, there are also c (charmed), t (top) and b (bottom) quark
flavours. However, the c, t and b quarks are heavier than the u, d and s quarks, and are
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unstable- they decay into the lighter quarks. The SU(3) symmetry cannot be meaningfully
extended to a naive SU(6) symmetry because of the large mass differences which break the
symmetry. In this context, meson states formed from a heavy antiquark and a light quark
can only be reliably put into 3 multiplets, whereas baryons made from one heavy and two
light quarks lie in 3⊗ 3 = 6⊕ 3̄ multiplets.
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5. Spacetime Symmetry

In this section we examine spacetime symmetry in the absence of gravity. Spacetime
is taken to be 4-dimensional Minkowski space, M4 , with real co-ordinates xµ for µ =
0, 1, 2, 3, equipped with the Minkowski metric which has the non-vanishing components
η00 = −η11 = −η22 = −η33 = 1, or as a matrix

(η)µν = (η)µν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (5.1)

5.1 The Lorentz Group

A Lorentz transformation is a linear transformation Λ : M4 → M4 which transforms
co-ordinates

x′µ = Λµνxν (5.2)

for Λµν ∈ R, but leaves the length invariant

ηµνx
′µx′ν = ηµνx

µxν (5.3)

for all x.
This condition can be rewritten in matrix notation as

ΛT ηΛ = η (5.4)

Suppose that Λ1,Λ2 are two 4×4 matrices satisfying (5.4) then it is straightforward to
see that Λ1Λ2 satisfies (5.4). Also, if Λ satisfies (5.4) then det Λ = ±1, hence Λ is invertible,
with inverse Λ−1 = η−1ΛT η, and

(Λ−1)T ηΛ−1 = ηΛη−1.η.η−1ΛT η
= ηΛη−1ΛT η
= ηΛΛ−1

= η (5.5)

so Λ−1 is also a Lorentz transformation. Hence, the set of Lorentz transformations forms
a group, under matrix multiplication.

Write a generic Lorentz transformation as

Λ =

(
λ βT

α R

)
(5.6)

where λ ∈ R, α, β ∈ R3 and R is a 3× 3 real matrix
Then the constraint (5.4) is equivalent to

λ2 = 1 + α.α (5.7)
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and
λβ = RTα (5.8)

and
RTR− ββT = I3 (5.9)

Note that (5.7) implies that
λ = ±

√
1 + α.α (5.10)

so in particular λ ≤ −1 or λ ≥ +1. Then (5.8) fixes β in terms of α and R by

β = ± 1√
1 + α.α

RTα (5.11)

which can be used to rewrite (5.9) as

RTR− 1
1 + α.α

RTααTR = I3 (5.12)

Define
R̂ =

(
1− 1√

1 + α.α(1 +
√

1 + α.α)
ααT

)
R (5.13)

or equivalently

R =
(
1 +

1
1 +
√

1 + α.α
ααT

)
R̂ (5.14)

Then (5.12) implies
R̂T R̂ = I3 (5.15)

i.e. R̂ ∈ O(3). Moreover, it is straightforward to check directly that

det R̂ =
1√

1 + α.α
detR (5.16)

where we have used the formula det(I3 + KααT ) = 1 + Kα.α for any K. Also, one can
write

Λ =

(
λ 0
α I3

)(
1 λ−2αT

0 I3 − λ−2ααT

)(
1 0
0 R

)
(5.17)

and hence
det Λ =

λ

1 + α.α
detR =

λ√
1 + α.α

det R̂ (5.18)

O(3) has two connected components, the connected component of I3 (which is SO(3))
whose elements have determinant det R̂ = +1, and the connected component of −I3, whose
elements have determinant det R̂ = −1.

There are therefore four connected components of the Lorentz group, according as
Λ0

0 ≤ −1 or Λ0
0 ≥ 1 and det Λ = +1 or det Λ = −1. It is not possible to construct a

smooth curve in the Lorentz group passing from one of these components to the other.
The set of Lorentz transformations with det Λ = +1 forms a subgroup of the Lorentz

group.
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Note that (5.13) implies that

R̂Tα =
1√

1 + α.α
RTα (5.19)

and hence
β.β =

1
1 + α.α

αTRRTα = α.α (5.20)

So, if Λ and Λ′ are two Lorentz transformations

Λ =

(
λ βT

α R

)
Λ′ =

(
λ′ β′T

α′ R′

)
(5.21)

with λ ≥ 1 and λ′ ≥ 1, then

(ΛΛ′)0
0 = λλ′ + β.α′ ≥

√
1 + α.α

√
1 + α′.α′ −√α.α

√
α′.α′ ≥ 1 (5.22)

Hence the set of Lorentz transformations with Λ0
0 ≥ 1 also forms a subgroup of the

Lorentz group.
The subgroup of Lorentz transformations with det Λ = +1 and Λ0

0 ≥ 1 is called the
proper orthochronous Lorentz group, which we denote by SO(3, 1)↑.

We note the useful lemma

Lemma 10. Suppose that Λ ∈ SO(3, 1)↑. Then there exist S1, S2 ∈ SO(3) and z ∈ R such
that

Λ =

(
1 0T

0 S1

)
cosh z sinh z 0 0
sinh z cosh z 0 0

0 0 1 0
0 0 0 1


(

1 0T

0 S2

)
(5.23)

Proof
From the analysis of the Lorentz group so far, we have shown that if Λ ∈ SO(3, 1)↑

then there exists α ∈ R3 and R̂ ∈ SO(3) such that

Λ =

( √
1 + α.α αT R̂

α
(
1 + 1

1+
√

1+α.α
ααT

)
R̂

)

=

( √
1 + α.α αT

α 1 + 1
1+
√

1+α.α
ααT

)(
1 0T

0 R̂

)
(5.24)

There also exists S1 ∈ SO(3) and z ∈ R such that

α = S1

 sinh z
0
0

 (5.25)

The result follows on substituting this into Λ and setting S2 = (S1)T R̂. �
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5.2 The Lorentz Group and SL(2,C)

Consider the spacetime co-ordinates xµ. Define the matrices

σ0 =

(
1 0
0 1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(5.26)

Then given real spacetime co-ordinates xµ, define the 2× 2 complex hermitian matrix

x̃ = xµσ
µ =

(
x0 − x3 −x1 + ix2

−x1 − ix2 x0 + x3

)
(5.27)

Observe that any hermitian 2× 2 matrix can be written as x̃ for some real xµ.
Note that

det x̃ = (x0)2 − (x1)2 − (x2)2 − (x3)2 = ηµνx
µxν (5.28)

ηµνx
µxν is invariant under the action of SO(3, 1). det x̃ is invariant under the action of

SL(2,C), the complex 2× 2 matrices with unit determinant.

Proposition 30. There exists an isomorphism π : SL(2,C)/Z2 → SO(3, 1)↑ where SL(2,C)/Z2

consists of elements ±N ∈ SL(2,C) with +N identified with −N .
Proof

Given N ∈ SL(2,C) consider the 2 × 2 complex matrix Nx̃N †. The components of
this matrix are linear in the spacetime co-ordinates xµ. As x̃ is hermitian, it follows that
Nx̃N † is also hermitian. Hence there exist Λµν ∈ R (independent of x) for µ, ν = 0, . . . , 3
such that

Nx̃N † = (̃Λx) (5.29)

Taking the determinant of both sides we find det x̃ = det (̃Λx) for all x, and therefore Λ is
a Lorentz transformation.

Set
Λ = π(N) (5.30)

Note that

Tr (̃Λx) = 2Λ0
µx

µ = Tr (N †Nx̃) (5.31)

Setting x0 = 1, x1 = x2 = x3 = 0 we find Λ0
0 = 1

2Tr (N †N) > 0.
If N1, N2 ∈ SL(2,C) then

(N1N2)x̃(N1N2)† = ˜(π(N1N2)x) (5.32)

But

(N1N2)x̃(N1N2)† = N1(N2x̃N
†
2)N †1

= N1
˜(π(N2)x)N †1

= ˜π(N1)π(N2)x (5.33)
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Hence ˜(π(N1N2)x) = ˜π(N1)π(N2)x for all x, which implies π(N1N2) = π(N1)π(N2).
Next we will establish that π is onto SO(3, 1)↑. First recall that any R ∈ SO(3, 1)↑ of

the form

R =

(
1 0T

0 R̂

)
(5.34)

can be written as a product of rotations around the spatial co-ordinate axes

R1(φ1) =


1 0 0 0
0 1 0 0
0 0 cosφ1 sinφ1

0 0 − sinφ1 cosφ1

 (5.35)

R2(φ2) =


1 0 0 0
0 cosφ2 0 − sinφ2

0 0 1 0
0 sinφ2 0 cosφ2

 (5.36)

and

R3(φ3) =


1 0 0 0
0 cosφ3 sinφ3 0
0 − sinφ3 cosφ3 0
0 0 0 1

 (5.37)

By a direct computation we find π(e
iφj
2
σj ) = Rj for j = 1, 2, 3; and

π(e−
z
2
σ1

) =


cosh z sinh z 0 0
sinh z cosh z 0 0

0 0 1 0
0 0 0 1

 (5.38)

where e
iφj
2
σj ∈ SL(2,C) for j = 1, 2, 3 and e−

z
2
σ1 ∈ SL(2,C).

Hence, if Λ ∈ SO(3, 1)↑, it follows that one can write Λ = Λ1.Λ2 . . .Λk where Λi are
elementary rotation or boost transformations in SO(3, 1)↑, and from the above reasoning,
Λi = π(Ni) for someNi ∈ SL(2,C). Therefore, Λ = π(N1.N2 . . . Nk), so π is onto SO(3, 1)↑.

Next, suppose that π(N) = π(M) for N,M ∈ SL(2,C). Then

Nx̃N † = Mx̃M † (5.39)

Set Q = M−1N , so that
Qx̃Q† = x̃ (5.40)

Setting x0 = 1, x1 = x2 = x3 = 0, we obtain QQ† = I2, so Q ∈ SU(2). Hence

Qσi = σiQ (5.41)
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for i = 1, 2, 3. The only Q ∈ SU(2) satisfying this is Q = ±I2, so M = ±N . Hence π is a
2− 1 map.

Lastly, we must prove that if N ∈ SL(2,C) then π(N) ∈ SO(3, 1)↑. We have already
shown that π(N) is orthochronous. Suppose that det(π(N)) = −1. Consider

Λ̂ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

π(N) (5.42)

The det Λ̂ = +1, so Λ̂ ∈ SO(3, 1)↑. Hence, there exists some N ′ ∈ SL(2,C) such that
Λ̂ = π(N ′), so 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

π(N) = π(N ′) (5.43)

Setting Y = N ′N−1, we obtain
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 = π(Y ) (5.44)

for some Y ∈ SL(2,C). This implies that

Y xµσ
µY † = x0I2 + x1σ

1 + x2σ
2 − x3σ

3 (5.45)

for all xµ. In particular, for x0 = 1, x1 = x2 = x3 = 0 we find Y Y † = I2, so Y ∈ SU(2).
The remaining constraints are

Y σ1 = σ1Y, Y σ2 = σ2Y, Y σ3 = −σ3Y (5.46)

This is not possible, because [Y, σ1] = [Y, σ2] = 0 implies that Y = αI2 for some α ∈ C.
As detY = 1 this implies Y = ±I2, but then Y σ3 6= −σ3Y . Hence if N ∈ SL(2,C) then
π(N) ∈ SO(3, 1)↑.

Although π : SL(2,C)→ SO(3, 1)↑ is not 1-1, we have shown that the restriction of π
to SL(2,C)/Z2, in which N is identified with −N is 1-1. �

5.3 The Lie Algebra L(SO(3, 1))

To compute the constraints on the tangent matrices, consider a curve in the Lorentz group
Λ(t) with Λ(0) = I4. This is constrained by

Λ(t)T ηΛ(t) = η (5.47)
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Differentiate this constraint and set t = 0 to obtain

mT η + ηm = 0 (5.48)

where m = (dΛ(t)
dt )|t=0. The generic solution to this constraint is

mµ
ν =

(
0 χ

χT S

)
(5.49)

for any χ ∈ R3 and S is a real 3× 3 antisymmetric matrix; S = −ST . There are three real
degrees of freedom in χ and three real degrees of freedom in the antisymmetric matrix S.
Hence the Lie algebra is six-dimensional.

Define the 4× 4 matrices Mµν for µ, ν = 0, 1, 2, 3 by

(Mµν)αβ = i(ηµαδνβ − ηναδµβ) (5.50)

note that Mµν = −Mνµ, so there are only six linearly independent matrices defined here.
By direct computation, we find

M01 =


0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 M02 =


0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0



M03 =


0 0 0 i

0 0 0 0
0 0 0 0
i 0 0 0

 M12 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0



M13 =


0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

 M23 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 (5.51)

and
[Mµν ,Mρσ] = i

(
Mµσηνρ +Mνρηµσ −Mµρηνσ −Mνσηµρ

)
(5.52)

which defines the complexified Lie algebra of the Lorentz group.
Define

Ji =
1
2
εijkMjk

Ki = M0i (5.53)

for i, j, k = 1, 2, 3. Then it follows that

[Ji, Jj ] = iεijkJk
[Ki,Kj ] = −iεijkJk
[Ji,Kj ] = iεijkKk (5.54)
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So, setting

Ai =
1
2

(Ji − iKi), Bi =
1
2

(Ji + iKi) (5.55)

we obtain the commutation relations

[Ai, Aj ] = iεijkAk
[Bi, Bj ] = iεijkBk
[Ai, Bj ] = 0 (5.56)

Hence the complexified Lorentz algebra L(SO(3, 1)) can be written as the direct sum of
two commuting complexified L(SU(2)) algebras. It follows that one can classify irreducible
representations of the Lorentz algebra by spins (A,B) for 2A, 2B ∈ N.

5.4 Spinors and Invariant Tensors of SL(2,C)

Definition 44. The left handed Weyl spinors are elements of a 2-dimensional complex
vector space V on which the fundamental representation of SL(2,C) acts via D(N)ψ = Nψ

where N ∈ SL(2,C). In terms of components, if ψ ∈ V has components ψα for α = 1, 2
with respect to some basis of V , then under the action of SL(2,C), ψ transforms as

ψα → ψ′α = Nα
βψβ (5.57)

where N ∈ SL(2,C).

Definition 45. The right handed Weyl spinors are elements of a 2-dimensional com-
plex vector space V̄ on which the complex conjugate of the fundamental representation of
SL(2,C) acts as D∗(N)χ̄ = N?χ̄ where N ∈ SL(2,C) and N? is the complex conjugate
of N . In terms of components, if χ̄ ∈ V̄ has components χ̄α̇ for α̇ = 1, 2, then under the
action of SL(2,C), χ̄ transforms as

χ̄α̇ → χ̄′α̇ = N∗α̇
β̇χ̄β̇ (5.58)

where N ∈ SL(2,C).
Note: One should regard α and α̇ as being entirely independent! The components of

these spinors anticommute.
We also define εαβ and εαβ to be totally skew-symmetric with

εαβ =

(
0 1
−1 0

)
εαβ =

(
0 −1
1 0

)
(5.59)

and observe that εαβεβγ = δαγ . One defines εα̇β̇ and εα̇β̇ similarly.
Note that εαβ is invariant under SL(2,C), as

εαβ → ε′αβ = εµνNα
µNβ

ν = det(N)εαβ = εαβ (5.60)

or in matrix notation NεNT = ε.
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If we define the contravariant representation DCV on V via

DCV (N)ψ → (NT )−1ψ (5.61)

and the complex conjugate contravariant representation by

D∗CV (N)χ̄→ (N∗T )−1χ̄ (5.62)

then NεNT = ε implies that (NT )−1 = ε−1Nε, so DCV is equivalent to the fundamental
representation. The complex conjugate representations are similarly equivalent.

The tensors εαβ and εαβ are called invariant tensors as they transform into themselves
under the action of SL(2,C). For SO(3, 1), the invariant tensors are ηµν and ηµν , which
can be used to raise and lower indices. We will raise and lower SL(2,C) indices using εαβ,
εαβ, so if ψα, χ̄α̇ are in the fundamental and conjugate representations respectively, then
we define

ψα = εαβψβ, χ̄α̇ = εα̇β̇χ̄β̇ (5.63)

One can construct a tensor product representation of the fundamental representation
acting on n products of V , V ⊗ V ⊗ V · · · ⊗ V . In terms of components, elements of the
tensor product vector space have components ψα1...αn which transform under the action of
SL(2,C) as

ψα1,...,αn → ψ′α1,...,αn = Nα1
β1 . . . Nαn

βnψβ1...βn (5.64)

for N ∈ SL(2,C). Similarly, tensor product representations of the complex conjugate
representation correspond to complex tensors with components χ̄α̇1... ˙αm which transform
as

χ̄α̇1...α̇m → χ̄′α̇1...α̇m = N∗α̇1
β̇1 . . . N∗α̇m

β̇mχ̄β̇1...β̇m
(5.65)

By taking the tensor product n tensor products of V acted on by the fundamental
representations, with m tensor products of V̄ acted on by the conjugate representation, one
obtains a vector space which has elements with components ψα1...αnβ̇1...β̇m

which transform
as

ψα1...αnβ̇1...β̇m
→ ψ′

α1...αnβ̇1...β̇m
= Nα1

µ1 . . . Nαn
µnN∗β̇1

ν̇1 . . . N∗β̇m
ν̇mψβ1...βnν̇1...ν̇m (5.66)

This representation is in general not irreducible.

5.4.1 Lorentz and SL(2,C) indices

It is straightforward to map between Lorentz invariant tensors and SL(2,C) invariant
tensors. In particular, recall that the relationship between N ∈ SL(2,C) and the corre-
sponding Lorentz transformation Λ = Λ(N) is given by

Nxµσ
µN † = ηνρΛργxγσν (5.67)

which implies that

NσµN † = ηνρΛργηγµσν = (η−1ΛT η)µνσν = (Λ−1)µνσν (5.68)
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So, denoting the components of σµ by σµ
αβ̇

, one finds

σν
αβ̇

= Nα
λN∗

β̇
γ̇Λνµσ

µ
λγ̇ (5.69)

which implies that σµ
αβ̇

is invariant. One can also define

(σ̄µ)α̇α = εαβεα̇β̇σµ
ββ̇

(5.70)

so that σ̄0 = σ0, σ̄i = −σi for i = 1, 2, 3.
Exercise: Prove the following useful identities

i) σµσ̄ν + σν σ̄µ = 2ηµνI2

ii) Tr σµσ̄ν = 2ηµν

iii) σµαα̇σ̄
β̇β
µ = 2δβαδ

β̇
α̇.

Definition 46. Define the 4× 4 matrices γµ by

γµ =

(
0 σµ

σ̄µ 0

)
(5.71)

Then these matrices satisfy

{γµ, γν} ≡ γµγν + γνγµ = 2ηµνI4 (5.72)

An algebra satisfying this property is called a Clifford algebra.

Definition 47. A Dirac spinor ΨD is a 4-component spinor constructed from left and right
handed Weyl spinors ψα, χ̄α̇ via

ΨD =

(
ψα
χ̄α̇

)
(5.73)

The gamma matrices act on Dirac spinors.
The σ-matrix identities are useful. For example; recall that the correspondence be-

tween Λ ∈ SO(3, 1)↑ and N ∈ SL(2,C) is given by NσµN † = ηνρΛργηγµσν . Then using
(ii) above the components of Λ are given by

Λµν =
1
2

Tr
(
σ̄µNσνN

†) (5.74)

Also, it is straightforward to relate tensors with SL(2,C) indices to tensors with
Lorentz indices. Given a 4-vector with Lorentz indices V µ one can define a tensor with
SL(2,C) indices via

Vαα̇ = V µ(σµ)αα̇ (5.75)

The invariance of (σµ)αα̇ ensures that if V µ transforms as V µ → ΛµνV ν under the action
of the Lorentz group, then Vαα̇ transforms as Vαα̇ → Nα

βN∗α̇
β̇Vββ̇ under SL(2,C). This

expression can be inverted using (ii) of the above exercise to give

V µ =
1
2

(σ̄µ)α̇αVαα̇ (5.76)

Similar maps between higher order tensors can also be constructed.
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5.4.2 The Lie algebra of SL(2,C)

The Lie algebra of SL(2,C) consists of traceless complex 2× 2 matrices; which has six real
dimensions. This is to be expected, as L(SO(3, 1)) is six-dimensional. It is convenient to
define the matrices

(σµν)αβ =
i

4
(σµσ̄ν − σν σ̄µ)αβ

(σ̄µν)α̇β̇ =
i

4
(σ̄µσν − σ̄νσµ)α̇β̇ (5.77)

so that σ0i = − i
2σ

i, σjk = 1
2ε
jk`σ`, σ̄0i = i

2σ
i, σ̄jk = 1

2ε
jk`σ`. It is clear that the σµν span

the 2 × 2 traceless matrices over R (as do the σ̄µν), hence they are generators of the Lie
algebra of SL(2,C). By a direct computation we obtain the commutation relations:

[σµν , σρσ] = i
(
ηνρσµσ + ηµσσνρ − ηνσσµρ − ηµρσνσ

)
(5.78)

which is the same commutation relation as for the Lie algebra L(SO(3, 1)). Similarly, we
find

[σ̄µν , σ̄ρσ] = i
(
ηνρσ̄µσ + ηµσσ̄νρ − ηνσσ̄µρ − ηµρσ̄νσ

)
(5.79)

Hence the σµν and σ̄µν correspond to representations of L(SO(3, 1)).
The action of SL(2,C) on left-handed Weyl spinors is given by

ψα →
(
eωµνσ

µν)
α
βψβ (5.80)

Just as for the Lorentz algebra, one can define Ji = 1
2ε
ijkσjk = 1

2σ
i and Ki = σ0i = i

2σ
i.

Hence Ai = 1
2σ

i, Bi = 0. Therefore the fundamental representation corresponds to a spin-1
2

L(SU(2)) representation generated by A, and a L(SU(2)) B-singlet. This representation
is denoted by (1

2 , 0).
The action of SL(2,C) on right-handed Weyl spinors is given by

χ̄α̇ →
(
eωµν σ̄

µν)β̇
α̇χ̄β̇ (5.81)

Again, define Ji = 1
2ε
ijkσ̄jk = 1

2σ
i and Ki = σ̄0i = − i

2σ
i. Hence Ai = 0, Bi = 1

2σ
i.

Therefore this representation corresponds to a spin-1
2 L(SU(2)) representation generated

by B, and a L(SU(2)) A-singlet. This representation is denoted by (0, 1
2).

5.5 The Poincaré Group

The Poincaré group consists of Lorentz transformations combined with translations; which
act on the spacetime co-ordinates by

xµ → Λµνxν + bµ (5.82)

where Λ is a Lorentz transformation and b ∈ R4 is an arbitrary 4-vector. One can denote
the generic Poincaré group element by a pair (Λ, b) which act in this way. Note that under
the action of (Λ, b) followed by (Λ′, b′); x → Λ′Λx + Λ′b + b′, hence one defines the group
product to be

(Λ′, b′)(Λ, b) = (Λ′Λ,Λ′b+ b′) (5.83)
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so the Poincareé group is closed under this multiplication. The identity is (I4, 0) and the
inverse of (Λ, b) is (Λ−1,−Λ−1b).

One can construct a group isomorphism between the Poincaré group and the subgroup
of GL(5,R) of matrices of the form (

Λ b

0 1

)
(5.84)

where Λ is a Lorentz transformation and b is an arbitrary 4-vector, as under matrix mul-
tiplication (

Λ′ b′

0 1

)(
Λ b

0 1

)
=

(
Λ′Λ Λ′b+ b′

0 1

)
(5.85)

5.5.1 The Poincaré Algebra

Consider a curve (
Λ(t) b(t)

0 1

)
(5.86)

in the Poincaré group passing through the identity when t = 0, so Λ(0) = I4, b(0) = 0.
Differentiating with respect to t and setting t = 0 we note that the generic element of the
Poincaré Lie algebra is of the form (

m v

0 0

)
(5.87)

where m ∈ L(SO(3, 1)) and v ∈ R4 is unconstrained. Hence a basis for the Lie algebra is
given by the 5× 5 matrices Mµν and P ν for µ, ν = 0, 1, 2, 3 where

(Mρσ)µν = i(ηρµδσν − ησµδρν)
(Mρσ)4

ν = (Mρσ)µ4 = (Mρσ)4
4 = 0 (5.88)

and

(P ν)µ4 = iηµν

(P ν)µλ = (P ν)4
λ = (P ν)4

4 = 0 (5.89)

(labeling the matrix indices by µ, ν = 0, 1, 2, 3 and the additional index is “4”). The Mρσ

generate the Lorentz sub-algebra (
m 0
0 0

)
(5.90)

for m ∈ L(SO(3, 1)); they satisfy the usual Lorentz algebra commutation relations

[Mµν ,Mρσ] = i
(
Mµσηνρ +Mνρηµσ −Mµρηνσ −Mνσηµρ

)
(5.91)
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The P ν generate the translations(
0 iv

0 0

)
(5.92)

for v ∈ R4. The Pµ satisfy
[Pµ, P ν ] = 0 (5.93)

and
[Pµ,Mρσ] = iηρµP σ − iησµP ρ (5.94)

The commutation relations

[Mµν ,Mρσ] = i
(
Mµσηνρ +Mνρηµσ −Mµρηνσ −Mνσηµρ

)
[Pµ,Mρσ] = iηρµP σ − iησµP ρ

[Pµ, P ν ] = 0 (5.95)

define the Poincaré algebra.

5.5.2 Representations of the Poincaré Algebra

Definition 48. Suppose that d is a representation of the Poincaré algebra. Let εµνρσ be
the totally antisymmetric tensor with ε0123 = 1. Then the Pauli-Lubanski vector is defined
by

Wµ =
1
2
εµρσνd(Mρσ)d(P ν) (5.96)

Proposition 31. The Pauli-Lubanski vector satisfies the following commutation relations:

1) [Wµ, d(Pν)] = 0

2) [Wµ, d(Mρσ)] = iηµρWσ − iηµσWρ

3) [Wµ,Wν ] = −iεµνρσW ρd(P σ)

Proof
We will use the identities

εµαβγε
µρστ = −6δρ[αδ

σ
βδ
τ
γ] = −6δ[ρ

αδ
σ
βδ
τ ]
γ (5.97)

and

εµναβε
µνρσ = −4δρ[αδ

σ
β] = −4δ[ρ

αδ
σ]
β (5.98)

To prove (1) is straightforward:

[Wµ, d(Pν)] =
1
2
εµρσθ[d(Mρσ)d(P θ), d(Pν)]

– 106 –



=
1
2
εµρσθ

(
d(Mρσ)[d(P θ), d(Pν)] + [d(Mρσ), d(Pν)]d(P θ)

)
=

1
2
εµρσθ

(
d(Mρσ)d([P θ, Pν ]) + d([Mρσ, Pν ])d(P θ)

)
=

1
2
εµρσθ

(
− iδρνd(P σ) + iδσνd(P ρ)

)
d(P θ)

= 0 (5.99)

To prove (ii) is an unpleasant exercise in algebra:

[Wµ, d(Mρσ)] =
1
2
εµλχθ[d(Mλχ)d(P θ), d(Mρσ)

]
=

1
2
εµλχθ

(
d(Mλχ)[d(P θ), d(Mρσ)] + [d(Mλχ), d(Mρσ)]d(P θ)

)
=

1
2
εµλχθ

(
d(Mλχ)d([P θ,Mρσ]) + d([Mλχ,Mρσ])d(P θ)

)
=

1
2
εµλχθ

(
d(Mλχ)

(
iδθρd(Pσ)− iδθσd(Pρ)

)
+ i
(
d(Mλ

σ)δχρ − d(Mχ
σ)δλρ − d(Mλ

ρ)δχσ + d(Mχ
ρ)δλσ

)
d(P θ)

)
=

i

2
εµλχθ

(
d(Mλχ)δθρd(Pσ)− d(Mλχ)δθσd(Pρ)

+ 2d(Mλ
σ)δχρd(P θ)− 2d(Mλ

ρ)δχσd(P θ)
)

=
i

2
(ηστδθρ − ηρτδθσ)εµλχθ

(
d(Mλχ)d(P τ )− 2d(Mλτ )d(Pχ)

)
=

3i
2

(ηστδθρ − ηρτδθσ)εµλχθd(M [λχ)d(P τ ]) (5.100)

But

ελχτ γW
γ =

1
2
ελχτ γε

γ
ν1ν2ν3d(Mν1ν2)d(P ν3)

= 3d(M [λχ)d(P τ ]) (5.101)

Hence

[Wµ, d(Mρσ)] =
i

2
(ηστδθρ − ηρτδθσ)εµλχθελχτ γW γ

=
i

2
(ηστδθρ − ηρτδθσ)(−2)(δτ µηθγ − δτ θηµγ)W γ

= iηµρWσ − iηµσWρ (5.102)

as required.
(3) follows straightforwardly from (2):

[Wµ,Wν ] =
1
2
ενρσθ[Wµ, d(Mρσ)d(P θ)]

=
1
2
ενρσθ

(
[Wµ, d(Mρσ)]d(P θ) + d(Mρσ)[Wµ, d(P θ)]

)
=

1
2
ενρσθ[Wµ, d(Mρσ)]d(P θ)
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=
1
2
ενρσθ(iδρµW σ − iδσµW ρ)d(P θ)

= −iεµνρσW ρd(P σ) (5.103)

as required. �.
From this we find the

Corollory 3. The following commutation relations hold

1) [WµW
µ, d(Pν)] = 0

2) [WµW
µ, d(Mρσ)] = 0

Proof
(1) follows because [WµW

µ, d(Pν)] = Wµ[Wµ, d(Pν)] + [Wµ, d(Pν)]Wµ = 0
(2) holds because

[WµW
µ, d(Mρσ)] = Wµ[Wµ, d(Mρσ)] + [Wµ, d(Mρσ)]Wµ

= Wµ(iδµρWσ − iδµσWρ) + (iηµρWσ − iηµσWρ)Wµ

= 0 (5.104)

as required. �
Hence we have shown thatWµW

µ is a Casimir operator. d(Pµ)d(Pµ) is another Casimir
operator:

Proposition 32. The following commutation relations hold

1) [d(Pµ)d(Pµ), d(Pν)] = 0

2) [d(Pµ)d(Pµ), d(Mρσ)] = 0

Proof
(1) follows because

[d(Pµ)d(Pµ), d(Pν)] = d(Pµ)[d(Pµ), d(Pν)] + [d(Pµ), d(Pν)]d(Pµ) = 0 (5.105)

(2) holds because

[d(Pµ)d(Pµ), d(Mρσ)] = d(Pµ)[d(Pµ), d(Mρσ)] + [d(Pµ), d(Mρσ)]d(Pµ)
= d(Pµ)(iδµρd(Pσ)− iδµσd(Pρ)) + (iηµρd(Pσ)− iηµσd(Pρ))d(Pµ)
= 0 (5.106)

as required. �
We shall show that irreducible representations are classified by the values of the two

Casimir operators WµW
µ and d(Pµ)d(Pµ).
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In particular, suppose that D is a unitary representation of the Poincaré group acting
on V . Such representations arise naturally in the context of quantum field theory when
V is taken to be a Hilbert space, and it is assumed that Poincaré transformations do not
affect transition probabilities. We will assume that this is the case.

Note that iMµν and iPµ form a basis for the (real) Poincaré algebra. Hence one can
locally write the Poincaré transformation as

e−
i
2

(bµPµ+ωµνMµν) (5.107)

for real bµ and skew-symmetric real ωµν , and

D(e−
i
2

(bµPµ+ωµνMµν)) = e−
i
2

(bµd(Pµ)+ωµνd(Mµν)) (5.108)

where d is a representation of the Poincaré algebra acting on V . As D is unitary, d(Mρσ)
and d(Pµ) are hermitian.

As the d(Pµ) commute with each other and are hermitian, they can be simultaneously
diagonalized, with real eigenvalues. For a 4-vector qµ define the subspace Vq of V to be
the simultaneous eigenspace

Vq = {|ψ〉 ∈ V : d(Pµ) |ψ〉 = qµ |ψ〉 , µ = 0, 1, 2, 3} (5.109)

and
V =

⊕
q

Vq (5.110)

Then on Vq, d(Pµ)d(Pµ) = qµqµ = q2. We will assume that for configurations of
physical interest, such as when q is the 4-momentum of a massive particle or of a photon,
that q2 ≥ 0 and q0 > 0. We will only consider these cases.

Consider first the operators

hλ(t) = e
it
2

(bµd(Pµ)+ωµνd(Mµν))d(P λ)e−
it
2

(bµd(Pµ)+ωµνd(Mµν)) (5.111)

Differentiating with respect to t we find

dhλ

dt
= e

it
2

(bµd(Pµ)+ωµνd(Mµν))[d(P λ),− i
2

(bµd(Pµ) + ωµνd(Mµν))]e−
it
2

(bµd(Pµ)+ωµνd(Mµν))

= ωλχe
it
2

(bµd(Pµ)+ωµνd(Mµν))d(Pχ)e−
it
2

(bµd(Pµ)+ωµνd(Mµν))

= ωλχh
χ (5.112)

with the initial condition hλ(0) = d(P λ). Therefore

hλ(t) = (etω)λρd(P ρ) = (e−
it
2
ωµνMµν

)λρd(P ρ) (5.113)

Hence, setting t = 1 we find

d(P λ)e−
i
2

(bµd(Pµ)+ωµνd(Mµν)) = (e−
i
2
ωµνMµν

)λρe−
i
2

(bµd(Pµ)+ωµνd(Mµν))d(P ρ) (5.114)

So, if |ψ〉 ∈ Vq then e−
i
2

(bµd(Pµ)+ωµνd(Mµν)) |ψ〉 ∈ Vq′ where q′ = e−
i
2
ωµνMµν

q.
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Definition 49. The stability subgroup Hq (or “little group”) which is associated with Vq
is the subgroup of the Poincaré group defined by

Hq = {e−
i
2

(bµPµ+ωµνMµν) : e−
i
2

(bµd(Pµ)+ωµνd(Mµν)) |ψ〉 ∈ Vq for |ψ〉 ∈ Vq} (5.115)

It can be shown that Hq is a Lie subgroup of the Poincaré group. Suppose then that
− i

2(bµPµ + ωµνM
µν) ∈ L(Hq). It follows that e−

it
2
ωµνMµν

q = q for t ∈ R. Expanding out
in powers of t we see that this constraint is equivalent to

ωµνq
ν = 0 (5.116)

which has a general solution
ωµν = εµνρσn

ρqσ (5.117)

where nρ is an arbitrary constant 4-vector. Hence, if |ψ〉 ∈ Vq and e−
i
2

(bµPµ+ωµνMµν) ∈ Hq

then
e−

i
2

(bµd(Pµ)+ωµνd(Mµν)) |ψ〉 = e−
i
2
bµqµe−in

µWµ |ψ〉 (5.118)

so we have reduced the action of Hq on Vq to the action of Wµ on Vq.
The action of a generic Poincaré transformation (Λ, b) does not leave Vq invariant,

because
Vq → V ′q = VΛq (5.119)

as q′ = Λq. However, q2 = q′2 is invariant. Hence we can split V into invariant subspaces Vq
corresponding to vectors qµ which have the same value of q2. We will therefore henceforth
work with such an invariant subspace, and consider q2 = m2 to be fixed.

If m2 > 0 then there is a Lorentz transformation Λ′(q) such that q = Λ′(q)k where
kµ = (m, 0, 0, 0). Alternatively, if m = 0 then there is a Lorentz transformation Λ(q) such
that q = Λ′(q)k where kµ = (E,E, 0, 0). These Lorentz transformations can be taken to
be fixed functions of the q.

The key step is to show that the action of the entire Poincaré group on the Vq (with
q2 = m2 fixed) is fixed by the action of Hk on Vk (which is in turn determined by the
action of the Pauli-Lubanski vector on Vk).

To show this, first note that if |ψk〉 ∈ Vk, then one can write

|ψq〉 = D(Λ′(q), 0) |ψk〉 (5.120)

where |ψq〉 ∈ Vq, and these transformations can be used to obtain all elements of Vq from
those in Vk.

It is then straightforward to show that the action of the representation of the whole
Poincaré group on {Vq : q2 = m2} is determined by the action of D(Hk) acting on Vk.

To see this explicitly, suppose that |ψk,M 〉 for M = 1, . . . , `k is a basis of Vk. Then one
can define

|ψq,M 〉 = D(Λ′(q), 0) |ψk,M 〉 (5.121)
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and the |ψq,M 〉 then form a basis for Vq. The representation of Hk on Vk is determined by
the coefficients D(h)MN , where h ∈ Hk, in the expansion

D(h) |ψk,M 〉 =
∑
N

D(h)MN |ψk,N 〉 (5.122)

Suppose that (Λ, b) is a generic Poincaré transformation; then one can write

D(Λ, b) |ψq,M 〉 = D(Λ, b)D(Λ′(q), 0) |ψk,M 〉
= D(Λ′(Λq), 0)D(Λ′(Λq)−1ΛΛ′(q),Λ′(Λq)−1b) |ψk,M 〉 (5.123)

However, ((Λ′(Λq))−1ΛΛ′(q),Λ′(Λq)−1b) ∈ Hk, so it is possible to expand

D(Λ, b) |ψq,M 〉 =
∑
N

D(Λ′(Λq), 0)D(Λ′(Λq)−1ΛΛ′(q),Λ′(Λq)−1b)MN |ψk,N 〉

=
∑
N

D(Λ′(Λq)−1ΛΛ′(q),Λ′(Λq)−1b)MN |ψΛq,N 〉 (5.124)

We will examine the action of Hk on Vk in the timelike and null cases separately.
Although

V =
⊕
q

Vq (5.125)

is not in general finite-dimensional, we shall assume that Vk (and hence the Vq) are
finite dimensional.

5.5.3 Massive Representations of the Poincaré Group: kµ = (m, 0, 0, 0)

We compute the action of Wµ on Vk. If |ψ〉 ∈ Vk then

W0 |ψ〉 =
1
2
εij`d(M ij)d(P `) |ψ〉 = 0

Wi |ψ〉 = −1
2
εij`d(M j`)d(P 0) |ψ〉 = −md(Ji) |ψ〉 (5.126)

We have already shown that d(Ji) generates a L(SU(2)) algebra, hence the little group for
massive representations is SO(3). For irreducible representations, the spin is fixed by the
value taken by the Casimir on Vk; WµW

µ |ψ〉 = −m2d(Ji)d(Ji) |ψ〉.

5.5.4 Massless Representations of the Poincaré Group: kµ = (E,E, 0, 0)

Again, we compute the action of Wµ on Vk. If |ψ〉 ∈ Vk then

W0 |ψ〉 =
1
2
εij`d(M ij)d(P `) |ψ〉 = d(M23)d(P 1) |ψ〉 = Ed(J1) |ψ〉

W1 |ψ〉 = −Ed(M23) |ψ〉 = −Ed(J1) |ψ〉
W2 |ψ〉 =

1
2
ε2µνλd(Mµν)d(P λ) |ψ〉
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= E(d(M13)− d(M03)) |ψ〉
= E(−d(J2) + d(K3)) |ψ〉

W3 |ψ〉 =
1
2
ε3µνλd(Mµν)d(P λ) |ψ〉

= E(−d(M12) + d(M02)) |ψ〉
= E(−d(J3)− d(K2)) |ψ〉 (5.127)

Observe that the following commutation relations hold:

[−d(J2) + d(K3),−d(J3)− d(K2)] = 0
[d(J1),−d(J3)− d(K2)] = −i(−d(J2) + d(K3))
[d(J1),−d(J2) + d(K3)] = i(−d(J3)− d(K2)) (5.128)

These expressions may be simplified slightly by setting R1 = −d(J3) − d(K2), R2 =
−d(J2) + d(K3), J = d(J1); so that

[R1, R2] = 0, [J,R1] = −iR2, [J,R2] = iR1 (5.129)

R1 and R2 are commuting hermitian operators on Vk, and hence can be simultaneously
diagonalized over R. Consider a state |ψ〉 ∈ Vk with R1 |ψ〉 = r1 |ψ〉, R2 |ψ〉 = r2 |ψ〉 for
r1, r2 ∈ R. Define

f(θ) = e−iθJR1e
iθJ |ψ〉

g(θ) = e−iθJR2e
iθJ |ψ〉 (5.130)

for θ ∈ R. Differentiating with respect to θ and using the commutation relations we
find df

dθ = −g, dg
dθ = f . Solving these equations with the initial condition f(0) = r1 |ψ〉,

g(0) = r2 |ψ〉 we find

f(θ) = (r1 cos θ − r2 sin θ) |ψ〉
g(θ) = (r1 sin θ + r2 cos θ) |ψ〉 (5.131)

which implies

R1e
iθJ |ψ〉 = (r1 cos θ − r2 sin θ)eiθJ |ψ〉

R2e
iθJ |ψ〉 = (r1 sin θ + r2 cos θ)eiθJ |ψ〉 (5.132)

Hence, unless r1 = r2 = 0, there is a continuum of R1, R2 eigenstates which implies Vk
cannot be finite-dimensional. We must therefore have R1 = R2 = 0 on Vk. J is also a
hermitian operator on Vk, and can also be diagonalized. For irreducible representations, J
can have only one eigenvalue, σ ∈ R. σ is called the helicity of the particle. It follows that
Wµ = σkµ, so it is clear that σ is a Lorentz invariant quantity.

There is no algebraic constraint fixing the value of the helicity σ in the massless case,
as there is to fix the spin in the massive case. However, for physically realistic systems, one
can make a topological argument to fix 2σ ∈ Z. This is because eiθJ describes a rotation of
angle θ in the spatial plane in the 2, 3 directions. So in particular, setting θ = 2π we find

e2πiJ |ψ〉 = e2πσi |ψ〉 (5.133)
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We require that e2πσi = ±1 (for a projective representation) and so 2σ ∈ Z. Neutrinos
have helicity ±1

2 , photons have helicity ±1 and gravitons have helicity ±2.
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6. Gauge Theories

Lie groups and Lie algebras play an important role in the various dynamical theories which
govern the behaviour of particles - the gauge theories. Though we will not examine the
quantization of these theories, we shall present the relationship between Lie algebras and
gauge theories.

Before examining non-Abelian gauge theories, we briefly recap some properties of the
simplest gauge theory, which is the U(1) gauge theory of electromagnetism.

6.1 Electromagnetism

The gauge theory of electromagnetism contains a field strength

fµν = ∂µaν − ∂νaµ (6.1)

where µ, ν = 0, 1, 2, 3 and xµ are co-ordinates on Minkowski space (indices raised/lowered
with the Minkowski metric η), and ∂µ ≡ ∂

∂xµ . aµ ∈ R is the 4-vector potential.
Under a gauge transformation aµ −→ a′µ = aµ − ∂µλ where λ is a real function,

fµν → f ′µν = ∂µ(aν − ∂νλ)− ∂ν(aµ − ∂µλ) = ∂µaν − ∂νaµ = fµν (6.2)

since ∂µ∂νλ = ∂ν∂µλ. Hence fµν is invariant under gauge transformations.
The field equations of electromagnetism are

∂µfµν = jν (6.3)

and
ελµνρ∂µfνρ = 0 (6.4)

Equation (6.4) holds automatically due to the existence of the vector potential. Conversely,
if fµν satisfies (6.4) then it can be shown that a vector potential aµ exists (though only
locally) such that fµν = ∂µaν − ∂νaµ.

Using the vector potential, one defines a covariant derivative Dµ by

Dµψ = ∂µψ + iaµψ (6.5)

where ψ = ψ(x). Under a gauge transformation

ψ −→ ψ′ = eiλψ, aµ −→ a′µ = aµ − ∂µλ (6.6)

where λ = λ(x), it is straightforward to see that

Dµψ −→ (Dµψ)′ = ∂µ(eiλψ) + i(aµ − ∂µλ)eiλψ
= eiλDµψ (6.7)

so that Dµψ transforms like ψ. This means that the Dirac equation

iγµDµΨ−mΨ = 0 (6.8)
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is gauge invariant. Ψ is a 4-component Dirac spinor constructed from left and right handed
Weyl spinors ψα, χ̄α̇ via

Ψ =

(
ψα
χ̄α̇

)
(6.9)

and the 4× 4 matrices γµ are given by

γµ =

(
0 σµ

σ̄µ 0

)
(6.10)

These matrices satisfy the Clifford algebra

{γµ, γν} ≡ γµγν + γνγµ = 2ηµνI4 . (6.11)

The standard Lagrangian governing the interaction of electrodynamics with scalar
fields

L = −1
4
fµνf

µν +
1
2

(Dµφ)∗Dµφ+ V (φ∗φ) (6.12)

where φ is a complex scalar field, and V is a real function of φ∗φ is also gauge covariant.
It is possible to obtain the gauge field strength in a natural way from the commutator

of covariant derivatives. If φ is a scalar field then

DµDµφ = (∂µ + iaµ)(∂νφ+ iaνφ)
= ∂µ∂νφ+ i(aν∂µφ+ aµ∂νφ)− aµaνφ+ i∂µaνφ (6.13)

and hence
[Dµ, Dν ]φ = i(∂µaν − ∂νaµ)φ = ifµνφ (6.14)

6.2 Non-Abelian Gauge Theory

6.2.1 The Fundamental Covariant Derivative

Suppose that G is a compact matrix Lie group acting on a vector space V via the funda-
mental representation. Consider a scalar field Φ(x) which is an xµ dependent element of
V (which can be thought of as a column vector of ordinary scalar fields). Suppose that Φ
transforms under the fundamental representation as

Φ(x) −→ Φ′(x) = g(x)Φ(x) (6.15)

where g(x) ∈ G.

Definition 50. The fundamental covariant derivative Dµ is defined by

DµΦ = ∂µΦ +AµΦ (6.16)

where Aµ ∈ L(G) is an element of the Lie algebra of G acting on V .
We require that DµΦ should transform under local gauge transformations in the same

way as Φ. Suppose that Aµ → A′µ under local gauge transformations. Then we need

∂µΦ′ +A′µΦ′ = g(∂µΦ +AµΦ) (6.17)
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which implies
∂µ(gΦ) +A′µgΦ = g(∂µΦ +AµΦ) (6.18)

and hence
∂µgΦ +A′µgφ = gAµΦ (6.19)

As this must hold for all Φ, we find the transformation rule

A′µ = gAµg
−1 − ∂µgg−1 (6.20)

Before proceeding further, there is a question of consistency: namely if Aµ ∈ L(G) then
we must verify that A′µ given above is also an element of L(G). This is proved using the

Lemma 11. If g(t) is a curve in the matrix Lie group G then dg
dt g(t)−1 ∈ L(G).

Proof
Suppose that g(t) = g0 when t = t0. Set h(t) = g(t + t0)g−1

0 . Then h(t) is a smooth
curve in G with h(0) = I, and

dh

dt
|t=0 =

dg

dt
|t=t0g−1

0 =
(dg
dt
g−1
)
|t=t0 (6.21)

But dh
dt |t=0 ∈ L(G) by definition, and hence

(dg
dt g
−1
)
|t=t0 ∈ L(G) for all t0. �

Hence we have shown that ∂µgg−1 ∈ L(G), and from our previous analysis of the
adjoint representation, we know that gAµg−1 ∈ L(G); so A′µ ∈ L(G) as required.

6.2.2 Generic Covariant Derivative

Definition 51. Suppose that G is a matrix Lie group with representation D acting on V ,
and let d denote the associated representation of the Lie algebra acting on V . Let elements
θ ∈ V transform as θ → θ′ = D(g(x))θ under local gauge transformations.

Then the covariant derivative Dµ associated with D acting on V is defined by

Dµθ = ∂µθ + d(Aµ)θ (6.22)

where Aµ ∈ L(G) transforms as Aµ → A′µ = gAµg
−1 − ∂µgg−1.

In order to show that this covariant derivative transforms as Dµθ → D(g)Dµθ we must
prove the

Lemma 12. Suppose that D is a representation of G acting on V , with associated repre-
sentation d of L(G) acting on V . Then

i) If v ∈ L(G) and g ∈ G, then d(gvg−1)D(g) = D(g)d(v)

ii) If g(t) is a curve in G then dD(g)
dt D(g−1) = d

(dg
dt g
−1
)

Proof
(Caveat: in this proof t is simply a parameter along a curve in G, not the spacetime

co-ordinate x0!)
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To prove (i), set g = eh for h ∈ L(G), so that D(g) = ed(h). Then (i) is equivalent to

e−d(h)d(ehve−h)ed(h) = d(v) (6.23)

Set
f(t) = e−td(h)d(ethve−th)etd(h) (6.24)

for t ∈ R. Then

df

dt
= e−td(h)

(
[d(ethve−th), d(h)] + d(eth[h, v]e−th)

)
etd(h)

= e−td(h)
(
d([ethve−th, h]) + d(eth[h, v]e−th)

)
etd(h)

= e−td(h)
(
d(eth[v, h]e−th) + d(eth[h, v]e−th)

)
etd(h)

= 0 (6.25)

and f(0) = d(v). Hence, f(1) = e−d(h)d(ehve−h)ed(h) = f(0) = d(v) as required.
To prove (ii), suppose g(t) = g0 at t = t0. Set h(t) = g(t + t0)g−1

0 , so that h(t) is a
smooth curve in G with h(0) = I. Then

dD(g)
dt
D(g−1)|t=t0 =

dD(h(t)g0)
dt

|t=0D(g−1
0 ) =

dD(h(t))
dt

|t=0 (6.26)

and
d(
dg

dt
g−1|t=t0) = d(

dh(t)
dt
|t=0) (6.27)

As h(0) = I we can set h(t) = eth1+O(t2) for some constant matrix h1. Then

dh(t)
dt
|t=0 = h1 ∈ L(G) (6.28)

so
d(
dh(t)
dt
|t=0) = d(h1) (6.29)

But by definition

d(h1) =
d

dt

(
D(eth1)

)
|t=0 =

d

dt

(
D(h(t))

)
|t=0 (6.30)

Therefore
dD(g)
dt
D(g−1)|t=t0 = d(h1) = d(

dg

dt
g−1|t=t0) (6.31)

are required. �

Proposition 33. The covariant derivative Dµ associated with D transforms as

Dµθ → (Dµθ)′ = D(g)Dµθ (6.32)

under local gauge transformations.
Proof

Note that

∂µθ
′ + d(A′µ)θ′ = ∂µ(D(g)θ) + d(gAµg−1 − ∂µgg−1)D(g)θ
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= D(g)(∂µθ + d(Aµ)θ) +
(
d(gAµg−1)D(g)−D(g)d(Aµ)

+ ∂µ(D(g))− d(∂µgg−1)D(g)
)
θ

= D(g)Dµθ +
(
d(gAµg−1)D(g)−D(g)d(Aµ)

)
θ

+
(
∂µ(D(g))− d(∂µgg−1)D(g)

)
θ (6.33)

However, by the previous lemma, we have proved that d(gAµg−1)D(g)−D(g)d(Aµ) = 0
and ∂µ(D(g))− d(∂µgg−1)D(g) = 0, hence

∂µθ
′ + d(A′µ)θ′ = D(g)Dµθ (6.34)

as required. �
Given this property of transformations of covariant derivatives, one can define the

adjoint covariant derivative

Definition 52. Suppose that θ ∈ L(G) transforms under the adjoint representation Ad of
G. The the covariant derivative associated with the adjoint representation is

Dµθ = ∂µθ + (ad Aµ)θ = ∂µθ + [Aµ, θ] (6.35)

To summarize, we have shown that if Φ transforms under the action of the fundamental
representation as Φ→ Φ′ = gΦ, then in order for the fundamental covariant derivative to
transform in the same way, one must impose the transformation

Aµ → A′µ = gAµg
−1 − ∂µgg−1 (6.36)

on the gauge potential. We then have shown that if Φ transforms under the action of a
generic representation D, Φ → Φ′ = D(g)Φ, then the same transformation rule Aµ →
A′µ = gAµg

−1 − ∂µgg−1 is sufficient to ensure that the generic covariant derivative DµΦ =
∂µΦ + d(Aµ)Φ also transforms in the same way as Φ. Caveat: a covariant derivative is
always defined with respect to a particular representation

6.3 Non-Abelian Yang-Mills Fields

Following from the relationship of the U(1) electromagnetic field strength with the com-
mutator of the U(1) covariant derivatives acting on scalars, we consider the commutator
of the fundamental covariant derivative Dµ acting on Φ(x) ∈ V , which transforms under
the fundamental representation as Φ→ Φ′ = gΦ:

[Dµ, Dν ]Φ = (∂µ +Aµ)
(
∂νΦ +AνΦ

)
− (∂ν +Aν)

(
∂µΦ +AµΦ

)
=
(
∂µAν − ∂νAµ + [Aµ, Aν ]

)
Φ (6.37)

Definition 53. The non-abelian Yang-Mills field strength is

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] (6.38)
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Note that as Aµ ∈ L(g) it follows that Fµν ∈ L(G). Note also that by construction
[Dµ, Dν ]Φ transforms like Φ under a gauge transformation. Hence if F ′µν is the transformed
gauge field strength, then F ′µνΦ′ = gFµνΦ. As this must hold for all Φ, we find

F ′µν = gFµνg
−1 (6.39)

so that F transforms like the homogeneous part of Aµ.
Exercise: Verify this transformation rule for Fµν directly from the definition Fµν =

∂µAν − ∂νAµ + [Aµ, Aν ] together with the transformation rule of Aµ.

Lemma 13. The non-abelian field strength satisfies

DµDνF
µν = 0 (6.40)

where here Dµ is the adjoint covariant derivative.
Proof

DµDνF
µν = Dµ(∂νFµν + [Aν , Fµν ])

= ∂µ∂νF
µν + [Aµ, ∂νFµν ] + ∂µ[Aν , Fµν ] + [Aµ, [Aν , Fµν ]]

= [Aµ, DνF
µν ] + [∂µAν , Fµν ] + [Aν , ∂µFµν ]

= [Aµ, DνF
µν ] +

1
2

[Fµν − [Aµ, Aν ], Fµν ] + [Aν , DµF
µν − [Aµ, Fµν ]]

= [Aµ, DνF
µν ] + [Aν , DµF

µν ]− 1
2

[[Aµ, Aν ], Fµν ]− [Aν , [Aµ, Fµν ]]

= −1
2

[[Aµ, Aν ], Fµν ]− [Aν , [Aµ, Fµν ]]

= 0 ( using the Jacobi identity) (6.41)

as required. �

6.3.1 The Yang-Mills Action

Definition 54. The non-abelian Yang-Mills Lagrangian is

L =
1

4e2
κ(Fµν , Fµν) (6.42)

where κ is the Killing form of the compact matrix Lie group G.

Proposition 34. The non-Abelian Yang-Mills Lagrangian is gauge invariant
Proof

Under a gauge transformation

κ(Fµν , Fµν) −→ κ(gFµνg−1, gFµνg−1) (6.43)

Suppose that X,Y, Z ∈ L(G). Then for t ∈ R, compute

d

dt
κ(etZXe−tZ , etZY e−tZ) = κ(−etZ [X,Z]e−tZ , etZY e−tZ) + κ(etZXe−tZ ,−etZ [Y,Z]e−tZ)
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= κ(−[etZXe−tZ , Z], etZY e−tZ) + κ(etZXe−tZ ,−[etZY e−tZ , Z])
= −κ(etZXe−tZ , [Z, etZY e−tZ ]) + κ(etZXe−tZ ,−[etZY e−tZ , Z])
= 0 (6.44)

where we have used the associativity of the Killing form. Therefore

κ(eZXe−Z , eZY e−Z) = κ(X,Y ) (6.45)

and hence it follows that

κ(gFµνg−1, gFµνg−1) = κ(Fµν , Fµν) (6.46)

as required. �
Note that the coupling constant e plays an important role in the dynamics. If one

attempts to rescale A so that Aµ = eÂµ, it is possible to eliminate the explicit factor of e
from the Yang-Mills Lagrangian, and write

1
4e2

κ(Fµν , Fµν) =
1
4
κ(F̂µν , F̂µν) (6.47)

where here F̂µν = ∂µÂν−∂νÂµ+e[Âµ, Âν ]. Although the explicit e-dependence of the Yang-
Mills Lagrangian appears to have been removed, observe that the gauge field strength now
has an e-dependent term, which arises from the commutator which is quadratic in A. So the
dependence on e in the non-abelian theory cannot be removed by rescaling. If, nevertheless,
one performs this rescaling (and then drops theˆon all terms), then the generic covariant
derivative is modified via DµΦ = ∂µΦ + ed(Aµ)Φ, and the gauge potential transformation
rule is also modified: Aµ → A′µ = gAµg

−1 − e−1∂µgg
−1. Whether e appears as an overall

factor in the Yang-Mills Lagrangian, or within the covariant derivative and gauge field
strength, depends on convention. Until stated otherwise, we shall however retain the 1

4e2

outside the Lagrangian, and work with the un-rescaled gauge fields.
If the representation D of G is unitary, then one can couple addtional gauge invariant

scalar terms to the Yang-Mills Lagrangian:

L =
1

4e2
κ(Fµν , Fµν) +

1
2

(DµΦ)†DµΦ− V (Φ†Φ) (6.48)

where Φ→ D(g)Φ under a gauge transformation.

6.3.2 The Yang-Mills Equations

Consider a first order variation to the gauge potential Aµ → Aµ+δAµ. Under this variation

Fµν → Fµν + (∂µδAν + [Aµ, δAν ])− (∂νδAµ + [Aν , δAµ]) (6.49)

Hence, the first order variation of the Yang-Mills action S = 1
4e2

∫
κ(Fµν , Fµν)d4x is given

by

δS =
1

2e2

∫
κ(δFµν , Fµν)d4x
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=
1
e2

∫
κ(∂µδAν + [Aµ, δAν ], Fµν)d4x

= − 1
e2

∫
κ(δAν , ∂µFµν + [Aµ, Fµν ])d4x+ surface terms (6.50)

where we have made use of the associativity of the Killing form. Neglecting the surface
terms (assuming that the solutions are sufficiently smooth and fall off sufficiently fast at
infinity), and requiring that δS = 0 for all variations δAν we obtain the Yang-Mills field
equations

∂µF
µν + [Aµ, Fµν ] = 0 (6.51)

or equivalently
DµF

µν = 0 (6.52)

where here Dµ is the adjoint covariant derivative.

6.3.3 The Bianchi Identity

There is a non-abelian generalization of the identity ελµνρ∂µfνρ = 0 in electromagnetism.
Let Dµ be the adjoint covariant derivative. Consider

DµFνρ = ∂µ(∂νAρ − ∂ρAν + [Aν , Aρ]) + [Aµ, ∂νAρ − ∂ρAν + [Aν , Aρ]]
= ∂µ(∂νAρ − ∂ρAν)− ([Aµ, ∂ρAν ] + [Aρ, ∂µAν ])
+ [Aµ, ∂νAρ] + [Aν , ∂µAρ] + [Aµ, [Aν , Aρ]] (6.53)

Consider the contraction ελµνρDµFνρ. As the terms ([Aµ, ∂ρAν ] + [Aρ, ∂µAν ]) are sym-
metric in µ, ρ and the terms [Aµ, ∂νAρ]+ [Aν , ∂µAρ] are symmetric in µ, ν, these terms give
no contribution to ελµνρDµFνρ. Also,

ελµνρ[Aµ, [Aν , Aρ]] = 0 (6.54)

from the Jacobi identity, and just as for electromagnetism,

ελµνρ∂µ(∂νAρ − ∂ρAν) = 0 (6.55)

because the partial derivatives commute with each other. Hence we find ελµνρDµFνρ = 0,
or equivalently

DµFνρ +DνFρµ +DρFµν = 0 (6.56)

This equation is called the Bianchi identity.
This can be used to prove a Jacobi identity for all covariant derivatives. Suppose that

Dµ is the covariant derivative associated with the representation D, and Φ ∈ V transforms
under the representation D as Φ → Φ′ = D(g)Φ. Let d be the induced representation of
L(G).

Then note that

DνDλΦ = Dν(∂λ + d(Aλ)Φ)
= ∂ν(∂λΦ + d(Aλ)Φ) + d(Aν)∂λΦ + d(Aν)d(Aλ)Φ
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= ∂ν∂λΦ + d(Aλ)∂νΦ + d(Aν)∂λΦ +
(
d(∂νAλ) + d(Aν)d(Aλ)

)
Φ (6.57)

and hence

[Dν , Dλ]Φ = d(Fνλ)Φ (6.58)

Then

[Dµ, [Dν , Dλ]]Φ = Dµ(d(Fνλ)Φ)− d(Fνλ)DµΦ
= ∂µ(d(Fνλ)Φ) + d(Aµ)d(Fνλ)Φ− d(Fνλ)(∂µΦ + d(Aµ)Φ)
=
(
∂µd(Fνλ) + [d(Aµ), d(Fνλ)]

)
Φ

= d(Dadj
µ Fνλ)Φ (6.59)

where Dadj
µ denotes the adjoint covariant derivative.

Hence(
[Dµ, [Dν , Dλ]] + [Dν , [Dλ, Dµ]] + [Dλ, [Dµ, Dν ]]

)
Φ = d(Dadj

µ Fνλ +Dadj
ν Fλµ +Dadj

λ Fµν)Φ

= 0 (6.60)

using the Bianchi identity on F . As this must hold for all Φ we obtain the Jacobi
identity for covariant derivatives:

[Dµ, [Dν , Dλ]] + [Dν , [Dλ, Dµ]] + [Dλ, [Dµ, Dν ]] = 0 (6.61)

6.4 Yang-Mills Energy-Momentum

The energy momentum tensor of the Yang-Mills field strength is

Tµν = κ(Fµλ, Fνλ)− 1
4
ηµνκ(Fρσ, F ρσ) (6.62)

This differs from the canonical energy-momentum tensor by a total derivative. Observe
that Tµν is gauge invariant by construction.

Proposition 35. If the Yang-Mills field strength F satisfies the Yang-Mills field equations,
the energy-momentum tensor satisfies

∂µTµν = 0 (6.63)

Proof

∂µTµν = ∂µ(κ(Fµλ, Fνλ))− 1
4
∂ν(κ(Fρσ, F ρσ))

= κ(∂µFµλ, Fνλ) + κ(Fµλ, ∂µFνλ)− 1
2
κ(∂νFρσ, F ρσ)

= κ(DµFµλ − [Aµ, Fµλ], Fνλ) + κ(Fµλ, DµFν
λ − [Aµ, Fνλ])
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− 1
2
κ(DνFρσ − [Aν , Fρσ], F ρσ) (6.64)

where here Dµ is the adjoint covariant derivative. Note that by the Bianchi identity

κ(Fµλ, DµFν
λ) = κ(Fµλ,−DνF

λµ −DλFµν)
= κ(Fµλ,−DνF

λµ)− κ(Fµλ, DµFν
λ) (6.65)

and so

κ(Fµλ, DµFν
λ) =

1
2
κ(Fµλ, DνF

µλ) (6.66)

Hence

∂µTµν = κ(DµFµλ, Fν
λ)− κ([Aµ, Fµλ], Fνλ)− κ(Fµλ, [Aµ, Fνλ])

+
1
2
κ([Aν , Fρσ], F ρσ) (6.67)

However, using the associativity of the Killing form

κ([Aν , Fρσ], F ρσ) = κ(Aν , [Fρσ, F ρσ]) = 0 (6.68)

and

κ([Aµ, Fµλ], Fνλ) + κ(Fµλ, [Aµ, Fνλ]) = κ([Aµ, Fµλ], Fνλ) + κ([Fµλ, Aµ], Fνλ)
= 0 (6.69)

hence

∂µTµν = κ(DµFµλ, Fν
λ) = 0 (6.70)

from the Yang-Mills field equations, as required. �

6.5 The QCD Lagrangian

The QCD Lagrangian consists of a non-abelian Yang-Mills gauge theory coupled to fermions.
The gauge group is G = SU(3)colour. Take generators Ta of G; as G is compact, these

may be chosen so that the Killing form has components

κab = −δab (6.71)

where a = 1, . . . , 8 (SU(3) is an 8-dimensional Lie group).
The Lagrangian is given by

LQCD = −1
4

8∑
a=1

F aµνF
aµν + i

6∑
f=1

Ψ̄A
f γ

µ(δAB∂µ+eAaµ(Ta)AB)ΨBf −
6∑

f=1

mf Ψ̄A
f ΨAf (6.72)
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Here we have decomposed the non-abelian gluon field strength F and potential A into
components

Fµν = F aµνTa, Aµ = AaµTa (6.73)

where
F aµν = ∂µA

a
ν − ∂νAaµ + e[Aµ, Aν ]a = ∂µA

a
ν − ∂νAaµ + ecbc

aAbµA
c
ν (6.74)

The indices f = 1, . . . , 6 are flavour indices; whereas the indices A,B = 1, 2, 3 are
SU(3)colour indices. The SU(3)colour structure constants are cabc. mf is the mass of the f -
flavour quark. The SU(3) gauge coupling is e; observe that the gauge potentials have been
re-scaled as mentioned previously in order to remove the gauge coupling factor from the
Yang-Mills action; although this means that e now appears in the fundamental covariant
derivative via ∂µ + eAµ, and also in the gauge transformations via

Aµ → gAµg
−1 − e−1∂µgg

−1 (6.75)

where g ∈ G.
The ΨAf are fermionic fields associated to the quarks- they are 4-component Dirac

spinors. We set ΨA
f = δABΨBf , and Ψ̄A

f ≡ (ΨA
f )†γ0.

Gauge Invariance
The Yang-Mills term −1

4

∑8
a=1 F

a
µνF

aµν = 1
4κ(Fµν , Fµν) in the QCD action is auto-

matically gauge invariant by construction.
It remains to consider the terms involving fermions: the fermions transform under the

fundamental representation of SU(3)colour via

ΨAf → gA
B(x)ΨBf (6.76)

where g(x) ∈ SU(3). It is then straightforward to see that the covariant derivative
(δAB∂µ + e(Aµ)AB)ΨBf then transforms as

(δAB∂µ + e(Aµ)AB)ΨBf → gA
C(δCB∂µ + e(Aµ)CB)ΨBf (6.77)

Also, the Ψ̄A
f transform as

Ψ̄A
f → Ψ̄Qfδ

AP (g∗)PQ (6.78)

Hence we see that under these gauge transformations

Ψ̄A
f ΨAf → Ψ̄Qfδ

AP (g∗)PQgACΨCf

= Ψ̄Qfδ
QCΨCf

= Ψ̄A
f ΨAf (6.79)

where g ∈ SU(3) implies δAP (g∗)PQgAC = δQC .
Similarly, under this transformation

Ψ̄A
f (δAB∂µ + e(Aµ)AB)ΨBf → Ψ̄Qfδ

AP (g∗)PQgAC(δCB∂µ + e(Aµ)CB)ΨBf

– 124 –



= Ψ̄A
f (δAB∂µ + e(Aµ)AB)ΨBf (6.80)

It follows that all terms in the Lagrangian are gauge invariant.
Equations of Motion
There are two sets of equations of motion. Varying the gauge potentials Aaν we obtain

the variation of the action

δS =
∫
d4x δAaν

(
∂µF

aµν + e[Aµ, Fµν ]a + ie

6∑
f=1

Ψ̄A
f γ

ν(Ta)ABΨBf

)
(6.81)

from which we obtain

∂µF
aµν + ecbc

aAbµF
cµν + ie

6∑
f=1

Ψ̄A
f γ

ν(Ta)ABΨBf = 0 (6.82)

Defining

Jν = −ie
8∑

a=1

6∑
f=1

Ψ̄A
f γ

ν(Ta)ABΨBfTa (6.83)

this can be rewritten as

DµF
µν = Jν (6.84)

Observe that DµJ
µ = 0 as a consequence of Lemma 14.

There are also fermionic equations of motion; these may be obtained by varying Ψ̄A
f

and ΨBf in the action. These can be varied independently; from the variation of Ψ̄A
f (not

varying ΨBf ) we obtain the equation:

iγµ
(
δA

B∂µ + eAaµ(Ta)AB
)
ΨBf −mfΨAf = 0 (6.85)

Next vary ΨBf (not varying Ψ̄A
f )- then the action variation is

δS =
∫
d4x

(
iΨ̄A

f γ
µ
(
δA

B∂µ + eAaµ(Ta)AB
)
−mf Ψ̄B

f

)
δΨBf

=
∫
d4x

(
− i∂µΨ̄A

f γ
µδA

B + ieΨ̄A
f γ

µAaµ(Ta)AB −mf Ψ̄B
f

)
δΨBf (6.86)

Hence we obtain

−i∂µΨ̄A
f γ

µδA
B + ieΨ̄A

f γ
µAaµ(Ta)AB −mf Ψ̄B

f = 0 (6.87)

Take the hermitian transpose of the above equation we obtain

iγ0γµ∂µΨB
f − ieγ0γµAaµ(T ∗a )ABΨA

f −mfγ
0ΨB

f = 0 (6.88)

where we have made use of the identity γµ† = γ0γµγ0. As Ta is anti-hermitian, we
therefore recover (6.85).
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